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Abstract

The non-blocking work-stealing algorithm of Arora, Blumofe, and Plax-
ton [2] (henceforth ABP work-stealing) is on its way to becoming the multi-
processor load balancing technology of choice in both industry and academia.
This highly efficient scheme is based on a collection of array-based double-
ended queues (deques) with low cost synchronization among local and steal-
ing processes. Unfortunately, the algorithm’s synchronization protocol is
strongly based on the use of fixed size arrays, which are prone to over-
flows, especially in the multiprogrammed environments for which they are
designed. This is a significant drawback since, apart from memory ineffi-
ciency, it means that the size of the deque must be tailored to accommodate
the effects of the hard-to-predict level of multiprogramming, and the im-
plementation must include an expensive and application-specific overflow
mechanism.

This paper presents the first dynamic memory work-stealing algorithm.
It is based on a novel way of building non-blocking dynamic-sized work-
stealing deques by detecting synchronization conflicts based on “pointer-
crossing” rather than “gaps between indexes” as in the original ABP al-
gorithm. As we show, the new algorithm dramatically increases robustness
and memory efficiency, while causing applications no observable performance
penalty. We therefore believe it can replace array-based ABP work-stealing
deques, eliminating the need for application-specific overflow mechanisms.

∗This work was conducted while Yossi Lev was a student at Tel-Aviv University, and is
derived from his MS thesis [1].



1 Introduction

Scheduling multithreaded computations on multiprocessor machines is a well-
studied problem. To execute multithreaded computations, the operating system
runs a collection of kernel-level processes, one per processor, and each of these
processes controls the execution of multiple computational threads created dy-
namically by the executed program. The scheduling problem is that of dynami-
cally deciding which thread is to be run by which process at a given time, so as to
maximize the utilization of the available computational resources (processors).

Most of today’s multiprocessor machines run programs in a multiprogrammed
mode, where the number of processors used by a computation grows and shrinks
over time. In such a mode, each program has its own set of processes, and the
operating system chooses in each step which subset of these processes to run,
according to the number of processors available for that program at the time.
Therefore the scheduling algorithm must be dynamic (as opposed to static): at
each step it must schedule threads onto processes, without knowing which of the
processes are going to be run.

When a program is executed on a multiprocessor machine, the threads of
computation are dynamically generated by the different processes, implying that
the scheduling algorithm must have processes load balance the computational
work in a distributed fashion. The challenge in designing such distributed work
scheduling algorithms is that performing a re-balancing, even between a pair of
processes, requires the use of costly synchronization operations. Re-balancing
operations must therefore be minimized.

Distributed work scheduling algorithms can be classified according to one of
two paradigms: work-sharing or work-stealing. In work-sharing (also known as
load-distribution), the processes continuously re-distribute work so as to balance
the amount of work assigned to each [3]. In work-stealing, on the other hand,
each process tries to work on its newly created threads locally, and attempts to
steal threads from other processes only when it has no local threads to execute.
This way, the computational overhead of re-balancing is paid by the processes
that would otherwise be idle.

The ABP work-stealing algorithm of Arora, Blumofe, and Plaxton [2] has
been gaining popularity as the multiprocessor load-balancing technology of choice
in both industry and academia [2, 4, 5, 6]. The scheme implements a provably
efficient work-stealing paradigm due to Blumofe and Leiserson [7] that allows
each process to maintain a local work deque,1 and steal an item from others if
its deque becomes empty. It has been extended in various ways such as stealing
multiple items [9] and stealing in a locality-guided way [4]. At the core of the ABP
algorithm is an efficient scheme for stealing an item in a non-blocking manner

1Actually, the work-stealing algorithm uses a work-stealing deque, which is like a deque [8]
except that only one process can access one end of the queue (the “bottom”), and only Pop
operations can be invoked on the other end (the “top”). For brevity, we refer to the data
structure as a deque in the remainder of the paper.
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from an array-based deque, minimizing the need for costly Compare-and-Swap
(CAS)2 synchronization operations when fetching items locally.

Unfortunately, the use of fixed size arrays3 introduces an inefficient memory-
size/robustness tradeoff: for n processes and total allocated memory size m, one
can tolerate at most m

n
items in a deque. Moreover, if overflow does occur, there

is no simple way to malloc additional memory and continue. This has, for ex-
ample, forced parallel garbage collectors using work-stealing to implement an
application-specific blocking overflow management mechanism [5, 10]. In multi-
programmed systems, the main target of ABP work-stealing [2], even inefficient
over-allocation based on an application’s maximal execution-DAG depth [2, 7]
may not always work. If a small subset of non-preempted processes end up queu-
ing most of the work items, since the ABP algorithm sometimes starts pushing
items from the middle of the array even when the deque is empty, this can lead
to overflow.4

This state of affairs leaves open the question of designing a dynamic memory
algorithm to overcome the above drawbacks, but to do so while maintaining
the low-cost synchronization overhead of the ABP algorithm. This is not a
straightforward task, since the the array-based ABP algorithm is unique: it is
possibly the only real-world algorithm that allows one to transition in a lock-free
manner from the common case of using loads and stores to using a costly CAS
only when a potential conflict requires processes to synchronize. This transition
rests on the ability to detect these boundary synchronization cases based on the
relative gap among array indexes. There is no straightforward way of translating
this algorithmic trick to the pointer-based world of dynamic data structures.

1.1 The New Algorithm

This paper introduces the first lock-free5 dynamic-sized version of the ABP work-
stealing algorithm. It provides a near-optimal memory-size/robustness tradeoff:
for n processes and total pre-allocated memory size m, it can potentially tolerate
up to O(m) items in a single deque. It also allows one to malloc additional
memory beyond m when needed, and as our empirical data shows, it is far more
robust than the array-based ABP algorithm in multiprogrammed environments.

An ABP-style work-stealing algorithm consists of a collection of deque data
structures with each process performing pushes and pops on the “bottom” end
of its local deque and multiple thieves performing pops on the “top” end. The
new algorithm implements each deque as a doubly linked list of nodes, each of

2The CAS(location, old-value, new-value) operation atomically reads a value from location,
and writes new-value in location if and only if the value read is old-value. The operation returns
a boolean indicating whether it succeeded in updating the location.

3One may use cyclic array indexing but this does not help in preventing overflows.
4The ABP algorithm’s built-in “reset on empty” mechanism helps in some, but not all, of

these cases.
5Our abstract deque definition is such that the original ABP algorithm is also lock-free.
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which is a short array that is dynamically allocated from and freed to a shared
pool; see Figure 1. It can also use malloc to add nodes to the shared pool in case
its node supply is exhausted.

The main technical difficulties in the design of the new algorithm arise from
the need to provide performance comparable to that of ABP. This means the
doubly linked list must be manipulated using only loads and stores in the common
case, resorting to using a costly CAS only when a potential conflict requires it; it
is challenging to make this transition correctly while maintaining lock-freedom.

The potential conflict that requires CAS-based synchronization occurs when
a pop by a local process and a pop by a thief might both be trying to remove the
same item from the deque. The original ABP algorithm detects this scenario by
examining the gap between the Top and Bottom array indexes, and uses a CAS
operation only when they are “too close.” Moreover, in the original algorithm,
the empty deque scenario is checked simply by checking whether Bottom ≤ Top.

A key algorithmic feature of our new algorithm is the creation of an equivalent
mechanism to allow detection of these boundary situations in our linked list
structures using the relations between the Top and Bottom pointers, even though
these point to entries that may reside in different nodes. On a high level, our
idea is to prove that one can restrict the number of possible ways the pointers
interact, and therefore, given one pointer, it is possible to calculate the different
possible positions for the other pointer that imply such a boundary scenario.

The other key feature of our algorithm is that the dynamic insertion and
deletion operations of nodes into the doubly linked-list (when needed in a push
or pop) are performed in such a way that the local thread uses only loads and
stores. This contrasts with the more general linked-list deque implementations
[11, 12] which require a double-compare-and-swap synchronization operation [13]
to insert and delete nodes.

1.2 Performance Analysis

We compared our new dynamic-memory work-stealing algorithm to the original
ABP algorithm on a 16-node shared memory multiprocessor using the bench-
marks of the style used by Blumofe and Papadopoulos [14]. We ran several
standard Splash2 [15] applications using the Hood scheduler [16] with the ABP
and new work-stealing algorithms. Our results, presented in Section 3, show that
the new algorithm performs as well as ABP, that is, the added dynamic-memory
feature does not slow the applications down. Moreover, the new algorithm pro-
vides a better memory/robustness ratio: the same amount of memory provides
far greater robustness in the new algorithm than the original array-based ABP
work-stealing. For example, running Barnes-Hut using ABP work-stealing with
an 8-fold level of multiprogramming causes a failure in 40% of the executions
if one uses the deque size that works for stand-alone (non-multiprogrammed)
runs. It causes no failures when using the new dynamic memory work-stealing
algorithm.
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Figure 1: The original ABP deque structure (a) vs. that of the new dynamic
deque (b). The structure is after 9 PushBottom operations, 4 successful PopTop
operations, and 2 PopBottom operations. (In practice the original ABP deque
uses cell indexes and not pointers as in our illustration.)

2 The Algorithm

2.1 Basic Description

Figure 1(b) presents our new deque data-structure. The doubly-linked list’s nodes
are allocated from and freed to a shared pool, and the only case in which one
may need to malloc additional storage is if the shared pool is exhausted. The
deque supports the PushBottom and PopBottom operations for the local process,
and the PopTop operation for the thieves.

The first technical difficulty we encountered was in detecting the conflict that
may arise when the local PopBottom and a thief’s PopTop operations concurrently
try to remove the last item from the deque. Our solution is based on the ob-
servation that when the deque is empty, one can restrict the number of possible
scenarios among the pointers. Given one pointer, we show that the “virtual”
distance of the other, ignoring which array it resides in, cannot be more than 1 if
the deque is empty. We can thus easily test for each of these scenarios. (Several
such scenarios are depicted in parts (a) and (b) of Figure 2).

The next problem one faces is the maintenance of the deque’s doubly-linked
list structure. We wish to avoid using CAS operations when updating the next

and previous pointers, since this would cause a significant performance penalty.
Our solution is to allow only the local process to update these fields, thus pre-
venting PopTop operations from doing so when moving from one node to another.
We would like to keep the deque dynamic, which means freeing old nodes when
they’re not needed anymore. This restriction immediately implies that an active
list node may point to an already freed node, or even to a node which was freed
and reallocated again, essentially ruining the list structure. As we prove, the
algorithm can overcome this problem by having a PopTop operation that moves
to a new node free only the node preceding the old node and not the old node it-
self. This allows us to maintain the invariant that the doubly-linked list structure
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Figure 2: The different types of empty deque scenarios. (a) Simple: Bottom and
Top point to the same cell. (b) Simple Crossing: both the left and right scenarios
are examples where Bottom passed over Top by one cell, but they still point to
neighboring cells. (c) Non-Simple Crossing (with the reset-on-empty heuristic):
both the left and right scenarios are examples of how pointers can cross given
the reset-on-empty heuristic, between the reset of Bottom to the reset of Top.

between the Top and Bottom pointers is preserved. This is true even in scenarios
such as that depicted in parts b and c of Figure 2 where the pointers cross over.

2.2 The Implementation

C++-like pseudocode for our deque algorithm is given in Figures 3-5. As depicted
in Figure 3, the deque object stores the Bottom and Top pointers information
in the Bottom and Top data members. This information includes the pointer
to a list’s node and an offset into that node’s array. For the Top variable, it
also includes a tag value to prevent the ABA problem [17]. The deque methods
uses the EncodeBottom, DecodeBottom, EncodeTop and DecodeTop macros to
encode/decode this information to/from a value that fits in a CAS-able size

6



struct BottomStruct { 
DequeNode* nodeP; 
int cellIndex; 

}; 
struct TopStruct { 

DequeNode* nodeP; 
int cellIndex; 
int tag; 

}; 
 
class DynamicDeque { 

void PushBottom(ThreadInfo theData); 
ThreadInfo PopTop(); 
ThreadInfo PopBottom(); 
 
BottomStruct Bottom; 
TopStruct Top; 

}; 
 

struct DequeNode { 
enum{ArraySize=/*Size of array*/}; 
ThreadInfo itsDataArr[ArraySize]; 
DequeNode* next; 
DequeNode* prev; 

}; 
 
 
 
 
 
 
 

 

Figure 3: Data types and classes used by the dynamic deque algorithm.

word.6 Underlined procedures in the pseudocode represent code blocks which are
presented in the detailed algorithm presentation used for the correctness proof
in Section 4. We now describe each of the methods.

2.2.1 PushBottom

The PushBottom method begins by reading Bottom and storing the pushed value
in the cell it’s pointing to (Lines 1-2). Then it calculates the next value of Bottom
linking a new node to the list if necessary (Lines 3-14). Finally the method
updates Bottom to its new value (Line 15). As in the original ABP algorithm,
this method is executed only by the owner process, and therefore regular writes
suffice (both for the value and Bottom updates). Note that the new node is
linked to the list before Bottom is updated, so the list structure is preserved for
the nodes between Bottom and Top.

2.2.2 PopTop

The PopTop method begins by reading the Top and Bottom values, in that order
(Lines 16-18). Then it tests whether these values indicate an empty deque, and
returns EMPTY if they do7 (Line 19). Otherwise, it calculates the next position
for Top (Lines 20-31). Before updating Top to its new value, the method must
read the value which should be returned if the steal succeeds (Line 32) (this read

6If the architecture does not support a 64-bit CAS operation, we may not have the space to
save the whole node pointer. In this case, we might use the offset of the node from some base
address given by the shared memory pool. For example, if the nodes are allocated continuously,
the address of the first node can be such a base address.

7This test may also return ABORT if Top was modified, since then it is not guaranteed that
the tested values represent a consistent view of the memory.
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void DynamicDedeque::PushBottom(ThreadInfo theData) 
{ 
1 <currNode, currIndex> = DecodeBottom(Bottom); // Read Bottom data 
2 currNode->itsDataArr[currIndex] = theData;    // Write data in current bottom cell 
3 if (currIndex!=0) 
4 { 
5 newNode = currNode; 
6 newIndex = currIndex-1; 
7 } 
8 else 
9 {  // Allocate and link a new node: 
10 newNode = AllocateNode(); 
11 newNode->next = currNode; 
12 currNode->prev = newNode; 
13 newIndex = DequeNode::ArraySize-1; 
14 } 
15 Bottom = EncodeBottom(newNode,newIndex);   // Update Bottom 
} 
 
 
 
ThreadInfo DynamicDedeque::PopTop() 
{ 
16 currTop = Top; // Read Top 
17 <currTopTag, currTopNode, currTopIndex> = DecodeTop(currTop); 
18 currBottom = Bottom;  // Read Bottom  
19 if (EmptinessTest(currBottom,currTop)) {  

   if (currTop == Top) {return EMPTY;} else {return ABORT;} 
} 

20 if (currTopIndex!=0) // if deque isn't empty, calculate next top pointer: 
21 {  // stay at current node: 
22 newTopTag = currTopTag; 
23 newTopNode = currTopNode; 
24 newTopIndex = currTopIndex-1; 
25 } 
26 else 
27 {  // move to next node and update tag: 
28 newTopTag = currTopTag+1; 
29 newTopNode = currTopNode->prev; 
30 newTopIndex = DequeNode::ArraySize-1; 
31 } 
32 retVal = currTopNode->itsDataArr[currTopIndex]; // Read value 
33 newTopVal = Encode(newTopTag,newTopNode,newTopIndex);   
34 if (CAS(&Top, currTop, newTopVal))  //Try to update Top using CAS 
35 { 
36 FreeOldNodeIfNeeded(); 
37 return retVal; 
38 } 
39 else  
40 {  
41             return ABORT;  
42 } 
} 

 
Figure 4: Pseudocode for the PushBottom and PopTop operations.
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cannot be done after the update of Top because by then the node may already
be freed by some other concurrent PopTop execution). Finally the method tries
to update Top to its new value using a CAS operation (Line 34), returning the
popped value if it succeeds, or ABORT if it fails. (In the work-stealing algorithm,
if a thief process encounters contention with another, it may be preferable to
try stealing from a different deque; returning ABORT in this case provides the
opportunity for the system to decide between retrying on the same deque or doing
something different.) If the CAS succeeds, the method also checks whether there
is an old node that needs to be freed (Line 36). As explained earlier, a node is
released only if Top moved to a new node, and the node released is not the old
top node, but the preceding one.

2.2.3 PopBottom

The PopBottom method begins by reading Bottom and updating it to its new
value (Lines 43-55) after reading the value to be popped (Line 54). Then it
reads the value of Top (Line 56), to check for the special cases of popping the
last entry of the deque, and popping from an empty deque. If the Top value
read points to the old Bottom position (Lines 58-63), then the method rewrites
Bottom to its old position, and returns EMPTY (since the deque was empty even
without this PopBottom operation). Otherwise, if Top is pointing to the new
Bottom position (Lines 64-78), then the popped entry was the last in the deque,
and as in the original ABP algorithm, the method updates the Top tag value
using a CAS, to prevent a concurrent PopTop operation from popping out the
same entry. Otherwise there was at least one entry in the deque after the Bottom
update (lines 79-83), in which case the popped entry is returned. Note that, as
in the original ABP algorithm, most executions of the method will be short, and
will not involve any CAS-based synchronization operations.

2.2.4 Memory Management

We implement the shared node pool using a variation of Scott’s shared pool [18].
It maintains a local group of g nodes per process, from which the process may
allocate nodes without the need to synchronize. When the nodes in this local
group are exhausted, it allocates a new group of g nodes from a shared LIFO
pool using a CAS operation. When a process frees a node, it returns it to its
local group, and if the size of the local group exceeds 2g, it returns g nodes to
the shared LIFO pool. In our benchmarks we used a group size of 1, which
means that in case of a fluctuation between pushing and popping, the first node
is always local and CAS is not necessary.

