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Abstract
Memory errors in C/C++ can allow an attacker to read sensitive data, corrupt the memory, or
crash the executing process. The renowned top 25 of most dangerous software errors as pub-
lished by the SANS Institute, as well as recent security disasters such as Heartbleed show how
important it is to tackle memory safety for C/C++. We present Sulong, an efficient interpreter
for LLVM-based languages that runs on the JVM. Sulong guarantees memory safety for C/C++
and other LLVM-based languages by using managed allocations and automatic memory manage-
ment. Through dynamic compilation, Sulong will achieve peak performance close to state of the
art compilers such as GCC or Clang, which do not produce memory-safe code. By efficiently
implementing memory safety, Sulong strives to be a real-world solution for mitigating software
security problems.
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1 Introduction

Software written in unmanaged languages such as C and C++ is omnipresent. In these
languages, invalid memory accesses, manual memory management errors, and undefined
behavior can crash the process, or silently corrupt the memory or computations. The
CWE/SANS Top 25 list [18] demonstrates that C/C++ security bugs are of high practical
relevance. Among the 25 most dangerous software errors, buffer overflow is on the third place,
directly after SQL and OS command injection. Memory errors are the most dangerous errors
in C/C++ since such errors can be exploited to read and overwrite arbitrary memory [30].
Due to its importance, there are countless approaches that try to solve memory errors in
C/C++. However, they are either not complete or not efficient enough to be used in real
world applications [24].

In this paper we present Sulong, an ecosystem that strives to solve these issues. By
executing LLVM IR, Sulong can execute all LLVM-based languages including C/C++. Sulong
provides spatial memory safety by keeping all data as managed Java objects instead of using
unmanaged memory. Thus, Sulong prevents spatial memory errors, which include out-of-
bounds accesses to allocated memory (e.g., buffer overflows), dereferencing null pointers,
and dereferencing “crafted pointers” such as obtained by casting integer values to addresses.
By using managed allocations, Sulong also provides temporal memory safety and prevents
the program from dereferencing memory which it already deallocated. If Sulong encounters
spatial or temporal memory errors, it displays an error message and exits the program.

Since efficiency is a big concern, Sulong uses dynamic compilation to compile frequently
executed LLVM IR functions to optimized machine code. In its final version, we expect
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Sulong to execute code with the same peak performance as code that was generated by
optimizing state of the art compilers, which produce unsafe code. By translating native
libraries to LLVM IR, Sulong will also be able to support precompiled libraries. Thus, Sulong
strives to be a real world solution for memory safety of C/C++ programs.

2 Problem Setting

According to an IEEE Spectrum ranking, the three most popular programming languages are
Java, C, and C++ [1]. In contrast to Java, C and C++ do not enforce type safety, are not
memory safe, and have many operations that can result in undefined behavior [26]. Due to
the high prevalence of C/C++ and the large body of legacy code written in these languages,
the unsafeness of these two languages is a threat to system security.

Memory errors are the most notorious type of errors that can occur in C/C++. The
CWE/SANS list of the most dangerous software errors [18] ranks stack overflows as one
of the most harmful errors. The lack of bounds checks, type checks, and manual memory
management allow attackers to exploit stack overflows (and other memory errors) by injecting
and executing arbitrary code or reading sensitive data [5]. Therefore, memory error exploits
are omnipresent in exploit packs [25].

We distinguish between temporal and spatial memory errors: Spatial memory errors occur
through out-of-bounds accesses, i.e., when a pointer is dereferenced that points outside of
allocated memory, or is null. Spatial memory errors can manifest themselves as stack-based
buffer overflows, heap-based buffer overflows, null pointer dereferences, and as format string
vulnerabilities. Temporal memory errors happen when a dangling pointer, i.e., a pointer
that points to memory that has already been freed, is again freed or dereferenced. Complete
memory safety is only guaranteed when no temporal and spatial memory errors can occur [24].

2.1 Problem Statement

For decades, both academia and industry have been trying to come up with countless static
and run-time countermeasures, as well as with hardware- and software-based approaches to
prevent memory errors. As for software-based run-time countermeasures, approaches can
roughly be classified into Address Space Layout Randomization (ASLR), canaries approaches,
data execution prevention, data space randomization, and bounds checkers. Literature already
extensively covers these approaches and provides an historical overview of memory errors
and defense mechanisms [25], an investigation of the weaknesses of current memory defense
mechanisms and a general model for memory attacks [24], and a survey of vulnerabilities
and run-time countermeasures [30]. Despite the efforts, memory safety is still an unsolved
issue in practice [25], since existing approaches have one or