2.3 Enhancements

We briefly describe two enhancements to the above dynamic-memory deque al-
gorithm.
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ThreadInfo DynamicDedeque::PopBottom() 
{ 
43 <oldBotNode,oldBotIndex > = DecodeBottom(Bottom); // Read Bottom Data 
44 if (oldBotIndex != DequeNode::ArraySize-1) 
45 { 
46 newBotNode = oldBotNode; 
47 newBotIndex = oldBotIndex+1; 
48 } 
49 else 
50 { 
51 newBotNode = oldBotNode->next; 
52 newBotIndex = 0; 
53 } 
54 retVal = newBotNode->itsDataArr[newBotIndex];     // Read data to be popped 
55 Bottom = EncodeBottom(newBotNode,newBotIndex);    // Update Bottom 
56 currTop = Top;              // Read Top 
57 <currTopTag,currTopNode,currTopIndex> = DecodeTop(currTop);   
 
58 if (oldBotNode == currTopNode &&        // Case  1:  if Top has crossed Bottom 
59     oldBotIndex == curTopIndex  )     
60 {       

//Return bottom to its old possition: 
61 Bottom = EncodeBottom(oldBotNode,oldBotIndex);  
62 return EMPTY; 
63 } 
64 else if ( newBotNode == currTopNode &&    // Case 2:  When  popping the last entry  
65           newBotIndex == currTopIndex )   //               in the deque  (i.e. deque is   
66 {            //               empty after the update of bottom). 

 
//Try to update Top’s tag so no concurrent PopTop operation will also pop the same entry: 

67 newTopVal = Encode(currTopTag+1, currTopNode, currTopIndex); 
68 if (CAS(&Top, currTop, newTopVal))  
69 {   
70 FreeOldNodeIfNeeded(); 
71 return retVal; 
72 } 
73 else  // if CAS failed (i.e. a concurrent PopTop operation already popped the last entry): 
74 { 

//Return bottom to its old possition: 
75 Bottom = EncodeBottom(oldBotNode,oldBotIndex);  
76 return EMPTY; 
77 } 
78 } 
79 else // Case 3:  Regular case (i.e. there was at least one entry in the deque after bottom’s update): 
80 { 
81 FreeOldNodeIfNeeded(); 
82 return retVal; 
83 } 
} 

Figure 5: Pseudocode for the PopBottom operation.

2.3.1 Reset-on-Empty

In the original ABP algorithm, the PopBottom operation uses a mechanism that
resets Top and Bottom to point back to the beginning of the array every time it de-
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tects an empty deque (including the case of popping the last entry by PopBottom).
This reset operation is necessary in ABP since it is the only “anti-overflow” mech-
anism at its disposal.

Our algorithm does not need this method to prevent overflows, since it works
with the dynamic nodes. However, adding a version of this resetting feature gives
the potential of improving our space complexity, especially when working with
large nodes.

There are two issues to be noted when implementing the reset-on-empty mech-
anism in our dynamic deque. The first issue is that while performing the reset
operation, we create another type of empty deque scenario, in which Top and
Bottom do not point to the same cells nor to neighboring ones (see part c of
Figure 2). This scenario requires a more complicated check for the empty deque
scenario by the PopTop method (Line 19). The second issue is that we must be
careful when choosing the array node to which Top and Bottom point after the
reset. In case the pointers point to the same node before the reset, we simply
reset to the beginning of that node. Otherwise, we reset to the beginning of the
node pointed to by Top. Note, however, that Top may point to the same node
as Bottom and then be updated by a concurrent PopTop operation, which may
result in changing on-the-fly the node to which we direct Top and Bottom.

2.3.2 Using a Base Array

In the implementation described, all the deque nodes are identical and allocated
from the shared pool. This introduces a trade-off between the performance of the
algorithm and its space complexity: small arrays save space but cost in allocation
overhead, while large arrays cost space but reduce the allocation overhead.

One possible improvement is to use a large array for the initial base node,
allocated for each of the deques, and to use the pool only when overflow space
is needed. This base node is used only by the process/deque it was originally
allocated to, and is never freed to the shared pool. Whenever a Pop operation
frees this node, it raises a boolean flag, indicating that the base node is now
free. When a PushBottom operation needs to allocate and link a new node, it
first checks this flag, and if true, links the base node to the deque (instead of a
regular node allocated from the shared pool).

3 Performance

We evaluated the performance of the new dynamic memory work-stealing algo-
rithm in comparison to the original fixed-array based ABP work-stealing algo-
rithm in an environment similar to that used by Blumofe and Papadopoulos [14]
in their evaluation of the ABP algorithm. Our results include tests running sev-
eral standard Splash2 [15] applications using the Hood Library [16] on a 16 node
Sun EnterpriseTM 6500, an SMP machine formed from 8 boards of two 400MHz
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Figure 6: Barnes Hut Benchmark on top and MergeSort on the bottom

UltraSPARCr processors, connected by a crossbar UPA switch, and running the
SolarisTM 9 Operating System.

Our benchmarks used the work-stealing algorithms as the load balancing
mechanism in Hood. The Hood package uses the original ABP deques for the
scheduling of threads over processes. We compiled two versions of the Hood li-
brary, one using an ABP implementation, and the other using the new implemen-
tation. In order for the comparison to be fair, we implemented both algorithms
in C++, using the same tagging method.

We present here our results running the Barnes Hut and MergeSort Splash2
[15] applications. Each application was compiled with the minimal ABP deque
size needed for a stand-alone run with the biggest input tested. For our deque
algorithm we chose a base-array size of about 75% of the ABP deque size, a node
array size of 6 items, and a shared pool size such that the total memory used (by
the deques and the shared pool together) is no more than the total memory used
by all ABP deques. In all our benchmarks the number of processes equaled the
number of processors on the machine.
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Figure 6 shows the total execution time of both algorithms, running stand-
alone, as we vary the input size. As can be seen, there is no real difference
in performance between the two approaches. This is in spite of the fact that
our tests show that the deque operations of the new algorithm take as much as
30% more time on average than those of ABP. The explanation is simple: work-
stealing accounts for only a small fraction of the execution time in these (and in
fact in most) applications. In all cases both algorithms had a 100% completion
rate in stand-alone mode, i.e., none of the deques overflowed.

Figure 7 shows the results of running the Barnes Hut [15] application (on
the largest input) in a multiprogrammed fashion by running multiple instances
of Hood in parallel. The graph shows the completion rate of both algorithms
as a function of the multiprogramming level (i.e. the number of instances run
in parallel). One can clearly see that while both versions perform perfectly at a
multiprogramming level of 2, ABP work-stealing degrades rapidly as the level of
multiprogramming increases, while the new algorithm maintains its 100% com-
pletion rate. By checking Hood’s statistics regarding the amount of work done
by each process, we noticed that some processes complete 0 work, which means
much higher workloads on the others. This, we believe, caused the deque size
which worked for a stand-alone run (in which the work was more evenly dis-
tributed between the processes), to overflow in the multiprogrammed run. We
also note that as the workload on individual processes increases, the chances of a
“reset-on-empty” decrease, and the likelihood of overflow increases. In the new
dynamic version, because 25% of the memory is allocated in the common shared
pool, there is much more flexibility in dealing with the work imbalance between
the deques, and no overflow occurs.

Our preliminary benchmarks clearly show that for the same amount of mem-
ory, we get significantly more robustness with the new dynamic algorithm than
with the original ABP algorithm, with a virtually unnoticeable effect on the ap-
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plication’s overall performance. It also shows that the deque size depends on the
maximal level of multiprogramming in the system, an unpredictable parameter
which one may want to avoid reasoning about by simply using the new memory
version of the ABP work-stealing algorithm.

4 Correctness Proof

4.1 Overview

This section contains a detailed proof that the algorithm in Section 2 imple-
ments a lock-free linearizable deque.8 While a work-stealing system generally
uses several deques, our proof concentrates on a single deque.

We first define notation and terminology and present a detailed version of the
algorithm’s pseudocode that we use throughout the proof. In Sections 4.2-4.6,
we prove various properties of the algorithm, which are used later in the lineariz-
ability proof. Section 4.7 specifies the sequential semantics of the implemented
deque and then shows that the deque is linearizable to this specification. Finally,
Section 4.8 shows that the algorithm is lock-free.

4.1.1 Notation

Formally, we model the algorithm by a labelled state-transition system, where the
labels are called actions. We write s

a
−→ s′ if the system has a transition from s to

s′ labelled a; s is called the pre-state, s′ the post-state. We say that an action a is
enabled in a state s if there exists another state s′ such that s

a
−→ s′. An execution

is a sequence of transitions such that the pre-state of the first transition is the
initial state, and the post-state of any transition (except the last) is the pre-state
of the next transition.

We use s and s′ for states, a for actions, and p, p′ and p′′ for processes. We
use p@X to mean that process p is ready to execute statement number X. We
use p@〈X1,X2, ...,Xn〉 to denote p@X1 ∨ p@X2 ∨ ... ∨ p@Xn. If process p is not
executing any operation then p@0, holds. Thus, p@0 holds initially for all p,
statements of process that return from any of the operations establish p@0, and
if p@0 holds, then an action of process p is enabled that nondeterministically
chooses a legal operation and parameters, and invokes the operation, thereby
setting p’s program counter to the first line of that operation, and establishing
legal values for its parameters. We denote a private variable v of process p by
p.v.

For any variable v, shared or local, s.v denotes the value of v is state s. For
any logical expression E, s.E holds if and only if E holds in state s.

8As noted previously, the data structure we implement is not strictly speaking a deque. The
precise semantics of the implemented data structure is specified in Section 4.7.1.

14



4.1.2 Pseudocode

DynamicDeque:DynamicDeque()

nodeA = AllocateNode();
nodeB = AllocateNode();
nodeA→next = nodeB;
nodeB→prev = nodeA;
Bottom= EncodeBottom(nodeA,DequeNode::ArraySize-1);
Top= EncodeTop(0 ,nodeA, DequeNode::ArraySize-1);
Ordered= {nodeA, nodeB};

Figure 8: Deque Constructor

void DynamicDedeque::PushBottom(ThreadInfo theData)

<currNode, currIndex> = DecodeBottom(Bottom);1

currNode→itsDataArr[currIndex] = theData;2

if (currIndex!=0) then

newNode = currNode;3

newIndex = currIndex-1;
else

newNode = AllocateNode();4

newNode→next = currNode;5

currNode→prev = newNode;6

newIndex = DequeNode::ArraySize-1;
Bottom= EncodeBottom(newNode,newIndex);7

if (currNode != newNode) then Ordered.AddLeft(newNode);

Figure 9: The PushBottom Method

Figures 8, 9, 10, 11 and 12 present the detailed pseudocode of the deque
implementation. The EncodeTop, DecodeTop, EncodeBottom and DecodeBottom

macros are described in Section 4.2.2. The Ordered variable used in the pseu-
docode is an auxiliary variable; its use is described in Section 4.3. Auxiliary
variables do not affect the behavior of the algorithm, and are used only for the
proof: they are not included in a real implementation.

We consider execution of the algorithm beginning at one numbered statement
and ending immediately before the next numbered statement to be one atomic
action. This is justified by the fact that no such action accesses more than
one shared variable (except auxiliary variables), and atomicity of the actions is
consistent with available operations for memory access. Note that we can include
accesses to auxiliary variables in an atomic action because they are not included
in a real implementation, and therefore are not required to comport with the
atomicity constraints of a target architecture.

As a concrete example, consider the action labelled 17 in Figure 10, when
executed by process p. This action atomically does the following. First, the ac-
tion reads Top and compares the value read to p.currTop. If Top 6= p.currTop,
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ThreadInfo DynamicDedeque::PopTop()

currTop = Top;8

<currTopTag, currTopNode, currTopIndex> = DecodeTop(currTop);
currBottom = Bottom;9

if (IndicateEmpty(currBottom, currTop)) then10

if (currTop == Top) then return EMPTY;11

return ABORT;
if (currTopIndex!=0) then12

nodeToFree = NULL;13

newTopTag = currTopTag;
newTopNode = currTopNode;
newTopIndex = currTopIndex-1;
newTopVal = EncodeTop(newTopTag,newTopNode,newTopIndex);

else

nodeToFree = currTopNode→next;14

newTopTag = currTopTag+1;15

newTopNode = currTopNode→prev;
newTopIndex = DequeNode::ArraySize-1;
newTopVal = EncodeTop(newTopTag,newTopNode,newTopIndex);

retVal = currTopNode→itsDataArr[currTopIndex];16

if (CAS(&Top, currTop, newTopVal)) then17

if (nodeToFree != NULL) then Ordered.RemoveRight();
if (nodeToFree != NULL) then FreeNode(nodeToFree);18

return retVal;19

else

return ABORT;20

Figure 10: The PopTop Method

then the action changes p’s program counter to 20. Otherwise, the action stores
p.newTopV al to Top, removes the rightmost element from Ordered if
p.nodeToFree 6= NULL, and changes p’s program counter to 18.

4.1.3 Proof Method

Most of the invariants in the proof are proved by induction on the length of an
arbitrary execution of the algorithm. That is, we show that the invariant holds
initially, and that for any transition s

a
−→ s′, if the invariant holds in the pre-state

s, then it also holds in the post-state s′. For invariants of the form A ⇒ B,
we often find it convenient to prove this by showing that the consequent (B)
holds after any statement execution establishes the antecedent (A), and that no
statement execution falsifies the consequent while the antecedent holds.

It is convenient to prove the conjunction of all of the properties, rather than
proving them one by one. This way, we can assume that all properties hold in
the pre-state when proving that a particular property holds in the post-state. It
is also convenient to be able to use other properties in the post-state. However,
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ThreadInfo DynamicDedeque::PopBottom()

oldBotVal = Bottom;21

<oldBotNode,oldBotIndex> = DecodeBottom(oldBotVal);
if (oldBotIndex != DequeNode::ArraySize-1) then22

newBotNode = oldBotNode;23

newBotIndex = oldBotIndex+1;
newBotVal = EncodeBottom(newBotNode,newBotIndex);

else

newBotNode = oldBotNode→next;24

newBotIndex = 0;
newBotVal = EncodeBottom(newBotNode,newBotIndex);

Bottom= newBotVal;25

currTop = Top;26

<currTopTag,currTopNode,currTopIndex> = DecodeTop(currTop);
retVal = newBotNode→itsDataArr[newBotIndex];27

if (oldBotNode == currTopNode && oldBotIndex == curTopIndex) then28

Bottom= EncodeBottom(oldBotNode,oldBotIndex);29

return EMPTY;30

else if (newBotNode == currTopNode && newBotIndex == currTopIndex)31

then

newTopVal = EncodeTop(currTopTag+1, currTopNode, currTopIndex);32

if (CAS(&Top, currTop, newTopVal)) then33

if (oldBotNode != newBotNode) then34

FreeNode(oldBotNode);
Ordered.RemoveLeft();

return retVal;35

else

Bottom= EncodeBottom(oldBotNode,oldBotIndex);36

return EMPTY;37

else

if (oldBotNode != newBotNode) then38

FreeNode(oldBotNode);
Ordered.RemoveLeft();

return retVal;39

Figure 11: The PopBottom Method

this must be done with some care, in order to avoid circular reasoning. It is
important that there is a single order in which we prove all properties hold in
the post-state, given the inductive assumption that they all hold in the pre-state,
without using any properties we have not yet proved. However, presenting the
proofs in this order would disturb the flow of the proof from the reader’s point
of view. Therefore, we now present some rules that we adopted that imply that
such an order exists.

The properties of the proof (Invariants, Claims, Lemmas and Corollaries) are
indexed by the order in which they are proved. In some cases, we state an invari-
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bool IndicateEmpty(BottomStruct bottomVal, TopStruct topVal)

<botNode, botCellIndex> = DecodeBottom(bottomVal);
<topTag, topNode, topCellIndex> = DecodeTop(topVal);
if ((botNode==topNode) && (botCellIndex==topCellIndex ||
botCellIndex==(topCellIndex+1))) then

return true;
else if ((botNode==topNode→next) && (botCellIndex==0) &&
(topCellIndex==(DequeNode::ArraySize-1))) then

return true;
return false;

Figure 12: The IndicateEmpty Macro

ant without proving it immediately, and only provide its proof after presenting
and proving some other properties. We call such invariants Conjectures to clearly
distinguish them from regular properties, which are proved as soon as they are
stated. To avoid circular reasoning, our proofs obey the following rules:

1. The proof of Property i can use any Property j in the pre-state.

2. If Property i is not a Conjecture, its proof can use the following properties
in the post-state:

(a) All Conjectures.

(b) Property j if and only if j < i.

3. The proof of Conjecture i can use Conjecture j in the post-state if and only
if i < j.

Informally, these rules simply state that the proof of a non-Conjecture property
can use in the post-state any other property that was already stated (because the
only properties that were stated before it but with higher index are Conjectures),
and that the proof of a Conjecture can use in the post-state any other Conjecture
that was not already proven. The following shows that our proof method is
sound.
Soundness of the proof method: By considering the proof of each property
in the following order, we see that each property can be proved without using a
property not already proved. We assume all properties hold in the pre-state s,
and we want to show that all of them hold in the post-state s′. We begin with the
highest indexed Conjecture m (that is, for all Conjecture j, m ≥ j). Because the
proof of Conjecture m does not use any other property in the induction post-state
s′, we can infer that Conjecture m holds in s′. Similarly, because Conjectures use
only higher numbered Conjectures in the post-state, by considering the proofs of
all Conjectures in reverse order, none of the proofs depends on a property that
has not already been proved.
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Having proved all Conjectures, we can now prove all other properties in or-
der, starting with the lowest indexed one. When considering Property i, since
Property j for j < i and all conjectures were already shown to hold in s′, we can
infer that Property i holds in s′ as well.

To make the proof more readable, we also avoid using in the pre-state properties
that were not yet stated.

4.2 Basic Notation and Invariants

4.2.1 The Deque Data Structure

Our deque is implemented using a doubly linked list. Each list node contains an
array of deque entries. The structure has Bottom and Top variables that indicate
cells at the two ends of the deque; these variables are discussed in more detail in
Section 4.2.2. We use the following notation:

• We let Nj denote a (pointer to a) deque node, and Ci denotes a cell at
index i in a node. Ci ∈ Nj denotes that Ci is the ith cell in node Nj.

• We let Node(Ci) denote the node of cell Ci. That is: Node(Ci) = Nj ⇔
Ci ∈ Nj.

• The Bottom cell of the deque, denoted by CB , is the cell indicated by
Bottom. The Bottom node is the node in which CB resides, and is denoted
by NB.

• The Top cell of the deque, denoted by CT , is the cell indicated by Top. The
Top node is the node in which CT resides, and is denoted by NT .

• If N is a deque node, than N → next is the node pointed to by N’s next
pointer, and N → prev is the node pointed to by its previous pointer.

The following property models the assumption that only one process calls the
PushBottom and PopBottom operations.

Invariant 1. If p@〈1 . . . 7, 21 . . . 39〉 then:

1. p is the owner process of the deque.

2. There is no p′ 6= p such that p′@〈1 . . . 7, 21 . . . 39〉.

Proof. The invariant follows immediately from the requirement that only the
owner process may call the PushBottom or PopBottom procedures.

The following lemma states that various variables are not modified by various
transitions.
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Lemma 2. Consider a transition s
a
−→ s′. Then:

1. p@〈2 . . . 7〉 ⇒ (s.p.currNode = s′.p.currNode∧s.p.currIndex = s′.p.currIndex).

2. p@〈9 . . . 20〉 ⇒ (s.p.currTop = s′.p.currTop∧s.p.currTopTag = s′.p.currTopTag∧
s.p.currTopNode = s′.p.currTopNode∧s.p.currTopIndex = s′.p.currTopIndex).

3. p@〈16 . . . 20〉 ⇒ (s.p.newTopV al = s′.p.newTopV al ∧
s.p.nodeToFree = s′.p.nodeToFree∧s.p.newTopTag = s′.p.newTopTag∧
s.p.newTopNode = s′.p.newTopNode∧s.p.newTopIndex = s′.p.newTopIndex).

4. p@〈22 . . . 39〉 ⇒ (s.p.oldBotV al = s′.p.oldBotV al ∧ s.p.oldBotNode =
s′.p.oldBotNode ∧ s.p.oldBotIndex = s′.p.oldBotIndex).

5. p@〈27 . . . 39〉 ⇒ (s.p.currTop = s′.p.currTop∧s.p.currTopTag = s′.p.currTopTag∧
s.p.currTopNode = s′.p.currTopNode∧s.p.currTopIndex = s′.p.currTopIndex).

Proof. Straightforward by examining the code.

4.2.2 The Top and Bottom Variables

The Top and Bottom shared variables store information about CT and CB , re-
spectively, and they are both of a CASable size. The Top variable also contains an
unbounded Tag value, to avoid the ABA problem as we describe in Section 4.2.3.
The structure of Top and Bottom variables is detailed in Figure 3 on page 7.

In practice, in order to store all the information on a CASable word size even
if only a 32-bit CAS operation is available, we represent the node’s pointer by its
offset from some base address given by the nodes’ memory manager. In this case,
if the size of the node is of a power of two, we can even save only the offsets to
CT and CB, and calculate the offsets of NT and NB by simple bitwise operations.
That way we save the space used by the cellIndex variable, and leave enough
space for the tag value.

In the rest of the proof we use the Cell operator to denote the cell to which
a variable of type BottomStruct or TopStruct points (for example, Cell(Top) =
CT and Cell(Bottom) = CB):

Definition 3. If TorBVal is a variable of type TopStruct or BottomStruct then:
Cell(TorBVal) = TorBVal.nodeP → itsDataArr[TorBVal.cellIndex].

Note that the Cell operator points to a real array cell only if the cellIndex field
indicates a valid cell index. The following invariant states that this is true for all
values of variables of type TopStruct or BottomStruct used in the algorithm.

Invariant 4. For any variable V of type TopStruct or BottomStruct that is used
by the implementation, we have: 0 ≤ V.cellIndex < DequeNode :: ArraySize.

Proof. Straightforward by examining all statements in the code that modify vari-
ables of type TopStruct or BottomStruct.
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Our implementation uses the EncodeTop and EncodeBottom macros to con-
struct values of type TopStruct and BottomStruct, respectively, and similarly
uses the DecodeBottom and DecodeTop macros to extract the components from
values of these types. For convenience, we use processes’ private variables to
hold the different fields of values read from Top and Bottom. For example, after
executing the code segment:

oldBotVal = Bottom;

<oldBotNode,oldBotIndex> = DecodeBottom(oldBotVal);

using oldBotNode and oldBotIndex, as long as they are not modified, is equiva-
lent to using oldBotVal.nodeP and oldBotVal.cellIndex, respectively. The
following invariant formally states these equivalences:

Invariant 5.

1. p@〈2 . . . 7〉 ⇒ (p.currNode = Bottom.nodeP∧p.currIndex = Bottom.cellIndex).

2. p@〈9 . . . 20〉 ⇒ (p.currTopTag = p.currTop.tag ∧
p.currTopNode = p.currTop.nodeP∧p.currTopIndex = p.currTop.cellIndex).

3. p@〈16 . . . 20〉 ⇒ (p.newTopTag = p.newTopV al.tag ∧
p.newTopNode = p.newTopV al.nodeP ∧
p.newTopIndex = p.newTopV al.cellIndex).

4. p@〈22 . . . 39〉 ⇒ (p.oldBotNode = p.oldBotV al.nodeP ∧
p.oldBotIndex = p.oldBotV al.cellIndex).

5. p@〈25 . . . 39〉 ⇒ (p.newBotNode = p.newBotV al.nodeP ∧
p.newBotIndex = p.newBotV al.cellIndex).

6. p@〈27 . . . 39〉 ⇒ (p.currTopTag = p.currTop.tag ∧
p.currTopNode = p.currTop.nodeP∧p.currTopIndex = p.currTop.cellIndex).

Proof. The invariant is immediately derived from Invariant 1, Lemma 2 and
examination of the code.

Lemma 2 and Invariants 4 and 5 are used very frequently in the proof. For
brevity, we often use these invariants implicitly.
The following invariant describes the values of Bottom in terms of the private
variables:

Invariant 6.

1. p@〈2 . . . 7〉 ⇒ (NB = p.currNode ∧ CB = Cp.currIndex ∈ NB).

2. p@〈22 . . . 25, 30, 37〉 ⇒ Bottom = p.oldBotV al.

3. p@〈26 . . . 29, 31 . . . 36, 38 . . . 39〉 ⇒ Bottom = p.newBotV al.
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Proof. Initially p@0 so the invariant holds. Consider a transition s
a
−→ s′, and

suppose the invariant holds in s.

• If a is an execution of Line 1, 21, 25, 29 or 36: Then Invariant 5 and a
simple examination of the code implies that the invariant holds in s′.

• Otherwise, by Invariant 1:
p@〈1 . . . 7, 21 . . . 39〉 ⇒ ∀p′ 6= p ¬p′@〈1 . . . 7, 21 . . . 39〉. Also,
¬s.p@〈1, 21, 25, 29, 36〉∧s′.p@〈2 . . . 7, 22 . . . 25, 30, 37, 26 . . . 29, 31 . . . 36, 38 . . . 39〉
implies that s′.Bottom = s.Bottom, and by Lemma 2 the transition does not
modify any of p.currNode, p.newBotV al or p.oldBotV al variables either.
Therefore a does not falsify the invariant.

4.2.3 The ABA Problem

Our implementation uses the CAS operation for all updates of the Top variable.
The CAS synchronization primitive is susceptible to the ABA problem: Assume
that the value A is read from some variable v, and later a CAS operation is done
on that variable, with the value A supplied as the old-value parameter of the
CAS. If, between the read and the CAS, the variable v has been changed to some
other value B and then to A again, the CAS would still succeed.

In this section, we prove some properties concerning mechanisms used in the
algorithm to avoid the ABA problem. We start by defining an order between
different Top values:

Definition 7. Let TopV1 and TopV2 be two values of type TopStruct. TopV1 �
TopV2 if and only if:

1. TopV1.tag ≤ TopV2.tag, and

2. (TopV1.tag = TopV2.tag) ⇒ (TopV1.cellIndex > TopV2.cellIndex).

Clearly if two Top values are equal TopV1 = TopV2, then neither TopV1 �
TopV2 nor TopV2 � TopV1. The following claim shows that the � operator is
transitive:

Claim 8. TopV1 � TopV2 � TopV3 ⇒ TopV1 � TopV3.

Proof. By the definition of � we have: TopV1 � TopV2 � TopV3 ⇒ TopV1.tag ≤
TopV3.tag. If TopV1.tag = TopV3.tag, then: TopV1.tag = TopV2.tag = TopV3.tag,
which implies TopV1.cellIndex > TopV2.cellIndex > TopV3.cellIndex, and there-
fore TopV1 � TopV3.

Invariant 9.

1. If p@〈16 . . . 17〉 then p.currTop � p.newTopV al.
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2. If p@33 then p.currTop � p.newTopV al.

Proof. Initially p@0 so the invariant holds. Since no statement modifies p.currTop
or p.newTopV al while p@〈16 . . . 17, 33〉 holds, the only transition a that might
falsify the invariant is:

1. An execution of Line 13: In this case s′.p@16, s′.p.newTopV al.tag =
s′.p.currTop.tag and s′.p.newTopV al.cellIndex < s′.p.currTop.cellIndex
so the invariant holds.

2. An execution of Line 15: In this case s′.p@16, s′.p.newTopV al.tag >
s′.p.currTop.tag so the invariant holds.

3. An execution of Line 32: In this case s′.p@33, s′.p.newTopV al.tag >
s′.p.currTop.tag so the invariant holds.

Lemma 10. Let s
a
−→ s′ be a step of the algorithm, and suppose a writes a value

to Top. Then s.Top � s′.Top.

Proof. Only statements p.17 and p.33 for some process p may write a value to
the Top variable. In both cases, s′.Top = s.p.newTopV al if and only if s.Top =
s.p.currTop. By Invariant 9 s.Top � s′.Top.

Invariant 11. p@〈9 . . . 20, 27 . . . 39〉 ⇒ (p.currTop = Top ∨ p.currTop � Top)

Proof. Initially p@0 so the invariant holds. Consider a transition s
a
−→ s′. The

only statements which may establish the antecedent are p.8 and p.26. In both
cases, the statement reads Top, and therefore s′.p.currTop = Top, so the conse-
quent holds.

Since no statement modifies p.currTop while p@〈9 . . . 20, 27 . . . 39〉 holds, the
only transition that might falsify the consequent while the antecedent holds is
one that modifies Top. In this case, by Lemma 10 s.Top � s′.Top, and by the
transitive property of the � operator (Claim 8), p.currTop � s′.Top.

Corollary 12. Consider a transition s
a
−→ s′ where a writes a value to Top. Then:

∀p s.p@〈9 . . . 20, 27 . . . 39〉 ⇒ s′.p.currTop 6= s′.Top

Proof. Straightforward from Invariant 11, Lemma 10 and Claim 8.

4.2.4 Memory Management

Our algorithm uses an external linearizable shared pool module, which stores
the available list nodes. The shared pool module supports two operations:
AllocateNode and FreeNode. The details of the shared pool implementation
are not relevant to our algorithm, so we simply model a linearizable shared pool
that supports atomic AllocateNode and FreeNode operations.

We model the shared pool using an auxiliary variable Live, which models the
set of nodes that have been allocated from the pool and not yet freed:
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1. Initially Live = ∅.

2. An AllocateNode operation atomically adds a node that is not in Live to
Live and returns that node.

3. A FreeNode(N) operation with N ∈ Live atomically removes N from Live.

4. While N ∈ Live, the shared pool implementation does not modify any of
N ’s fields.

The shared pool behaves according to the above rules provided our algorithm
uses it properly. The following conjecture states the rules for proper use of the
shared pool. We prove that the conjecture holds in Section 4.4.

Conjecture 30. Consider a transition s
a
−→ s′ of our algorithm.

• If N /∈ s.Live, then a does not modify any of N ’s fields.

• If a is an execution of FreeNode(N), then N ∈ s.Live.

Definition 13. A node N is live if and only if N ∈ Live.

4.3 Ordered Nodes

We introduce an auxiliary variable Ordered, which consists of a sequence of
nodes. We regard the order of the nodes in Ordered as going from left to right.
Formally, the variable Ordered supports four operations: AddLeft, AddRight,
RemoveLeft and RemoveRight. If |Ordered| = l, Ordered = {N1, . . . , Nl} then:

• N1 is the leftmost node and Nl is the rightmost one.

• An Ordered.AddLeft(N) operation results in Ordered = {N,N1, . . . , Nl}.

• An Ordered.AddRight(N) operation results in Ordered = {N1, . . . , Nl, N}.

• A Ordered.RemoveLeft() operation results in Ordered = {N2, . . . , Nl}, and
returns N1.

• A Ordered.RemoveRight() operation results in Ordered = {N1, . . . , Nl−1},
and returns Nl.

Definition 14. A node N is ordered if and only if N ∈ Ordered.

The following conjecture describes the basic properties of the nodes in Ordered:

Conjecture 55. Let |Ordered| = n + 2, Ordered = {N0, . . . , Nn+1}. Then:

1. ∀0≤i≤n Ni → next = Ni+1 ∧ Ni+1 → prev = Ni.

2. Exactly one of the following holds:
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(a) n ≥ 0, N0 = NB , Nn = NT .

(b) n > 0, N1 = NB , Nn = NT .

(c) n = 0, N0 = NT , N1 = NB .

Corollary 15.

1. |s.Ordered| ≥ 2.

2. NT is ordered and is the second node from the right in Ordered.

3. NB is ordered and is either the first or the second node from the left in
Ordered.

4. NT → next is Ordered.

Proof. Straightforward from Conjecture 55.

The proof of Conjecture 55 is given in section 4.6.The following invariants and
lemmas state different properties of the nodes in Ordered.

Invariant 16. Exactly one of the following holds:

1. NB is the leftmost node in Ordered ∧
(p@〈26 . . . 34, 36 . . . 38〉 ⇒ p.oldBotNode = NB).

2. ∃p such that p@〈26 . . . 29, 31 . . . 34, 36, 38〉 ∧ NB 6= p.oldBotNode ∧
p.oldBotNode is the leftmost node in Ordered.

Proof. Initially ∀p, p@0 holds and NB is the leftmost node in Ordered, as depicted
in Figure 8 on page 15, so the invariant holds. Consider a transition s

a
−→ s′ that

falsifies the invariant.
Since no statement modifies p.oldBotNode while p@〈26 . . . 34, 36 . . . 38〉 holds,

we need only consider statements that might modify NB or Ordered, state-
ments that might establish p@〈26 . . . 34, 36 . . . 38〉 while NB is the leftmost node
in Ordered, and statements that might falsify p@〈26 . . . 29, 31 . . . 34, 36, 38〉 for
some process p while NB is not the leftmost node in Ordered. Therefore a is
either:

1. An execution of line p′.7 for some process p′: By Invariant 1, ∀p 6= p′

¬s.p@〈26 . . . 29, 31 . . . 34, 36, 38〉 and therefore, since the invariant holds in
s, s.NB is the leftmost node in s.Ordered. By Invariant 6 p′.currNode =
s.NB . If p′.newNode = p′.currNode then s′.NB = p′.newNode =
p′.currNode = s.NB is the leftmost node in s.Ordered. Otherwise,
p′.newNode is added to Ordered by the AddLeft operation and therefore
s′.NB = p′.newNode is the leftmost node in s′.Ordered. Finally, since a is
the execution of Line 7, by Invariant 1 ∀p ¬s′.p@〈26 . . . 34, 36 . . . 38〉, and
therefore the invariant holds in s′.
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2. An execution of line p.25: By Invariant 1,
∀p′ 6= p¬s.p′@〈26 . . . 29, 31 . . . 34, 36, 38〉 and therefore, since the invariant
holds in s, s.NB is the leftmost node in s.Ordered. Also note that
s′.p.oldBotNode = s.p.oldBotNode, and by Invariant 6 p.oldBotNode =
s.NB .

If p.newBotNode = p.oldBotNode, then s′.NB = p.newBotNode = s.NB

is the leftmost node in Ordered, and the invariant holds in s′. Otherwise,
s′.p@26 and s′.NB = p.newBotNode 6= p.oldBotNode, and p.oldBotNode =
s.NB is the leftmost node in s′.Ordered, since the transition does not mod-
ify Ordered.

3. An execution of p.29 or p.36: Note that s.Ordered = s′.Ordered,
s.p@〈26 . . . 29, 31 . . . 34, 36, 38〉, and p.oldBotNode is not modified by a.
Since the invariant holds in s then p.oldBotNode is the leftmost node in
Ordered. Since s′.NB = p.oldBotNode it follows that s′.NB is the leftmost
node in Ordered, so the invariant holds in s′.

4. An execution of line p.34 or line p.38: By Invariant 1 ∀p′ ¬s′.p′@〈26 . . . 34,
36 . . . 38〉, and therefore it suffices to show that s′.NB is the leftmost node
in s′.Ordered.
By Invariant 6 p.newBotNode = s.NB . Since s.p@〈26 . . . 29, 31 . . . 34, 36, 38〉
and the invariant holds in s, it follows by Invariant 1 that either:

• p.oldBotNode 6= s.NB and p.oldBotNode is the leftmost node in
Ordered: Then p.oldBotNode 6= p.newBotNode, and therefore the
leftmost node is removed from Ordered. By Corollary 15 NB is the
second node from the left in s.Ordered (since it is not the leftmost
one), and therefore the leftmost node in s′.Ordered.

• p.oldBotNode = s.NB = p.newBotNode is the leftmost node in
Ordered. In this case, the transition does not modify Ordered or
NB , and therefore s′.NB = s.NB is the leftmost node in s′.Ordered.

5. An execution of p’.17 for some process p’: In this case a can falsify the
invariant only by modifying Ordered. However, since a may only remove
the rightmost node from Ordered, and by Corollary 15 |s.Ordered| ≥ 2,
a does not change the leftmost node in Ordered, and therefore does not
falsify the invariant.

Conjecture 29. All ordered nodes are live.
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Corollary 17. N ∈ Ordered⇒ N 6= NULL.

Proof. By Conjecture 29, N ∈ Ordered ⇒ N ∈ Live. By the properties of the
shared pool stated in Section 4.2.4, the only module that modifies Live is the
shared pool module, which adds to Live the new allocated nodes. Therefore NULL
is never being added to Live, which implies that N 6= NULL.

We now prove various properties about the ordered nodes, which we use later to
prove Conjecture 29. The proof of Conjecture 29 appears in Section 4.3.1.

The following lemma states that no node becomes ordered while the owner
process executes any statement but Line 7:

Lemma 18. Consider a transition s
a
−→ s′, where s.p@〈1 . . . 7, 21 . . . 39〉 ∧

s′.p@〈1 . . . 7, 21 . . . 39〉, then n ∈ s′.Ordered → n ∈ s.Ordered.

Proof. By examining the code, only statement p’.7 for some process p’ adds nodes
to Ordered. For any process p′ 6= p, by Invariant 1 s.p@〈1 . . . 7, 21 . . . 39〉 ⇒
¬s.p′@7, and therefore a cannot be an execution of p’.7. Finally, if a is an
execution of p.7 then ¬s′.p@〈1 . . . 7, 21 . . . 39〉.

Invariant 19. If p@〈5 . . . 7〉, then (p.newNode /∈ Ordered)∨(p@7∧p.newNode =
NB).

Proof. Initially p@0 so the invariant holds. Consider a transition s
a
−→ s′ and

suppose the invariant holds in s. Only statements p@3 and p@4 can establish
the antecedent:

• If a is an execution of Line 3, then s′.p@7, and by Invariant 6 s′.NB =
s.p.currNode = s′.p.newNode.

• If a is an execution of Line 4 by process p, then the node returned by the
AllocateNode was not live in s: s′.p.newNode /∈ s.Live and therefore by
Conjecture 29 s′.p.newNode /∈ s.Ordered. Since a does not add any node
to Ordered, s′.Ordered = s.Ordered and the invariant holds.

It remains to show that no statement falsifies the consequent while the antecedent
holds. No statement modifies p.newNode while the antecedent holds, and by
Invariant 1 no statement adds a node to Ordered or modifies NB while the
antecedent holds. Therefore no statement falsifies the consequent while the an-
tecedent holds.

Invariant 20. Suppose Ordered = {N0, . . . Nn+1}. Then ∀0≤i,j≤n+1, i 6= j ⇒
Ni 6= Nj .

Proof. Initially the deque is constructed with Ordered = {nodeA, nodeB}, and
nodeA 6= nodeB, so the invariant holds. The only statement that may falsify
the invariant is one that adds a node to Ordered which is already there. By

27



Lemma 18, the only transition s
a
−→ s′ that may add a node to Ordered is an

execution of Line 7. By examining the code, Line 7 adds s.p.newNode to Ordered

if and only if s.p.newNode 6= s.p.currNode, and by Invariant 6 s.p.currNode =
s.NB . Therefore by Invariant 19: s.p.newNode /∈ s.Ordered, which implies that
a does not falsify the invariant.

The following lemma states that the next and previous pointers of nodes are
not modified while the nodes are ordered.

Lemma 21. If N ∈ s.Ordered and s
a
−→ s′ then:

1. s′.N → next = s.N → next.

2. If (s′.N → prev 6= s.N → prev), then N = NB and it is the leftmost node
in Ordered.

Proof. By Conjecture 29 N ∈ Ordered ⇒ N ∈ Live, and therefore only execu-
tions of the deque methods’ statements may update the prev or next fields. By
examining the code, the only statement that updates a node’s next field is Line
5. By Invariant 19 p.newNode is not ordered when being updated.

As for the prev field, the only statement that updates a node’s prev field is
Line 6. By Invariant 6 p@6 implies p.currNode = NB , and by Invariant 16 it is
the leftmost node in Ordered.

Invariant 22. If p@〈15 . . . 17〉∧p.nodeToFree 6= NULL∧p.currTop == Top then
p.nodeToFree ∈ Ordered, it is the rightmost node there, and p.nodeToFree =
NT → next.

Proof. Note that it is enough to show that p.nodeToFree = NT → next since
by Corollary 15 it immediately implies that p.nodeToFree ∈ Ordered and that
it is the rightmost node there.

Initially p@0 so the invariant holds. Consider a transition s
a
−→ s′, and suppose

the invariant holds in s.

• If a modifies Top: No statement in 〈15 . . . 17〉 modifies Top, and if a mod-
ification of Top is done by some process p, ¬s′.p@〈15 . . . 17〉. If some
process p′ modifies Top while the antecedent holds, then by Corollary 12
s′.p.currTop 6= s′.Top, so the antecedent does not hold in s′. Therefore a
does not falsify the invariant.

• Otherwise, we consider statements that may establish the antecedent. Be-
cause p.nodeToFree is not modified while p@〈15 . . . 17〉 holds, then the only
statements that may establish the antecedent are p.13 and p.14.

1. If a is an execution of p.13: By examining the code, s′.p.nodeToFree =
NULL, so the invariant holds in s′.
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2. If a is an execution of p.14: By examining the code, s′.p.nodeToFree =
p.currTopNode → next, and since a does not modify p.currTop or
Top, then: (p.currTopNode = NT ) ∨ (s′.p.currTop 6= Top) holds,
which implies that the invariant holds in s′.

• Otherwise, we consider statements that might falsify the consequent while
the antecedent holds. Since a does not modify Top, s′.NT = s.NT . Since no
statement modifies p.nodeToFree and p.currTop while p@〈15 . . . 17〉 holds,
we only need to consider statements that modifies NT → next. But by
Corollary 15 NT ∈ s.Ordered, and therefore by Lemma 21 s′.NT → next =
s.NT → next. Therefore no statement falsifies the consequent while the
antecedent holds.

Lemma 23. If s
a
−→ s′ and a is a successful CAS operation at Line 17 by some

process p, then s′.p.nodeToFree /∈ s′.Ordered.

Proof. Note that the statement at Line 17 does not modify p.nodeToFree, and
that it removes the rightmost node in Ordered if and only if p.nodeToFree 6=
NULL. If p.nodeToFree = NULL, then by Corollary 17 p.nodeToFree /∈ s′.Ordered.
Otherwise, since the CAS is successful s.p.currTop = s.Top, and by Invariant 22
p.nodeToFree ∈ s.Ordered and it is the rightmost node there. Therefore af-
ter the execution of p.17, which removes the rightmost node from Ordered, by
Invariant 20 we get that p.nodeToFree /∈ s′.Ordered.

Invariant 24. If p@〈22 . . . 34, 36 . . . 38〉 then p.oldBotNode ∈ Ordered, and it
is the leftmost node there.

Proof. Initially p@0 so the invariant holds. Consider a transition s
a
−→ s′that falsi-

fies the invariant. Note that p.oldBotNode is not modified while
p@〈22 . . . 34, 36 . . . 38〉, and that by Lemma 18 no node is added to Ordered

while the antecedent holds. Therefore the only statements we need to consider
are p.21 which establishes the antecedent, and any statement which removes a
node from Ordered while the antecedent holds.

1. If a is an execution of p.21: Then s′.oldBotNode = s.NB and therefore by
Conjecture 55, s′.oldBotNode ∈ Ordered. Because s.p@21, by Invariant 1
∀p′ 6= p ¬p′@〈20 . . . 39〉, and therefore by Invariant 16 s.NB is the leftmost
node in Ordered, so the invariant holds in s′.

2. If a is a removal of a node from Ordered while the antecedent holds: Since
the antecedent holds in s and s′, then p.34 and p.38 are not enabled, and
by Invariant 1 ∀p′ 6= p p′.34 and p′.38 are not enabled either.

Therefore a must be an execution of a RemoveRight operation by state-
ment p’.17 for some process p′ 6= p. Since the invariant and the an-
tecedent holds in s, then p.oldBotNode is the leftmost node in s.Ordered,
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and by Corollary 15 |s.Ordered| ≥ 2 which implies that p.oldBotNode ∈
s′.Ordered (since a RemoveRight operation cannot remove the leftmost
node if there is more than one node in Ordered).

Conjecture 27. If p@18 ∧ p.nodeToFree 6= NULL then
p.nodeToFree ∈ Live ∧ p.nodeToFree /∈ Ordered.

Invariant 25. If p@〈5 . . . 7〉 ∧ p′@18 ∧ p′ 6= p ∧ p′.nodeToFree 6= NULL then
p.newNode 6= p′.nodeToFree.

Proof. Initially p@0 so the invariant holds. Consider a transition s
a
−→ s′ that

falsifies the invariant. Because p.newNode and p′.nodeToFree are not modified
while p@〈5 . . . 7〉 ∧ p′@18 holds, then it suffices to consider statements p.3, p.4
and p′.17.

1. If a is an execution of p.3: By Invariant 6, s′.p.newNode = NB in this
case, which implies by Corollary 15 that s′.p.newNode ∈ Ordered. If
p′.nodeToFree = NULL ∨ ¬p′@18 then the antecedent does not hold in
s′. Otherwise, by Conjecture 27, p′.nodeToFree /∈ Ordered and therefore
p′.nodeToFree 6= s′.p.newNode.

2. If a is an execution of p.4: Since a is an execution of AllocateNode oper-
ation, then s′.p.newNode /∈ s.Live. If p′.nodeToFree = NULL ∨ ¬p′@18
then the antecedent does not hold in s′. Otherwise by Conjecture 27
p′.nodeToFree ∈ s.Live and therefore p′.nodeToFree 6= s′.p.newNode.

3. If a is an execution of p′.17: In this case a does not modify p′.nodeToFree
or p.newNode. If p′.nodeToFree = NULL then the antecedent does not hold
in s′, and if p′.currTop 6= s.Top, then the CAS fails and the antecedent does
not hold in state s′. Otherwise, by Invariant 22 p′.nodeToFree ∈ s.Ordered
and by Lemma 23 p′.nodeToFree /∈ s′.Ordered.

• If s.p@〈5 . . . 7〉 then by Invariant 19 p.newNode /∈ s.Ordered ∨
p.newNode = NB. If p.newNode /∈ s.Ordered, since p′.nodeToFree ∈
s.Ordered then p.newNode 6= p′.nodeToFree. If p.newNode = NB ,
then by Conjecture 55 p.newNode ∈ s′.Ordered, and since
p′.nodeToFree /∈ s′.Ordered then p.newNode 6= p′.nodeToFree.

• Otherwise the antecedent does not hold in state s′.

Invariant 26. If p@18 ∧ p′@18, then (p′.nodeToFree 6= p.nodeToFree) ∨
(p.nodeToFree = p′.nodeToFree = NULL).
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Proof. Initially p@0 so the invariant holds. Consider a transition s
a
−→ s′ that

falsifies the invariant. Then:

1. If s.p@18∧s.p′@18 then p.nodeToFree and p′.nodeToFree are not modified
by a, and therefore a cannot falsify the invariant.

2. If ¬s.p@18 ∧ ¬s.p′@18, then ¬s′.p@18 ∨ ¬s′.p′@18 and therefore the an-
tecedent does not hold in s′, and the invariant is not falsified by a.

3. Otherwise, a is a successful execution of the CAS statement at Line 17.
W.l.o.g we assume that the statement is executed by p′, and therefore
s.p@18. Note that a does not modify p.NodeToFree or p′.NodeToFree. If
p.nodeToFree = NULL ∨ p′.nodeToFree = NULL then the invariant clearly
holds. Otherwise, by Conjecture 27 we get p.nodeToFree /∈ s.Ordered
and by Invariant 22 we get p′.nodeToFree ∈ s.Ordered, and therefore
p.nodeToFree 6= p′.nodeToFree.

Using Invariants 25 and 26 we now prove Conjecture 27:

Conjecture 27. If p@18 ∧ p.nodeToFree 6= NULL then
p.nodeToFree ∈ Live ∧ p.nodeToFree /∈ Ordered.

Proof. Initially p@0 so the invariant holds. Consider a transition s
a
−→ s′ that

falsifies the invariant. Since p.nodeToFree is not modified while p@18 holds, the
only statement that might establish the antecedent is p.17.

If a is an execution of p.17, then a does not modify p.nodeToFree or Live,
and a establishes the antecedent only if p.nodeToFree 6= NULL ∧ p.currTop =
s.Top. By Lemma 23 p.nodeToFree /∈ s′.Ordered holds in this case. Also, by
Invariant 22 p.nodeToFree ∈ s.Ordered which by Conjecture 29 implies that
p.nodeToFree ∈ s.Live = s′.Live. Therefore the invariant holds in s′.

The only statements that might falsify the consequent while the antecedent
holds are p′.18, p′.34, p′.38 and p′.7 for some process p′ 6= p (that is, deallocation
of a node or addition of a node to Ordered).

1. If a is an execution of p′.7: Then a does not modify p.nodeToFree or Live.
Since the antecedent holds in s, Invariant 25 implies that s.p′.newNode 6=
p.nodeToFree. Therefore, since the only node that may be added to
Ordered by a is s.p′.newNode, a does not falsify the consequent.

2. If a is an execution of p′.18: Then a does not modify p.nodeToFree
or Ordered. Since the antecedent holds in s, Invariant 26 implies that
s.p′.nodeToFree = NULL ∨ s.p′.nodeToFree 6= p.nodeToFree. Since a
can only deallocate s.p′.nodeToFree and does so only if s.p′.nodeToFree 6=
NULL, it follows that a does not falsify the invariant.
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3. If a is an execution of p′.34 or p′.38: Then a does not modify p.nodeToFree.
Since the consequent holds in s, and Invariant 24 implies that s.p′.oldBotNode ∈
s.Ordered, it follows that that s.p′.oldBotNode 6= p.nodeToFree. Since a
can only deallocate s.p′.oldBotNode, it does not falsify the invariant.

Invariant 28. If p@〈5 . . . 7〉, then p.newNode ∈ Live.

Proof. Initially p@0 so the invariant holds. Consider a transition s
a
−→ s′, and

suppose s
a
−→ s′ falsifies the invariant. There are three cases to consider:

• If a is an execution of p.4, then the node returned by the AllocateNode is
guaranteed to be live, that is: s′.p.newNode ∈ s′.Live.

• Otherwise, if a is an execution of p.3, then s′.Live = s.Live, and by In-
variant 6 s′.p.newNode = s.p.currNode = NB ∈ Live.

• Otherwise a must falsify the consequence while the antecedent holds. Since
no statement modifies p.newNode while p@〈5 . . . 7〉 holds, then a must
deallocate a node. By Invariant 1 the only enabled statement that might
do that is p’.18 for some process p′ 6= p. If s.p′.nodeToFree = NULL then
no node is deallocated. Otherwise, by Invariant 25 we get p.newNode 6=
s.p′.nodeToFree and therefore p.newNode ∈ s′.Live.

4.3.1 Proof of Conjecture 29

Using the above invariants, we can now give the proof of Conjecture 29.

Conjecture 29. All ordered nodes are live.

Proof. Initially there are two live nodes in Ordered (deque constructor pseudo
code, depicted in Figure 8 on page 15), so the invariant holds. Consider a tran-
sition s

a
−→ s′, and suppose the invariant holds in s, that is: s.Ordered ⊆ s.Live.

Clearly, the only operations that may falsify the invariant are deallocation of a
node, or addition of a node to Ordered. Therefore, there are three statements to
consider:

1. p.7 for some process p: Then s′.Live = s.Live and by Invariant 28 p.newNode ∈
s.Live. Therefore the invariant still holds in s′.

2. p.18 for some process p: Then a deallocates p.nodeToFree if and only
if p.nodeToFree 6= NULL. By Conjecture 27 p.nodeToFree 6= NULL ⇒
p.nodeToFree /∈ s.Ordered, and since s′.Ordered = s.Ordered, the invari-
ant still holds in s′.
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3. p.34 or p.38 for some process p: In this case, the statement deallocates
p.oldBotNode if and only if it also removes the leftmost node from s.Ordered.
By Invariant 24, p.oldBotNode ∈ s.Ordered and it is the leftmost node
there, and therefore p.oldBotNode /∈ s′.Live ⇒ p.oldBotNode /∈ s′.Ordered.

4.4 Legality of Shared Pool Usage

In this section we show that our algorithm uses the shared pool properly, as
stated by Conjecture 30.

Conjecture 30. Consider a transition s
a
−→ s′.

• If N /∈ s.Live, then a does not modify any of N ’s fields.

• If a is an execution of FreeNode(N), then N ∈ s.Live.

Proof. We first show that a FreeNode operation is always called on a live node.
Suppose a is a FreeNode(N) operation. The only statements which call the
FreeNode operation are p.18, p.34 and p.38 for some process p. By Conjecture 27,
if a is an execution of p.18 then s.p.nodeToFree ∈ s.Live, and therefore a does
not falsify the invariant. Otherwise if a is an execution of p.34 or p.38, then
by Invariant 24 s.p.oldBotNode ∈ s.Ordered, and therefore by Conjecture 29
s.p.oldBotNode ∈ s.Live, and therefore a does not falsify the invariant.

Next we show that a does not modify a field of node N if N /∈ s.Live.
The only statements that might modify node’s fields are p.2, p.5 and p.6 for
some process p. By Invariant 28 p@5 implies that s.p.newNode ∈ s.Live, and
by Invariant 6 s.p@〈2, 6〉 implies that s.p.currNode = s.NB . By Corollary 15
s.NB ∈ s.Ordered which implies by Conjecture 29 that s.NB ∈ s.Live, and
therefore a does not falsify the invariant.

4.5 Order On Cells

Section 4.3 introduced the Ordered sequence, which defines an order between a
subset of these nodes. This section defines an order between the cells of these
nodes, and proves some properties regarding this order.

Definition 31. For a node N ∈ Ordered, Pos(Ordered, N) denotes the index
of N in Ordered, where the leftmost node in Ordered is indexed as 0. (Note that
by Invariant 20, Pos(Ordered, N) is well defined.)

Definition 32. For two nodes M and N , and two cells Ci ∈ M and Cj ∈
N , we define the order ≺s between these cells to be the lexicographic order
〈Node,CellIndex〉, where the nodes are ordered by the Ordered series, and the
indices by the whole numbers order. Formally, Ci ≺s Cj if and only if M ∈
s.Ordered∧N ∈ s.Ordered∧ (Pos(s.Ordered,M) < Pos(s.Ordered, N)∨ (M =
N ∧ i < j)).
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Note that the ≺s operator depends on the state s, since it depends on the mem-
bership and order of the nodes in Ordered. The following lemma implies that
the order between two cells cannot be changed unless the node of one of the cells
is removed or added to Ordered:

Lemma 33. For any step of the algorithm s
a
−→ s′: (Ci ≺s Cj) ⇒ ¬(Cj ≺s′ Ci).

Proof. If Ci and Cj belongs to the same node this is obvious, since the order
of cells inside a node is never changed. Otherwise, suppose Ci ∈ N ∧ Cj ∈
M ∧ (N 6= M). The only way the order between Ci and Cj can be changed
is if the order between N and M in Ordered is changed. Since the Ordered

series only supports addition and removal of nodes (and does not support any
swap operation), the order of nodes inside Ordered cannot be changed unless
one of the nodes is removed from Ordered first. Therefore N ∈ s′.Ordered ∧
M ∈ s′.Ordered ⇒ (Ci ≺s′ Cj). Otherwise by the definition of ≺ we have:
¬(Ci ≺s′ Cj) ∧ ¬(Cj ≺s′ Ci).

In the remainder of the proof we sometimes omit the s subscript from the
≺s operator when considering transitions that do not modify Ordered. We are
still required to show, however, that cells’ nodes are in Ordered in order to claim
that the cells are ordered by ≺.

Definition 34. We define: Ci � Cj ≡ (Ci = Cj ∨ Ci ≺ Cj).

Definition 35. Let Ci ∈ Nk and Cj ∈ Nl be two cells such that Nk ∈ Ordered

and Nl ∈ Ordered.

• Ci and Cj are neighbors if and only if they are adjacent with respect to ≺.
We will use the predicate Neighbors(Ci, Cj) to indicate if Ci and Cj are
neighbors. Neighbors(Ci, Cj) is false if the order between Ci and Cj is not
defined.

• Ci is the left neighbor of Cj , denoted by Ci = LeftNeighbor(Cj), if and
only if Neighbors(Ci, Cj) ∧ (Ci ≺ Cj).

• Ci is the right neighbor of Cj, denoted by Ci = RightNeighbor(Cj), if and
only if Cj = LeftNeighbor(Ci).

Note that the LeftNeighbor and RightNeighbor are only partial functions, that
is they are not defined for all cells. By the definition of Neighbors and the ≺
order, it is easy to see that:

1. RightNeighbor(Ci) is defined if and only if Ci ∈ N ∈ Ordered and either N
is not the rightmost node in Ordered, or i 6= DeqeuNode :: ArraySize − 1.

2. LeftNeighbor(Ci) is defined if and only if Ci ∈ N ∈ Ordered and either N
is not the leftmost node in Ordered, or i 6= 0.
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4.5.1 The IndicateEmpty Macro

The IndicateEmpty macro, called at Line 10, takes values of type BottomStruct
and TopStruct and indicates whether the deque would be empty if these were
the values of Top and Bottom, respectively, in the state in which the macro is
invoked. The code for the macro is depicted in Figure 12 on page 18. The
following Lemma describe the properties of the macro:

Lemma 36. Let bottomV al and topV al be two variables of type BottomStruct
and TopStruct, respectively, and suppose Cell(topV al) ∈ N ∈ Ordered and that
N is not the rightmost node in Ordered.
Then IndicateEmpty(bottomV al, topV al) = true if and only if (Cell(topV al) =
Cell(bottomV al)) ∨ (Cell(topV al) = LeftNeighbor(Cell(bottomV al))).

Proof. If botNode ∈ Ordered, then by examination of the code, Conjecture 55
and Invariant 4 it is obvious that the lemma is correct. The only interesting case
is if botNode /∈ Ordered, in which case the macro should return false (since then
¬(Cell(topV al) � Cell(bottomV al))). Since topNode = N ∈ Ordered and it is
not the rightmost node there, by Conjecture 55 we have: topNode → next ∈
Ordered, and therefore if botNode /∈ Ordered IndicateEmpty indeed returns
false.

We later prove why this property captures exactly the empty deque scenario.
Note that as long as bottomV al and topV al are local process’ variables, the
IndicateEmpty macro does at most one read from the shared memory (that is,
the read of the next pointer of the node indicated by topV al), and therefore is
regarded as one atomic operation when called at Line 10. Finally, there is no
guarantee on the return value of IndicateEmpty if Node(Cell(topV al)) is not in
Ordered, or if it is the rightmost node there.

4.5.2 Crossing States

We say that the deque is in a crossing state when the cell pointed by Top is to
the left of the cell pointed by Bottom, as depicted in Figure 2(b) on page 6. As
we later explain, these states correspond to an empty deque.

Definition 37. The deque is in a crossing state if and only if CT ≺ CB.

Note that if s.Ordered is in the state described by part c of Conjecture 55, then
the deque is in a crossing state (since NT precedes NB in Ordered). The following
is the main invariant describing when and under what conditions the deque may
be in a crossing state:

Conjecture 54. If the deque is in a crossing state then:

1. CT and CB are neighbors.
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2. ∃p such that p@〈26 . . . 29, 31 . . . 33, 36〉.

Note that by Conjecture 55 we already know that if the deque is in a crossing
state, then NT and NB are either the same node, or adjacent nodes in Ordered.
The following invariants will be used for the proof of Conjecture 54, which is
given in Section 4.6.

Invariant 38. p@〈4 . . . 6〉 ⇒ (p.currIndex = 0).

Proof. Straightforward by examination of the code and by the observation that
s.p@〈4 . . . 6〉 ⇒ (s.p.currIndex = s′.p.currIndex) for any step s

a
−→ s′.

Invariant 39. p@6 ⇒ p.newNode → next = p.currNode.

Proof. Initially p@0 so the invariant holds. Let s
a
−→ s′be a step of the algorithm.

• If a is an execution of p.5: Then by examining the code s′.p.newNode →
next = s′.p.currNode.

• Otherwise, s.p@6 ∧ s′.p@6 implies by Invariant 1 that ∀p′ ¬s.p′@5. By
Invariant 28 we have p.newNode ∈ s.Live. Since the only statement that
writes the next pointer of a live node is p′.5 which is not enabled in s, we
have: (s.p.newNode → next = s.p.currNode) ⇒ (s′.p.newNode → next =
s′.p.currNode), and therefore a does not falsify the consequence while the
antecedent holds.

Invariant 40. If p@7, then exactly one of the following is true:

1. p.newNode = p.currNode ∧ p.newIndex = p.currIndex − 1.

2. (p.newNode 6= p.currNode) ∧ (p.newNode → next = p.currNode) ∧
(p.currNode → prev = p.newNode)∧ (p.currIndex = 0)∧ (p.newIndex =
DequeNode :: ArraySize − 1).

Proof. Initially p@0 so the invariant holds. Let s
a
−→ s′be a step of the algorithm.

• If a is an execution of p.3: By examining the code
s′.p.newNode = p.currNode ∧ s′.p.newIndex = p.currIndex − 1.

• If a is an execution of p.6: By Invariant 38 we have p.currIndex = 0.
By examining the code (s′.p.currNode → prev = s′.p.newNode) ∧
(s′.p.newIndex = DequeNode :: ArraySize − 1). Since the transition
does not modify either a node’s next pointer, p.currNode or p.newNode,
then by Invariant 39 we have: s′.p.newNode → next = s′.p.currNode.
Finally, by Invariant 19 we have p.newNode /∈ Ordered and by Invari-
ant 6 we have: p.currNode = NB which implies by Corollary 15 that
p.currNode ∈ Ordered, and therefore p.newNode 6= p.currNode.
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• Otherwise, by examining the code, no statement modifies p.currNode,
p.newNode or p.currIndex while p@7.
By Invariant 28 we have p.newNode ∈ (s.Live ∩ s′.Live). By Invari-
ant 6 we have: p.currNode = NB which implies by Corollary 15 that
p.currNode ∈ (s.Ordered ∩ s′.Ordered) and therefore by Conjecture 29
p.currNode ∈ (s.Live ∩ s′.Live). Lines 5 and 6 are the only ones that
writes the next or prev pointers of a live node, which by Invariant 1 are
not enabled while p@7. Therefore if the invariant holds at s it also holds
in s′.

Lemma 41. Consider a transition s
a
−→ s′ where a is an execution of p.7, then:

s′.CB = LeftNeighbors′(s.CB).

Proof. s.NB ∈ s.Ordered by Corollary 15, and s.NB ∈ s′.Ordered since a did
not remove any node from Ordered. If p.currNode = p.newNode then clearly
s′.NB ∈ s′.Ordered (because s.NB = s′.NB and s.Ordered = s′.Ordered). Oth-
erwise p.newNode is pushed to Ordered which implies s′.NB ∈ s′.Ordered.

Since s′.NB ∈ s′.Ordered and s.NB ∈ s′.Ordered, by Invariants 4, 40 and 55
we get s′.CB = LeftNeighbors′(s.CB).

Invariant 42. p@33 ⇒ Cell(p.newTopV al) = Cell(p.currTop).

Proof. Straightforward by examination of Line 32.

Corollary 43. If s
a
−→ s′, where a is an execution of p.33, then: s′.CT = s.CT .

Proof. The CAS operation at Line 33 modifies Top to p.newTopV al if and only if
s.Top = p.currTop, and by Invariant 42 Cell(p.newTopV al) = Cell(p.currTop).

Based on Corollary 43, in the rest of proof we do not regard Line 33 as one of
the statements that may modify CT .

Invariant 44. If p@〈25 . . . 29, 31 . . . 34, 36 . . . 38〉, then
Cell(p.newBotV al) = RightNeighbor(Cell(p.oldBotV al)).

Proof. Initially p@0 so the invariant holds. Let s
a
−→ s′be a step of the algorithm,

and suppose the invariant holds in s.

• If a is the execution of Line p.23: Then a does not modify p.oldBotNode,
p.oldBotIndex, or Ordered. By examining the code, s′.p.newBotNode =
p.oldBotNode, and by Invariant 6 p.oldBotNode = s.NB = s′.NB , which
by Corollary 15 implies that p.oldBotNode ∈ Ordered. By examining the
code we also have: s′.p.newBotIndex = p.oldBotIndex + 1, and therefore
by Invariant 4 and the definition of neighbors: Cell(s′.p.newBotV al) =
RightNeighbor(Cell(s′.p.oldBotV al)).

37



• If a is the execution of Line p.24: Then a does not modify p.oldBotNode,
p.oldBotIndex, or Ordered. By examining the code, s′.p.newBotNode =
p.oldBotNode → next. By Invariant 6 p.oldBotNode = s.NB = s′.NB ,
which by Corollary 15 implies that p.oldBotNode ∈ Ordered. By Invari-
ants 54 and 1 the deque is not in a crossing state at s, and therefore by
Conjecture 55: NB → next ∈ Ordered. Therefore s′.p.newBotNode =
p.oldBotNode → next implies by Conjecture 55 that s′.p.newBotNode
and s′.p.oldBotNode are adjacent in s′.Ordered (since both nodes are in
s’.Ordered). Finally, by examining the code we have: s′.p.oldBotIndex =
DequeNode :: ArraySize− 1∧ s′.p.newBotIndex = 0, which implies that:
Cell(s′.p.newBotV al) = RightNeighbor(Cell(s′.p.oldBotV al)).

• Otherwise, we consider statements that might falsify the consequence while
the antecedent holds. Since the invariant holds in s we have:
Cell(s.p.newBotV al) = RightNeighbors(Cell(s.p.oldBotV al)) which also
implies: s.p.newBotNode ∈ s.Ordered ∧ s.p.oldBotNode ∈ s.Ordered.
Note that p.oldBotNode and p.newBotNode are not modified while
p@〈25 . . . 29, 31 . . . 34, 36 . . . 38〉. By Lemma 33, and because Ordered only
supports addition of nodes to its left and right ends, we only need to show
that p.oldBotNode and p.newBotNode are not removed from Ordered.
There are two cases to consider:

– If s.p@25:

∗ If a is an execution of p.25, then s′.Ordered = s.Ordered.

∗ Otherwise, since s′.p@25, by Invariant 6: p.oldBotNode = s′.NB ∈
s′.Ordered, and by Conjecture 54 the deque is not in a crossing
state at s′, which implies by Conjecture 55 that p.newBotNode ∈
s′.Ordered.

– Otherwise, by Invariant 6 p.newBotNode = NB and by Invariant 16
p.oldBotNode ∈ s′.Ordered.

Therefore the consequence is not falsified while the antecedent holds, and
the invariant holds in s′.

Lemma 45. Let s
a
−→ s′ be a step of the algorithm, and suppose a is an execution

of Line 29 or Line 36, then:
s′.CB = LeftNeighbors(s.CB) = LeftNeighbors′(s.CB).

Proof. Let p be the process executing Line 29 or 36. By Invariant 44, s.p@〈29, 36〉 ⇒
Cell(p.newBotV al) = RightNeighbors(Cell(p.oldBotV al)). By Invariant 6:
s.p@〈29, 36〉 ⇒ s.p.newBotV al = s.Bottom, and by examining the code s′.Bottom =
s.p.oldBotV al, which implies: s.CB = RightNeighbors(s

′.CB), and therefore by
the definition of the neighboring relation s′.CB = LeftNeighbors(s.CB). Finally,
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since s.Ordered = s′.Ordered, LeftNeighbors(s.CB) = LeftNeighbors′(s.CB).

Invariant 46. If p@〈10, 12 . . . 17〉 ∧ p.currTop = Top ∧ CT � CB then:

1. (p@10 ∧
(Cell(p.currBottom) = CT∨Cell(p.currBottom) = RightNeighbor(CT ))),
or

2. (a) CT = CB, and

(b) ∃p′ such that: p′@26 ∨ (p′@〈27, 28, 31 . . . 33〉 ∧ p′.currTop = Top).

Proof. Initially p@0 so the invariant holds. We use the following notations for
the antecedent and consequent:

• s.P ≡ (s.p@〈10, 12 . . . 17〉 ∧ s.p.currTop = s.Top ∧ s.CT � s.CB)

• s.R ≡ (s.R1 ∨ s.R2), where:
s.R1 ≡ (s.p@10∧ (Cell(s.p.currBottom) = s.CT ∨Cell(s.p.currBottom) =
RightNeighbors(s.CT ))),
s.R2 ≡ (s.CT = s.CB ∧
(∃p′ s.p′@26 ∨ (s.p′@〈27, 28, 31 . . . 33〉 ∧ s.p′.currTop = s.Top))).

Let s
a
−→ s′ be a step of the algorithm and suppose the invariant holds in s. We

should show then that s′.P ⇒ s′.R:

1. If a is an execution of line p′.7: By Conjecture 54 s.CT �s s.CB and
since a does not remove any node from Ordered, we have s.CT �s′ s.CB .
By Lemma 41 s.CB �s′ s′.CB . Finally, s′.CT = s.CT and therefore
¬(s′.CT �s′ s′.CB), which implies that s′.P does not hold.

2. If a writes a value to Top: Then by Corollary 12 s′.p@〈10, 12 . . . 17〉 ⇒
s′.p.currTop 6= s′.Top which implies that s′.P does not hold.

3. Otherwise, suppose a establishes the antecedent (that is, s′.P∧¬s.P holds):

• If a is an execution of p.9: Then Cell(s′.p.currBottom) = s.CB =
s′.CB . By applying Conjecture 54 to s′, s′.CT � s′.CB ⇒ s′.CB =
s′.CT ∨ s′.CB = RightNeighbor(s′.CT ). Therefore s′.R1 holds, which
implies that s′.R holds.

• If a modifies p.currTop: No statement modifies p.currTop while
p@〈10, 12 . . . 17〉 holds, and therefore P cannot be established by a.

• Otherwise, note that the ≺ relation is used in P only between CT and
CB , which by Conjecture 55 are always ordered. Therefore, because
Ordered does not support operations that reorder its elements, CT �
CB cannot be established if s′.CT = s.CT ∧ s′.CB = s.CB. Since a
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does not modify Top, then only statements that modify Bottom may
establish P .

Because a modifies Bottom and it is not an execution of Line 7 we
have: s′.Ordered = s.Ordered, and therefore: ≺s≡≺s′. Since P does
not hold in s but holds in s′ we have: (s.CB ≺ CT ∧ s′.CB � CT ),
which implies s.CB ≺ s′.CB.

– If a is an execution of p′.25 for some process p′ 6= p: Then s′.p′@26.
Since s.CB ≺ CT , by Invariants 6 and 44 s′.CB � CT , and because
we also have s′.CB � CT , then s′.CB = CT . Therefore s′.R2 holds,
which implies that s′.R holds.

– If a is an execution of p′.29 or p′.36 for some process p′ 6= p:
Then s′.CB = Cell(p′.oldBotV al) and by Invariant 6: s.CB =
Cell(p′.newBotV al). Therefore by Lemma 45 s′.CB ≺ s.CB, a
contradiction.

We showed then that if s.P does not hold, then s′.P does not hold, unless
a is an execution of Line 9 or 25, in which case s′.R holds.

4. Otherwise s.P holds, and since the invariant holds in s, then s.R holds as
well. There are two cases two be considered:

• If s.R1 holds: p@10 ⇒ s′.p.currBottom = s.p.currBottom, and we al-
ready showed that if a writes a value to Top then it does not falsify the
invariant, and therefore s′.CT = s.CT . Therefore Cell(p.currBottom) =
CT is not falsified while p@10.

By Corollary 15 RightNeighbors′ (CT ) is defined (since NT is not the
rightmost node in s’.Ordered), and since no statement atomically re-
moves and adds a node to Ordered, we get: RightNeighbors(CT ) =
RightNeighbors′ (CT ), and therefore Cell(p.currBottom) =
RightNeighbor(CT ) is not falsified while p@10. Therefore the only
transition that can falsify R1 is an execution of p.10.

If a is an execution of p.10, since s.P holds we have s.p.currTop =
s.Top, which implies by Corollary 15 that s.p.currTopNode ∈ s.Ordered
and that it is not the rightmost node there. Since s.p.currTop = s.Top,
then by Lemma 36: Cell(s.p.currBottom) = RightNeighbor(s.CT ) ⇒
s′.p@11. Therefore s′.P does not hold.

• Otherwise, (¬s.R1 ∧ s.R2) holds: Only statements that modify Top

or Bottom, and statements of process p′ can falsify R2. Since a
does not modify Top, by Invariant 1 no statement modifies Bottom

while p′@26 ∨ (s.p′@〈27, 28, 31 . . . 33〉 holds, and no statement modi-
fies p.currTop while s.p′@〈27, 28, 31 . . . 33〉 holds, then we only need
to consider statements p′.26, p′.28, p′.31 and p′.33:
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– If a is an execution of p′.26: Then clearly s′.p′.currTop = Top and
since a does not modify Top or Bottom we have s′.CT = s′.CB ,
and R still holds in s′.

– If a is an execution of p′.28: Since R2 holds in s we have CT = CB

and p′.currTop = Top. By Invariant 6 CB = Cell(p′.newBotV al),
and by Invariant 44 Cell(p′.newBotV al) 6= Cell(p′.oldBotV al).
Thus: Cell(p′.currTop) = CT =
CB = Cell(p′.newBotV al)6= Cell(p′.oldBotV al), and therefore
the test at Line 28 fails, which implies that s′.p′@31 and R holds
in s′.

– If a is an execution of p′.31: As in the previous case, we have:
Cell(p′.currTop) = CT = CB= Cell(p′.newBotV al), and there-
fore the test at Line 31 returns true, which implies that s′.p′@32
and R holds in s′.

– If a is an execution of p′.33: Since R2 holds in s we have p′.currTop =
Top, and therefore the CAS operation of Line 33 succeeds. But
we already claimed that if a is an update of Top then P does not
hold at s′, which implies that the invariant holds in s′.

We showed then that if s.P and s.R hold, then s′.R also holds unless a is
the execution of Line 33, in which case s′.P does not hold.

Corollary 47. p@〈12 . . . 17〉 ∧ CT ≺ CB ⇒ p.currTop 6= Top.

Proof. Since p@〈12 . . . 17〉 ∧ CT ≺ CB, if p.currTop = Top we can apply Invari-
ant 46 and get CT = CB, which contradict the assumption that CT ≺ CB.

Invariant 48. If p@〈12 . . . 17〉, p.currTop = Top, and p.currTopIndex == 0
then p.currTopNode → prev ∈ Ordered.

Proof. We will prove this invariant without using induction. If p.currTop =
Top, by Corollary 15 we have: p.currTopNode ∈ Ordered. By Corollary 47
p@〈12 . . . 17〉∧ p.currTop = Top implies that the deque is not in a crossing state,
and therefore CB � CT . We consider two cases:

• If CB 6= CT : then CB ≺ CT , and since p.currTopIndex = 0, then NT is
not the leftmost node in Ordered, and therefore by Conjecture 55 NT →
prev ∈ Ordered. If p.currTop = Top then p.currTopNode = NT , which
implies that p.currTopNode → prev ∈ Ordered.

• Otherwise CB = CT and by Invariant 46 ∃p′ p′@〈26 . . . 28, 31 . . . 33〉. By
Invariant 6 we have: CB = Cell(p′.newBotV al), and by Invariant 44:
Cell(p′.oldBotV al) = LeftNeighbor(Cell(p′.newBotV al)) =
LeftNeighbor(CB) = LeftNeighbor(CT ). Since p.currTop = Top and
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p.currTopIndex = 0, by Conjecture 55 and the definition of Neighbors we
have:
LeftNeighbor(CT ) = Cell(p′.oldBotV al) ⇒
p.currTopNode → prev = p′.oldBotNode ∈ Ordered.

Invariant 49.

1. s.p@13 ⇒ s.p.currTopIndex 6= 0.

2. s.p@〈14, 15〉 ⇒ s.p.currTopIndex = 0.

Proof. Straightforward by examination of the code.

Invariant 50. If p@〈16, 17〉 ∧ (p.currTop = Top), then
Cell(p.newTopV al) = LeftNeighbor(Cell(p.currTop)).

Proof. Initially ¬p@〈16, 17〉 so the invariant holds. Consider a transition s
a
−→ s′

that falsifies the invariant.

1. If a is a write operation to Top: Then by Corollary 12 s′.p.currTop 6= s′.Top,
so the invariant holds in s′.

2. Consider statements that may establish the antecedent. Since no statement
in 〈16, 17〉 modifies any of p’s private variables, and a does not modify
Top, we only need to consider statements that establish p@〈16, 17〉. If
s′.p.currTop 6= s′.Top, then a does not establish the antecedent. Otherwise
by Conjecture 55 we have: s′.p.currTopNode ∈ s′.Ordered, and there are
two statements to consider: Line 13 and Line 15:

• If a is an execution of Line 13:
Then (s′.p.newTopNode = s.p.currTopNode = s′.p.currTopNode) ∧
(s′.p.newTopIndex = s.p.currTopIndex − 1), and by Invariant 49
s.p.currTopIndex 6= 0. Since s′.p.newTopNode = s′.p.currTopNode ∈
s′.Ordered, then by Invariant 4:
Cell(s′.p.newTopV al) = LeftNeighbors′(Cell(s′.p.currTop)).

• If a is an execution of Line 15:
Then s′.p.newIndex = DequeNode :: ArraySize − 1, and since
s′.p.currTop = s.p.currTop we have:
s′.p.newTopNode = s′.p.currTopNode → prev.
By Invariant 49 s.p.currTopIndex = 0, and since s′.p.currTopIndex =
s.p.currTopIndex and s′.p.currTop = s′.Top, by Invariant 48 we get:
s′.p.newTopNode ∈ s′.Ordered. Finally by Invariants 55 we get:
Cell(s′.p.newTopV al) = LeftNeighbors′(Cell(s′.p.currTop)).
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3. Consider statements that may falsify the consequent while the antecedent
holds. No statement modifies any of p’s private variables while p@〈16, 17〉
holds (except p.retV al which is irrelevant for this invariant). Since the
antecedent holds in s we have p.currTop = s.Top, and since a does not
modify Top, we get: p.currTop = s′.Top, which implies by Conjecture 55
that p.currTopNode ∈ s′.Ordered.
Therefore if s.p.currTopNode = s.p.newTopNode, no statement can falsify
the consequent.

Otherwise, since the consequence holds in s and p.newTopNode 6=
p.currTopNode, we have: p.newTopNode = p.currTopNode → s.prev ∧
p.currTopIndex = 0, and since the antecedent holds in s′ we have:
s′.p@〈16, 17〉, which implies by Invariant 48 that:
p.currTopNode → s′.prev ∈ s′.Ordered. Therefore the only transition
a that might falsify the consequent is one that modifies the prev field of
p.currTopNode. There are two cases to consider:

(a) If p.currTopNode 6= s.NB then by Lemma 21: p.currTopNode →
s.prev = p.currTopNode → s′.prev.

(b) Otherwise p.currTopNode = s.NB , and since p.currTopIndex = 0
and Cell(p.newTopV al) = LeftNeighbors(Cell(p.currTop)), s.NB is
not the leftmost node in s.Ordered. By Invariant 16 and Invariant 1
∀p ¬p@6, and since execution of Line 6 is the only transition that
writes the prev field of a node, we get: p.currTopNode → s.prev =
p.currTopNode → s′.prev.

Invariant 51. If p@〈27, 28, 31 . . . 33〉 ∧ (p.currTop 6= Top) then
¬(CT ≺ CB) ∨ (Cell(p.currTop) = CB).

Proof. Initially p@0. Consider a transition s
a
−→ s′, and suppose the invariant

holds in s.

• If a modifies Top: If ¬s′.p@〈27, 28, 31 . . . 33〉 then the invariant clearly holds
in s′. Otherwise, the only statement that might modify Top is p′@17 for
some process p′ 6= p.

In this case a falsifies the invariant only if s′.CT ≺s′ s′.CB = s.CB and
s.p@〈27, 28, 31 . . . 33〉. By Conjecture 54, s′.CT ≺s′ CB implies s′.CT =
LeftNeighbors′(CB), and since the CAS at Line 17 modifies Top to be
p′.newTopV al if and only if p′.currTop = s.Top, by Invariant 50 it implies
that s.CT = CB .
By Invariant 46 we get: ∃p′′ s.p′′@26∨(s.p′′@〈27, 28, 31 . . . 33〉∧s.p′′.currTop =
s.Top), and by Invariant 1, p′′ = p. Since ¬p@26, s′.p.currTop = s.p.currTop =
s.Top, which implies that Cell(s′.p.currTop) = s.CT = s.CB = s′.CB .
Therefore the invariant holds in s′.
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• Otherwise, since a does not modify Top, the only statement that might
establish the antecedent is p.26. In this case s′.p.currTop = s′.Top and the
invariant holds in s′.

• Otherwise, we consider statements that may falsify the consequence while
the antecedent holds. Sine Bottom and p.currTop are not modified while
p@〈27, 28, 31 . . . 33〉 holds, we only need to consider statements that mod-
ify Top. But we already showed that such statements cannot falsify the
invariant, and therefore no statement can falsify the consequence while the
antecedent holds.

Invariant 52.

1. s.p@〈29, 30〉 ⇒ (Cell(s.p.currTop) = Cell(s.p.oldBotV al)).

2. s.p@〈31 . . . 39〉 ⇒ (Cell(s.p.currTop) 6= Cell(s.p.oldBotV al)).

3. s.p@〈32 . . . 37〉 ⇒ (Cell(s.currTop) = Cell(s.p.newBotV al)).

4. s.p@〈38, 39〉 ⇒ (Cell(s.p.currTop) 6= Cell(s.p.newBotV al)).

Proof. Straightforward by examination of the code and from the observation that
p@〈27 . . . 39〉 ⇒ (s.p.currTop = s′p.currTop)∧(s.p.oldBotV al = s′.p.oldBotV al)∧
(s.p.newBotV al = s′.p.newBotV al).

Invariant 53. If p@〈15 . . . 17〉 ∧ p.currTop = Top then:
(p.nodeToFree 6= NULL) ⇔ (p@15 ∨ p.currTopNode 6= p.newTopNode).

Proof. Initially p@0 so the invariant holds. Consider a transition s
a
−→ s′, and

suppose the invariant holds in s.

1. If a modifies Top, then by Corollary 12, ¬s′.p@〈15 . . . 17〉 ∨ s′.p.currTop 6=
s′.Top, so the invariant holds in s′.

2. Otherwise, consider statements that may establish the antecedent. Because
no statement modifies p.currTop while s.p@〈15 . . . 17〉 holds, we only need
to consider statements that may establish p@〈15 . . . 17〉.

• If a is an execution of p.13: Then s′.p.nodeToFree = NULL ∧
¬s′.p@15∧s′.p.newTopNode = s.p.currTopNode = s′.p.currTopNode
and therefore the consequent holds in s′.

• If a is an execution of p.14: Then s′.p@15 and s′.p.nodeToFree =
s.p.currTopNode → next. Note that a does not modify p.currTop
or Top. Therefore if s.p.currTop 6= s.Top then a does not establish
the antecedent. Otherwise, by Invariant 5 and Corollary 15 it fol-
lows that s′.p.nodeToFree ∈ Ordered, and therefore by Corollary 17,
s′.p.nodeToFree 6= NULL. Therefore the consequent holds in s′.
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3. We now consider statements that may falsify the consequent while the an-
tecedent holds. Since no statement modifies p.nodeToFree or p.currTopNode
while the antecedent holds, it suffices to consider statements that falsify
p@15 or modify p.newTopNode while the antecedent holds. The only such
statement is p.15.

If a is an execution of p.15, then s.p@15 and since the consequent holds
in s, it follows that s.p.nodeToFree 6= NULL. Since s′.p.nodeToFree =
s.p.nodeToFree, it remains to show that s′.p.newTopNode 6=
s′.p.currTopNode.

By examining the code s′.p.newTopNode = s.p.currTopNode → prev,
and since the antecedent holds in s we have s.p.currTopNode = s.NT .
Therefore by Conjecture 55 and Invariant 20: s.p.currTopNode → prev 6=
s.p.currTopNode, and since p.currTopNode is not modified by a we can
conclude that s′.p.newTopNode 6= s′.p.currTopNode.

4.6 Proofs of Conjectures 54 and 55

In this section we prove Conjectures 54 and 55, which are the two main invariants
of the algorithm. Later these invariants will be useful in the linearizability proof.

As explained in Section 4.1.3, we must be careful to avoid circular reason-
ing, because the proofs of some of the invariants proved so far use Conjec-
tures 55 and 54 in the post-state of their inductive step. Accordingly, in the
proof of Conjecture 54, we use Conjecture 55 both in the induction pre-state and
post-state, but all other invariants and conjectures are used only in the induc-
tion pre-state. In the proof of Conjecture 55, we only use other invariants and
conjectures in the induction pre-state.

Conjecture 54. If the deque is in a crossing state then:

1. CT and CB are neighbors.

2. ∃p such that p@〈26 . . . 29, 31 . . . 33, 36〉.

Proof. Initially the deque is constructed such that Cell(Bottom) = Cell(Top) so
the invariant holds. Consider a transition s

a
−→ s′, and suppose the invariant holds

in s. Note that by Conjecture 55, NT ∈ Ordered∧NB ∈ Ordered and therefore:
¬(CT ≺ CB) ⇔ CB � CT . That also means that if we have, for example,
s.CB �s s.CT ∧ s′.CB ≺s′ s.CB ∧ s′.CT = s.CT , it implies that s′.CB ≺s′ s′.CT ,
since neither s.CT nor s.CB can be removed from Ordered by the transition, and
therefore by Lemma 33 the order between them cannot be changed.

• We first consider transitions that may establish the antecedent. Then we
have s.CB �s s.CT and s′.CT ≺s′ s′.CB, which implies by Lemma 41 that a
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cannot be the execution of Line 7, and by Lemma 45 that it cannot be the
execution of Line 29 or 36. Therefore we have two statements to consider:
Line 25 and Line 17.

1. If a is an execution of p.25: Then by Invariant 44 s′.CB =
RightNeighbor(s.CB). Since s′.CT = s.CT ∧s′.Ordered = s.Ordered,
then if the deque is in crossing state in s′:
((s′.CT ≺s′ s′.CB)∧(s.CB �s s.CT )∧(s′.CB = RightNeighbor(s.CB))) ⇒
s′.CT = LeftNeighbor(s′.CB). Also, s′.p@26 and therefore the con-
sequent holds in s′.

2. If a is an execution of p.17: Then by Invariant 50 s′.CT =
LeftNeighbors(s.CT ). Therefore if the deque is in crossing state in
s′: ((s.CB �s s.CT ) ∧ (s′.CT ≺s′ s′.CB)) ⇒ (s.CT = s.CB = s′.CB ∧
s′.CT = LeftNeighbors(s.CB)) ⇒ s′.CT = LeftNeighbors′(s

′.CB).
By Invariant 46, (s.p@17 ∧ s.CT = s.CB) ⇒ ((s.p.currTop 6= s.Top)∨
(∃p′ 6= p p′@〈26 . . . 29, 31 . . . 33, 36〉)). Therefore it is either that the
CAS fails and a does not modify Top (and therefore does not establish
the antecedent), or that the consequent holds in s′.

• We now consider transitions that may falsify the consequent while the
antecedent holds. Because the antecedent and the invariant holds in s,
∃p s.p@〈26 . . . 29, 31 . . . 33, 36〉 ∧ s.CT = LeftNeighbors(s.CB), and since
the antecedent holds in s′, s′.CT ≺s′ s′.CB . By Conjecture 55 if a falsifies
CT = LeftNeighbor(CB) then s′.CB 6= s.CB ∨ s′.CT 6= s.CT . Therefore
there are two types of transitions that might falsify the consequent: A modi-
fication of CT or CB that results in: s′.CT 6=
LeftNeighbors′(s

′.CB)), or an execution of a statement that results in
∀p ¬s′.p@〈26 . . . 29, 31 . . . 33, 36〉.

1. If a is a modification of CT or CB : Then s.CT = LeftNeighbors(s.CB)
∧ s′.CT ≺s′ s′.CB implies by Lemma 41 that a is not an execution of
Line 7, and by Lemma 45 that it is not an execution of Line 29 or 36.
Therefore it is left to consider executions of Line 25 and 17.

By Invariant 1, s.p@〈26 . . . 29, 31 . . . 33, 36〉 ⇒ ∀p′ ¬s.p′@25, and there-
fore a is not an execution of Line 25. If a is an execution of p’.17, then
by Corollary 47 s.CT ≺s s.CB ∧ s.p′.17 ⇒ s.p′.currTop 6= s.Top, and
therefore s′.CT = s.CT ∧ s′.CB = s.CB , a contradiction.

2. Otherwise, since a is not a modification of CT or CB , then the only
transitions that may falsify p@〈26 . . . 29, 31 . . . 33, 36〉 are executions
of p.31 or p.33.

– If a is an execution of p.31: Then a can falsify the consequent
only if s.CT ≺ s.CB ∧ s′.p@38.
By Invariant 6 s.Bottom = s.p.newBotV al. There are two cases
to be considered:
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(a) If s.p.currTop 6= s.Top, then by Invariant 51 s.CT ≺ s.CB ⇒
Cell(s.p.currTop) = s.CB = Cell(s.p.newBotV al), and there-
fore s′.p@32 and the consequent holds in s′.

(b) Otherwise, Cell(s.p.currTop) = s.CT . By Invariant 52:
Cell(s.p.currTop) 6= Cell(s.p.oldBotV al). By Invariant 44:
Cell(s.p.oldBotV al) = LeftNeighbors(Cell(s.p.newBotV al)) =
LeftNeighbors(s.CB), and therefore
s.CT 6= LeftNeighbors(s.CB), a contradiction.

– If a is an execution of p.33: Then s′.CB = s.CB and by Corol-
lary 43: s′.CT = s.CT . By Invariant 52 Cell(s.p.currTop) =
Cell(s.p.newBotV al). If s.p.currTop 6= s.Top then the CAS
fails and s′.p@36, so a does not falsify the consequent. Other-
wise, s.CT = Cell(s.p.currTop) = Cell(s.p.newBotV al) = s.CB .
Therefore s.CT = s.CB , which implies s′.CT = s′.CB , so the an-
tecedent does not hold in s′.

Conjecture 55. Let n = |Ordered| − 2, and Ordered = {N0, . . . , Nn+1}. Then:

1. ∀0≤i≤n Ni → next = Ni+1 ∧ Ni+1 → prev = Ni.

2. Exactly one of the following holds:

(a) n ≥ 0, N0 = NB , Nn = NT .

(b) n > 0, N1 = NB , Nn = NT .

(c) n = 0, N0 = NT , N1 = NB.

Proof. We use the following notations in the proof:

• WellLinked ≡ (0 ≤ i ≤ n) ⇒ (Ni → next = Ni+1 ∧ Ni+1 → prev = Ni).

• WellOrdered ≡ Order1 ∨ Order2 ∨ Order3, where:

– Order1 ≡ (n ≥ 0) ∧ (N0 = NB) ∧ (Nn = NT ).

– Order2 ≡ (n > 0) ∧ (N1 = NB) ∧ (Nn = NT ).

– Order3 ≡ (n = 0) ∧ (N0 = NT ) ∧ (N1 = NB).

Note that if the invariant holds, then n ≥ 0. Therefore, because |Ordered| =
n + 2, N0, N1, and Nn are all well defined. We use s.Ni, to denote node Ni

in s.Ordered, and s.n to denote the value of n in s.Ordered (that is, n =
|s.Ordered| − 2).

We need to show that: WellLinked ∧ WellOrdered holds. Note that by
Invariant 20 we have:

• s.Order1 ⇒ (¬s.Order2 ∧ ¬s.Order3).
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• s.Order2 ⇒ (¬s.Order1 ∧ ¬s.Order3).

• s.Order3 ⇒ (¬s.Order1 ∧ ¬s.Order2).

That is, Order1, Order2, and Order3 are mutually exclusive.

The Initial State: By examining the code of the deque constructor depicted
in Figure 8 on page 15, we see that right after the construction of the deque:

1. Ordered = {nodeA, nodeB}.

2. nodeA → next = nodeB.

3. nodeB → prev = nodeA.

4. NB = NT = nodeA.

Thus we have s.WellLinked ∧ s.Order1 holds (with n = 0), and therefore the
invariant holds.

The Inductive Step: Consider a transition s
a
−→ s′ in the algorithm, and sup-

pose the invariant holds in s.
We first consider transitions that might falsify WellLinked. There are two

types of such transitions:

• If a does not add a node to Ordered: Then since the only operations
Ordered supports are removal and addition of nodes at the ends of the
series, a might falsify WellLinked only if it modifies a next or prev field
of a node N ∈ s.Ordered. By Lemma 21 we have:

1. (N ∈ s.Ordered) ⇒ (s′.N → next = s.N → next).

2. (N ∈ s.Ordered ∧ s′.N → prev 6= s.N → prev) ⇒ (N = s.N0).

and by Invariant 20, a does not falsify WellLinked.

• Otherwise, if a adds a node to Ordered, then Lemma 18 implies that a is
an execution of p.7 by some process p. Line 7 adds p.newNode to Ordered

only if p.newNode 6= p.currNode, which by Invariant 40 implies that:
(p.newNode → next = p.currNode)∧(p.currNode → prev = p.newNode).
Finally, by Invariant 6: p.currNode = s.NB, and by Invariants 1 and 16,
s.NB = s.N0. Since a adds p.newNode to Ordered by performing an
AddLeft operation, then a does not falsify WellLinked.

Next, we consider transitions that might falsify WellOrdered. There are two
types of such transitions:
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• If a does not modify Top or Bottom: Then a might falsify WellOrdered
only if it removes or adds a node to Ordered (without modifying Top or
Bottom). By Lemma 41 an execution of Line 7 always modifies Bottom,
and by Invariant 50 an execution of Line 17 does not modify Top only if
the CAS fails, in which case it also does not modify Ordered. Therefore we
only need to consider the execution of p.34 or p.38 for some process p, which
removes the leftmost node from Ordered if and only if s.p.oldBotNode 6=
s.p.newBotNode.

By Invariant 6 we have: NB = p.newBotNode, and by Invariant 16 we
have: p.oldBotNode = s.N0. By Invariants 1 and 54 the deque is not in
a crossing state in s, and since the invariant holds in s, s.p.oldBotNode 6=
s.p.newBotNode implies that s.Order2 holds. Therefore after a removes
the leftmost node, s′.Order1 holds (note that s′.n = s.n−1), which implies
that a does not falsify WellOrdered.

• Otherwise, a might falsify WellOrdered only if it modifies NB or NT , that
is: s′.NB 6= s.NB ∨ s′.NT 6= s.NT . By Invariant 42 Line 33 does not modify
NT , and therefore we only need to consider executions of: p.7, p.17, p.25,
p.29 or p.36 for some process p.

– If a is an execution of p.7: Then s′.NT = s.NT , by Invariants 1 and 16
s.NB = s.N0, and since the invariant holds in s, by Invariant 20
s.Order1 holds.

∗ If p.newNode = p.currNode then (s′.NB = s.NB)∧(s′.Ordered =
s.Ordered), which implies that s′.Order1 holds.

∗ Otherwise s′.N0 = p.newNode = s′.NB , which also implies that
s′.Order1 holds.

Therefore a does not falsify WellOrdered.

– If a is an execution of p.25: Then s′.NT = s.NT , by Invariants 1
and 16 s.NB = s.N0, and since the invariant holds in s, by Invariant 20
s.Order1 holds. By Invariant 6 we have s.NB = p.oldBotNode, and
therefore (p.newBotNode = p.oldBotNode) ⇒ s′.NB = s.NB. Other-
wise by Invariant 44 p.newBotNode = p.oldBotNode → next, which
implies: s′.NB = p.newBotNode = p.oldBotNode → next = s.N0 →
next. Since s.WellLinked holds, s.N0 → next = s.N1 = s′.N1, which
implies that s′.Order2∨ s′.Order3 holds. Therefore a does not falsify
WellOrdered.

– If a is an execution of p.29 or p.36: Then s′.NT = s.NT , by Invariants 1
and 16 p.oldBotNode = s.N0, and since the invariant holds in s we
have s.NT = s.Ns.n. Since Ordered is not modified by a, s.Ns.n =
s′.Ns′.n which implies that s′.Order1 holds, and WellOrdered is not
falsified by a.
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– If a is an execution of p.17: Then since s.WellOrdered holds, we have
s.NT = s.Ns.n. Since s.WellLinked holds, by Invariant 50 we get
that s′.NT 6= s.NT ⇒ s′.NT = s.Ns.n−1, and therefore it is enough to
show that s′.NT 6= s.NT if and only if a removes the rightmost node
from Ordered (since the removal of the rightmost node from Ordered

results in: s′.n = s.n − 1, and therefore s.Ns.n−1 = s′.Ns′.n). The last
is implied immediately by Invariant 53, since the transition removes
the rightmost node from Ordered if and only if s.p.currTop = s.Top∧
s.p.nodeToFree 6= NULL. Therefore a does not falsify WellOrdered.

4.7 Section: Linearizability

In this section we show that our implementation is linearizable to a sequential
deque. We assume a sequentially consistent shared-memory multiprocessor sys-
tem.9 For brevity we will consider only complete execution histories:

Definition 56. A complete execution history is an execution in which any op-
eration invocation has a corresponding response (that is, the history does not
contain any partial execution of an operation).

Since we later show that our algorithm is wait-free, linearizability of all com-
plete histories implies linearizability of all histories as well.

The linearizability proof is structured as follows: In Section 4.7.1 we give the
sequential specification of a deque, to which our implementation is linearized. In
Section 4.7.2 we specify the linearization points, and in Section 4.7.3 we give the
proof itself.

4.7.1 The Deque Sequential Definition

The following is the sequential specification of the implemented deque:

1. Deque state: A deque is a sequence of values, called the deque elements.
We call the two ends of the sequence the left end and the right end of the
sequence.

2. Supported Operations: The deque supports the PushBottom, PopTop and
PopBottom operations.

3. Operations’ Sequential Specifications:
The following two operations may be invoked only by one process, which
we’ll refer to as the deque’s owner process:

9In practice, we have implemented our algorithm for machines providing only a weaker
memory model, which required insertion of some memory barrier instructions to the code.
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• PushBottom(v): This operation adds the value v to the left end of the
deque, and does not return a value.

• PopBottom: If the deque is not empty, then this operation removes
the leftmost element in the deque and returns it. Otherwise, it returns
EMPTY and does not modify the state of the deque.

The following operation may be invoked by any process:

• PopTop: This operation can return ABORT, given the rule stated by
Property 57; if the operation returns ABORT it does not modify the
deque state. Otherwise, if the deque is empty, the operation returns
EMPTY and does not modify the state of the deque, and if the deque is
not empty, the operation removes the rightmost value from the deque
and returns it.

Property 57. In any sequence of operations on the deque, for any PopTop op-
eration that has returned ABORT, there must be a corresponding Pop operation
(i.e., a PopTop or PopBottom operation), which has returned a deque element.
For any two different PopTop operations executed by the same process that return
ABORT, the corresponding successful Pop operations are different.

We have permitted the PopTop operation to return ABORT because in prac-
tical uses of work-stealing deques, it is sometimes preferable to give up and try
stealing from a different deque if there is contention. As we prove later, our algo-
rithm is wait-free. We also show that if the ABORT return value is not allowed
(that is, if the PopTop operation retries until it returns either EMPTY or the
rightmost element in the deque), then our algorithm is lock-free.

4.7.2 The Linearization Points

Before specifying the linearization points of our algorithm we must define the
Physical Queue Content (henceforth PQC): a subset of the ordered nodes’ cells
(Section 4.3, Definition 14), which as we later show, at any given state stores
exactly the deque elements.

Definition 58. The PQC is the sequence of cells that lie in the half-open interval
(CB · · ·CT ] according to the order ≺.

By the definition of the order ≺ (Definition 32), C ∈ PQC ⇒ Node(C) ∈
Ordered. By Corollary 15 Node(CB) = NB ∈ Ordered ∧ Node(CT ) = NT ∈
Ordered, and therefore (CB � CT ) ∨ (CT ≺ CB) holds. Also note that the PQC
is empty if and only if CT � CB. Specifically, the PQC is empty if the deque is
in a crossing state (Definition 37).

The following claim is needed for the definition of the linearization points:
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Claim 59. Suppose that an execution of the PopTop operation does not return
ABORT or EMPTY. Then the PQC was not empty right after the operation
executed Line 9.

Proof. Suppose that the PopTop operation is executed by process p. Let denote
the state right before and right after the execution of p.x as sx and s′x respec-
tively. Note that s10.p.currTop = s′8.Top, s10.p.currTopNode = s′8.NT , and
s10.p.currBottom = s′9.Bottom.

1. By examining the code, the PopTop operation does not return ABORT
or EMPTY if and only if it executes the CAS operation in Line 17 and
this CAS succeeds. Therefore s17.p.currTop = s17.Top, which implies by
Corollary 12 that for all states s between s′8 and s17, s.Top = s′8.Top, and
therefore s.CT = s′8.CT ∧ s.NT = s′8.NT .

2. Specifically s10.p.currTopNode = s′8.NT = s10.NT which implies by Corol-
lary 15 that s10.p.currTopNode ∈ s10.Ordered and it is not the rightmost
node there.

3. Therefore, since the IndicateEmpty call at Line 10 returns false, by Lemma 36:
Cell(s10.p.currBottom) 6= Cell(s10.p.currTop) ∧
Cell(s10.p.currTop) 6= LeftNeighbors10

(Cell(s10.p.currBottom)).

4. Note that s′8.Top = s′9.Top. Therefore we can substitute s10.p.currBottom
and s10.p.currTop with s′9.Bottom and s′9.Top respectively, and get:
s′9.CB 6= s′9.CT ∧ s′9.CB 6= RightNeighbors10

(s′9.CT ).

5. Next we show that RightNeighbors′
9
(s′9.CT ) = RightNeighbors10

(s′9.CT ).
By Corollary 15, NT is always in Ordered, and is never the rightmost node
there. Therefore:

(a) RightNeighbors(s
′
9.CT ) is defined for all states s between s′9 and s10

(since s′9.CT = s.CT in these states).

(b) s′9.NT and Node(RightNeighbors′
9
(s′9.CT )) are both in s′9.Ordered,

and are either the same node or adjacent nodes in s′9.Ordered. Also,
s′9.NT and Node(RightNeighbors(s

′
9.CT )) are both in s.Ordered for

all states s between s′9 and s10. Therefore, since any transition that
modifies Ordered either adds a node to one end or removes a node from
one end (but not both), s′9.NT and Node(RightNeighbors(s

′
9.CT ))

are both in s.Ordered, and are either the same node or adjacent
nodes in s.Ordered, for all states s between s′9 and s10. Therefore
RightNeighbors′

9
(s′9.CT ) = RightNeighbors10

(s′9.CT ).

6. Therefore:
s′9.CB 6= s′9.CT∧s′9.CB 6= RightNeighbors10

(s′9.CT ) = RightNeighbors′
9
(s′9.CT ),

and therefore by Conjecture 54 ¬(s′9.CT � s′9.CB), which implies that the
PQC is not empty in s′9.
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Definition 60. Linearization Points:

PushBottom The linearization point of this method is the update of Bottom at
Line 7.

PopBottom The linearization point of this method depends on its returned
value, as follows:

• EMPTY: The linearization point here is the read of Top at Line 26.

• A deque entry: The linearization point here is the update of Bottom
at Line 25.

PopTop The linearization point of this method depends on its return value, as
follows:

• EMPTY: The linearization point here is the read of Bottom pointer at
Line 9.

• ABORT: The linearization point here is the statement that first observed
the modification of Top. This is either the CAS operation at Line 17,
or the read of Top at Line 11.

• A deque entry: If the PQC was not empty right before the CAS state-
ment at Line 17, then the linearization point is that CAS statement.
Otherwise, it is the first statement whose execution modified the PQC
to be empty, in the interval after the execution of 9, and right before
the execution of the CAS operation at Line 17.10

Claim 61. The linearization points of the algorithm are well defined. That is,
for any PushBottom, PopTop, or PopBottom operation, the linearization point
statement is executed between the invocation and response of that operation.

Proof. By examination of the code, all the linearization points except the one
of a PopTop operation that returns a deque entry are well defined, since they
are statements that are always executed by the operation being linearized. In
the case of a PopTop operation, if the linearization point is the CAS statement,
then it is obvious. Otherwise, the PQC was empty right before the execution of
this successful CAS operation, and by Claim 59 the PQC was not empty right
after the PopTop operation executed Line 9. Therefore there must have been a
transition that modified the PQC to be empty in this interval, and this transition
corresponds to the linearization point of the PopTop operation.

10Note that the linearization point of the PopTop operation in this case might be the execution
of a statement by a process other then the one executing the linearized PopTop operation. The
existence of this point is justified in Claim 59.
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4.7.3 The Linearizability Proof

In this section we show that our implementation is linearizable to the sequential
deque specification given in Section 4.7.1. For this we need several lemmas,
including one that shows how the linearization points of the deque operations
modify the PQC, and one that shows that the PQC is not modified except at the
linearization point of some operation. We begin with the following claim:

Definition 62. For any Cell C, Data(C) is the value stored in that cell.

Claim 63. Consider a transition s
a
−→ s′. Then C ∈ s.PQC ⇒ s.Data(C) =

s′.Data(C).

Proof. If C ∈ s.PQC then Node(C) ∈ s.Ordered, and therefore by Conjecture 29
N ∈ s.Live. Therefore the content of a cell can be modified only by a statement
of a deque operation. The only statement that modifies the data in a cell is Line
2. By Invariant 6 C = s.CB , and therefore C /∈ s.PQC, a contradiction.

Lemma 64. Consider a transition s
a
−→ s′ where a is a statement execution cor-

responding to a linearization point of a deque operation. Then:

• Case 1: If a is the linearization point of a PushBottom(v) operation, then
it adds a cell containing v to the left end of the PQC.

• Case 2: If a is the linearization point of a PopBottom operation: let R be
the operation returned value:11

– If R is EMPTY, then the s.PQC = s′.PQC = ∅.

– If R is a deque entry, then R is stored in the leftmost cell of s.PQC,
and this cell does not belong to s′.PQC.

• Case 3: If a is the linearization point of a PopTop operation: let R be the
operation return value:

– If R is EMPTY, then the s.PQC = s′.PQC = ∅.

– If R is a deque entry, then R is stored in the rightmost cell of s.PQC,
and this cell does not belong to s′.PQC.

Proof. Let p be the process that executes the linearized deque operation, and p′

be the process executes a. Note that p = p′ unless maybe in the case where the
deque operation is a PopTop one (Case 3). The proof proceeds by considering
the type of the deque operation for which a is a linearization point.

11We can refer to the returned value of an operation since we’re dealing only with complete
histories.
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• Case 1 - PushBottom:

The value pushed by the PushBottom operation is written in a cell by Line
2, and by Invariant 1 no process p′′ 6= p executes Line 2 while p executes
the PushBottom operation. Let denote this cell by C. By Invariant 6
C = CB as long as p ∈ 〈2 . . . 7〉. Therefore right before the transition
s

a
−→ s′ (the execution of Line 7), C = s.CB which implies that C /∈ s.PQC,

and by Invariant 41 C = RightNeighbors′ (s
′.CB) which implies that C is

the leftmost cell in s′.PQC. Therefore the transition adds C to the left end
of the PQC.

• Case 2 - PopBottom:

If the PopBottom operation return value is a deque entry: then this value
was read from C = Cell(p.newBotV al) (Line 27), and a is the Bottom

update at Line 25. Since C = s′.CB then C /∈ s′.PQC, and since by
Invariant 44 C = RightNeighbor(s.CB), C ∈ s.PQC unless s.PQC = ∅.
If s.PQC = ∅ then the deque must be in a crossing state in s′, because
[CT � s.CB∧s′.CB = RightNeighbor(s.CB)] ⇒ CT ≺ s′.CB (note that CT

and Ordered are not modified by a). By Conjecture 54, the deque cannot
be in a crossing state when p returns from the PopBottom operation. By
Invariant 50, an update of Top cannot fix the crossing state. By Corollary 15
CT and CB are always in Ordered, and therefore ¬(CB ≺ CT ) ⇔ CB � CT ,
which implies by Lemma 33 that a modification of Ordered also cannot fix
the crossing state. Therefore the transition that fixes the crossing state
must be a modification of Bottom, and since by Invariant 1 no process
p′′ 6= p modifies Bottom while p is executing the PopBottom operation,
then p must modify Bottom by executing Line 29 or 36. Therefore the
PopBottom operations returns EMPTY, a contradiction.

If the return value is EMPTY: then a is the Top read operation at Line 26.
By examining the code, the operation returns EMPTY only if:

– Cell(p.newBotV al) = Cell(p.currTop), or

– Cell(p.oldBotV al) = Cell(p.currTop), which by Invariant 44 implies
that p.currTop is a left neighbor of p.newBotV al.

Clearly s′.CT = s.CT = s′.p.currTop and by Invariant 6 s′.p.newBotV al =
s.p.newBotV al = s.Bottom = s′.Bottom. Therefore s.PQC = s′.PQC = ∅.

• Case 3 - PopTop:

If the value returned by PopTop is a deque entry: then this entry was read
from C = Cell(p.currTop) at Line 16. If the PQC was not emptied before
the execution of the CAS statement at Line 17, then a is the execution of
this CAS. Also, since the CAS was successful, then p.currTop = s.Top, and
therefore:
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1. C is the rightmost cell in s.PQC.

2. By Corollary 12, p.currTop = Top while p ∈ 〈9 . . . 17〉. Therefore,
because the PQC was not emptied before the execution of p.17, C ∈
PQC while p ∈ 〈16 . . . 17〉, and therefore by Claim 63 C still stores
the return value in s.

3. By Invariant 50, C = s.CT = RightNeighbor(s′.CT ), and therefore
C /∈ s′.PQC.

Otherwise if the PQC was emptied before the execution of the CAS, then
a is the transition that emptied the PQC. Since the CAS is successful, by
Corollary 12 p.currTop = s.Top, which implies that C is the rightmost cell
in s.PQC. Right after a the PQC is empty, and therefore C /∈ s′.PQC.

If the return value is EMPTY: then a is the execution of Line 9. Because
the operation returns EMPTY, it must be the case that p executed Line
11, and that p.currTop = Top at this point. Therefore by Corollary 12,
p.currTop = Top while p ∈ 〈9 . . . 11〉. Specifically, s′.p.currTop = s′.Top =
s.Top∧s′.p.currBottom = s′.Bottom. Because Line 11 is executed, we know
that the IndicateEmpty macro at Line 10 returned true, which implies by
Lemma 36 that s.PQC = s′.PQC = ∅.

For the proof of the second lemma, we need the following claims:

Claim 65. Let s
a
−→ s′ be an execution of Line 29 or 36. Then s′.PQC is empty.

Proof. (s′.PQC = ∅) ⇔ (s′.CT � s′.CB), and by Lemma 45 (s′.CT � s′.CB) ⇔
(s.CT ≺ s.CB). Therefore s′.PQC is empty if and only if the deque is in a
crossing state in s. Let p be the process executing a.

1. If a is an execution of Line 29: Let denote by sX and s′X the pre-state and
post-state of the transition executing statement p.X, respectively. We first
show that the deque is in a crossing state in s′26:

(a) By Invariant 52, Cell(s29.p.currTop) = Cell(s29.p.oldBotV al).

(b) (s′26.p.oldBotV al = s29.p.oldBotV al) ∧
(s′26.p.newBotV al = s29.p.newBotV al), and by Invariant 6 and 1,
Cell(s29.p.newBotV al) = s29.CB = s′26.CB .

(c) By Invariant 44, Cell(s′26.p.oldBotV al) ≺s′
26

Cell(s′26.p.newBotV al).

(d) Therefore, Cell(s29.p.currTop) ≺s′
26

s′26.CB .

(e) Since s29.p.currTop = s′26.p.currTop = s′26.Top, s′26.CT ≺s′
26

s′26.CB ,
which implies that the deque is in crossing state in s′26.
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By Corollary 47 CT is not modified by Line 17 while the deque is in a
crossing state, which also implies that Ordered is not modified by any
statement executed by a concurrent PopTop operation while the deque is
in crossing state. By Invariant 1 no other transition modifies Top, Bottom,
or Ordered between states s′26 and s29, and therefore s29.CT ≺s29

s29.CB ,
which implies that the deque is in crossing state in s = s29.

2. If a is an execution of Line 36: By Invariant 52, Cell(s.p.currTop) =
Cell(s.p.newBotV al), and by Invariant 6, Cell(s.p.newBotV al) = s.CB ,
which implies: Cell(s.p.currTop) = s.CB. By examining the code, p@36
only if the CAS at Line 33 was executed, and failed, which implies that Top
was modified between its read at Line 26 and the execution of the CAS.
Since the only concurrent operations that may modify Top are PopTop
operations, by Invariant 50 s′′.CT ≺s′′ Cell(s.p.currTop) = s.CB, where
s′′ is the post-state of the first transition that modifies Top after its read
at Line 26. By Invariant 1, s.CB = s′′.CB , which implies that the deque
is in crossing state at s′′. By Corollary 47 CT is not modified by Line 17
while the deque is in a crossing state, and therefore Ordered is not modified
either by any concurrent PopTop operation between the states s′′ and s.
By Invariant 1 no other process modifies Ordered between these states and
therefore s.CT ≺s s.CB.

Claim 66. Consider a transition s
a
−→ s′. Then: s.PQC 6= s′.PQC ⇒ s.CT 6=

s′.CT ∨ s.CB 6= s′.CB.

Proof. We prove that the claim holds by showing that: s.CT = s′.CT ∧ s.CB =
s′.CB ⇒ s.PQC = s′.PQC.

Suppose that s.CT = s′.CT ∧ s.CB = s′.CB . Then by Invariant 55 s.NT =
s′.NT and s.NB = s′.NB are not removed from Ordered by a (Note that no single
statement both removes and adds a node to Ordered, and therefore it cannot be
the case that NB or NT are removed and then returned to Ordered). Therefore,
since the Ordered sequence only supports removal or addition of nodes to the
ends of the sequence, the subsequence of nodes lying between NB and NT is not
changed by a, which implies by the definitions of the PQC and the ≺ operator
that s.PQC = s′.PQC.

Claim 67. Suppose s
a
−→ s′ is an execution of p.25 that corresponds to a lin-

earization point of a PopTop operation executed by process p’. Then:

1. s′.p′@〈10, 12 . . . 17〉, and

2. p@〈26 . . . 28, 31 . . . 33〉 is not falsified while p′@〈10, 12 . . . 17〉 holds.
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Proof. By the definition of the linearization points, a could be a linearization
point of a PopTop operation only if it is executed while p′@〈10, 12 . . . 17〉, where
p’ is the process executing that PopTop operation. Therefore s′.p′@〈10, 12 . . . 17〉
holds. Also, it must be the case that this PopTop operation executes a successful
CAS at Line 17 (otherwise a would not be its linearization point), which implies
by Corollary 12 that Top is not mosified while p′@〈10, 12 . . . 17〉. Finally note
that in order for a to be the linearization point of the PopTop operation, a must
empty the PQC, which implies by Invariant 44 that s′.CB = s′.CT .
Right after the execution of p.25, p@26 holds. Suppose that p@〈26 . . . 28, 31 . . . 33〉
is falsified while p′@〈10, 12 . . . 17〉 holds:

• If p@〈26 . . . 28, 31 . . . 33〉 is falsified by an execution of p.28: Since a is
the linearization point of the PopTop operation and Top is not modified
while p′@〈10, 12 . . . 17〉, p.currTop = Top ∧ CT = CB right before p.28 is
executed. By Invariant 6, Bottom = p.newBotV al at that point, and by
Invariant 44 p.newBotV al 6= p.oldBotV al. Therefore Cell(p.currTop) 6=
Cell(p.oldBotV al) right before the execution of p.28, which implies that
p@〈26 . . . 28, 31 . . . 33〉 is not falsified by that transition.

• Otherwise, p@〈26 . . . 28, 31 . . . 33〉 must be falsified by an execution of p.33.
Because Top was not modified since the execution of p.25, then p.currTop =
Top right before p.33 is executed, which implies that the CAS at this line
succeeds. But we already showed that no transition modifies Top while
p′@〈10, 12 . . . 17〉 holds, a contradiction.

Definition 68. A successful Pop operation is either a PopTop or a PopBottom
operation that did not return EMPTY or ABORT.

Lemma 69. Consider a transition s
a
−→ s′ that modifies the PQC (that is, s.PQC 6=

s′.PQC), then a is the execution of a linearization point of either a PushBottom
operation, a PopBottom operation, or a successful PopTop operation.

Proof. We first show that a either adds or removes a cell from the PQC,12 but not
both: If s.PQC is empty, then it is clear that a can only add a cell to the PQC.
Otherwise, by Claim 66 a modification to the PQC is done only by a modification
of Bottom or Top. Since no transition writes them both, a must be a modification
of exactly one of them, which implies that a either adds or removes a cell from
the PQC.

There are two cases to be considered:

1. If a adds a cell to the PQC: Then a is not the CAS operation at Line 17,
since by Invariant 50 this statement can only remove cells from the PQC. By
Corollary 43, a cannot be an execution of Line 33 since then: s′.CT = s.CT .

12Note that if a adds more than one cell to the PQC, this statement still holds.
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Therefore a must be a modification of Bottom, and s′.CB ≺ s.CB must
hold, which implies by Invariant 44 that a is not an execution of Line 25.
Therefore a must be the execution of one of three statements: Line 29, Line
36 or Line 7. Finally, by Claim 65 an execution of Line 29 or 36 results
in an empty PQC (which contradicts the assumption that a adds a cell to
the PQC), which implies that a must be an execution of Line 7. By the
linearization points specification (Definition 60), this is the linearization
point of the PushBottom operation that executes a.

2. If a removes a cell from the PQC: Then a is either an execution of a
successful CAS by a PopTop operation at Line 17, or the modification of
Bottom by the PopBottom operation at Line 25, because these are the only
statements that modify Bottom or Top while satisfying: s′.CB � s.CB ∨
s′.CT ≺ s.CT (Lemmas 41, 45 and Invariants 50 and 44).

(a) If a is an execution of Line 17: Since s′.PQC 6= s.PQC, and s′.Top ≺
s.Top, then s.PQC is not empty. Therefore by the linearization points
specification (Definition 60), a is the linearization point of the PopTop
operation that executes it.

(b) If a is an execution of Line 25: This is the more tricky case, since
the Bottom update operation may be a linearization point of both a
successful PopTop operation and a successful PopBottom operation.
We must show then that it is a linearization point of exactly one of
them. Let p be the process that executes Line 25. There are three
cases to be considered:

• If s′.PQC is not empty, then by the linearization points specifica-
tion (Definition 60) it cannot be the linearization point of a Pop-
Top operation, and it is the linearization point of the PushBottom
operation that executes it as long as this PopBottom operation
does not return EMPTY.
Suppose that the PopBottom operation returns EMPTY. The
PushBottom operation returns EMPTY if and only if it executes
Line 29 or 36, and by Claim 65 and Lemma 45, the deque is in a
crossing state right before executing this line. Since Bottom is not
modified while p@〈25 . . . 29, 31 . . . 36〉 (Invariant 1), and s′.PQC
is not empty, then by Invariant 50 there must be at least two
executions of successful CAS in Line 17 after s′ but before the
execution of Line 29 or 36: one that empties the PQC, and the
other that results in the crossing state.
Let p′ be the process executing the successful CAS operation that
empties the PQC, and p′′ be the process executing the CAS oper-
ation that results in the crossing state (it might be that p′′ = p′).
Note that p′.17 is executed before p′′.17, and both are executed
after s′ but before p modifies Bottom at Line 29 or 36. Since both
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CAS are successful, then by Corollary 12, p′′.8 was executed after
p′.17. Since Bottom is not modified until the execution of p′′.17,
then Cell(p′′.currTop) = Cell(p′′.currBottom) when p′′.10 is exe-
cuted (the execution of the InidicateEmpty macro by p′′), which
implies by Lemma 36 that the macro returns true, and the CAS at
Line 17 is not executed: a contradiction. Therefore the PopBot-
tom operation does not return EMPTY, and a is the linearization
point of that operation.

• If s′.PQC is empty, and Top is not modified by a process p′ 6= p
while p@〈26 . . . 33〉: Since a empties the PQC, s′.CT = s′.CB .
Since Top is not modified, right before executing p.31 p.currTop =
Top and by Invariant 6 p.newBotV al = Bottom, which implies
that the test in Line 31 succeeds. Therefore the CAS in Line 33 is
executed, and since Top was not modified it is successful. There-
fore the PopBottom operation does not return EMPTY, which
implies that a is its linearization point. It is left to show then
that a is not the linearization point of a concurrent PopTop op-
eration.
Note that a might be a linearization point of a concurrent PopTop
operation executed by p′ 6= p only if s.p′@〈10 . . . 17〉, which implies
that p′.currTop 6= Top right after the successful CAS operation
at Line 33. Therefore p′ fails the CAS at Line 17, which implies
that a is not the linearization point of this PopTop operation.

• Otherwise, Let p′ 6= p be the process that is the first to modify
Top before the PopBottom operation terminates. Then it must
be an execution of p′.17 that modifies Top and since s′.PQC is
empty, then by Invariant 50 the deque is in a crossing state right
after p′.17 is executed. By Conjecture 54 the deque is not in a
crossing state if ¬p@〈26 . . . 29, 31 . . . 33, 36〉, and therefore p must
modify Bottom before it leaves this interval. This implies that
p.29 or p.36 are executed, and therefore the PopBottom operation
returns EMPTY. Therefore a is not a linearization point of the
PopBottom operation.
It is left to show that a is the linearization point of the PopTop
executed by p′. Since the PQC was empty right before the exe-
cution of p′.17, then the PopTop operation is linearized on some
execution of Line 25 that empties the PQC. By Claim 67 and In-
variant 1, this execution must be a, because if it is an execution of
Line 25 by another PopBottom operation, by Claim 67 that Pop-
Bottom operation could not have been terminated before p′.17 is
executed, which contradicts the assumption that p′.17 is executed
after s

a
−→ s′ takes place.
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The following lemma shows that the ABORT property holds:

Lemma 70. In any complete execution history, for any PopTop operation that
has returned ABORT, there is a corresponding Pop operation (that is, a PopTop
or PopBottom operation), which has returned a deque element. For any two
different PopTop operations executed by the same process that returned ABORT,
the corresponding successful Pop operations are different.

Proof. Let p be a process that executes a PopTop operation that returned ABORT.
By examining the code, the PopTop operation returns ABORT only if Top has
been modified by another process after p read it at Line 8. There are only two
possibilities: either it was modified by the CAS of a concurrent PopTop oper-
ation, or by the CAS of a concurrent PopBottom operation. In both case the
concurrent Pop operation returns a deque element.

For any subsequent PopTop operation by the same process that returns
ABORT, we know that Top underwent another modification, since the first mod-
ification took place before the invocation of the subsequent PopTop operation
(and specifically before it read Top at Line 8). Since no deque operation mod-
ifies Top more than once, it follows that different successful Pop operations are
responsible for these two modifications of Top.

The Linearizablity Theorem: Using Lemmas 64, 69, and 70, we now show
that our implementation is linearizable to the sequential deque specification given
in Section 4.7.1:

Theorem 71. Any complete execution history of our algorithm is linearizable to
the sequential deque specification given in Section 4.7.1.

Proof. Given an arbitrary complete execution history of the algorithm, we con-
struct a total order of the deque operations by ordering them in the order of
their linearization points. By Claim 61, each operation’s linearization point oc-
curs after it is invoked and before it returns, and therefore the total order defined
respects the partial order in the concurrent execution.

It is left to show that the sequence of operations in that total order respects
the sequential specification given in Section 4.7.1. We begin with some notation.
For each state s in the execution, we assign an abstract deque state, which is
achieved by starting with an empty abstract deque, and applying to it all of the
operations whose linearization points occurs before s in the order in which they
occur in the execution.

We say that the PQC sequence matches the abstract deque sequence in a
state s, if and only if the length of the abstract deque state and the length of
the PQC (denoted length(PQC)) are equal, and for all i ∈ [0..length(PQC)), the
data stored in the ith cell of the PQC sequence is the ith deque element in the
abstract deque state.

We now show that in any state s of the execution, the PQC matches the
abstract deque sequence in s:
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1. Both sequences are empty at the beginning of the execution.

2. By Lemma 69, any transition that modifies the PQC is the linearization
point of a successful PushBottom, PopBottom, or PopTop operation, and
therefore it also modifies the abstract deque state.

3. By Lemma 64, the linearization point of a PushBottom operation adds a cell
containing the pushed element to the left end of the PQC, the linearization
point of a successful PopBottom operation removes the cell containing the
popped element from the left end of the PQC, and the linearization point
of a successful PopTop operation removes the cell containing the popped
element from the right end of the PQC.

Therefore by induction on the length of the execution, and the abstract deque
operation specification given in Section 4.7.1, the PQC sequence matches the
abstract deque sequence in any state s of the execution.

By Lemma 70 the ABORT property holds. By Lemma 64 a PopBottom
operation returns the leftmost value in the PQC if it is not empty or EMPTY
otherwise, and if the PopTop operation does not return ABORT, then it re-
turns the rightmost value in the PQC if it is not empty, or EMPTY otherwise.
Therefore, since the PQC sequence matches the abstract deque sequence, the op-
erations return the correct values according to the sequential specification given
in Section 4.7.1, which implies that our implementation is linearizable to this
sequential specification.

4.8 The Progress Properties

Theorem 72. Our deque implementation is wait-free.

Proof. Our implementation of the deque does not contain any loops, and there-
fore each operation must eventually complete.

The reason our algorithm is wait-free is that we have defined the ABORT
return value as a legitimate one. However, in many cases we may want to keep
executing the PopTop operation until we gets either a deque element or the
EMPTY return value. The following theorem shows that our implementation is
lock-free even if the PopTop operation is executed until it returns such a value.

Definition 73. A legitimate value returned by a Pop operation is either a deque
element or EMPTY.

Theorem 74. Our deque implementation, where the PopTop operation retries
until it returns a legitimate value, is lock-free.
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Proof. The Abort property proven by Lemma 70, implies that every two different
PopTop operations by the same process that returned ABORT have two differ-
ent Pop operations that returned deque elements. Thus if a PopTop operation
infinitely retries and keep returning ABORT, there must be an infinite number
of Pop operations that returned a legitimate value. Therefore if a PopTop op-
eration fails to complete, there must be an infinite number of a successful Pop
operations.

Theorem 75. Our algorithm is a lock-free implementation of a linearizable
deque, as defined by the sequential specification in Section 4.7.1.

Proof. Theorem 71 states that our implementation is linearizable to the sequen-
tial specification given in Section 4.7.1. Theorem 74 showed that the implemen-
tation is lock-free.

5 Conclusions

We have shown how to create a dynamic memory version of the ABP work-
stealing algorithm, by implementing the work-stealing deque as a linked list of
short arrays. In a more recent work, Chase and Lev [19] present another dynamic
work-stealing algorithm, that uses array-based deque that can grow if overflowed.
It may be interesting to see how these techniques can be applied to other schemes
that improve on ABP-work-stealing, such as the locality-guided work-stealing of
Blelloch et. al. [4] or the steal-half algorithm of Hendler and Shavit [9].
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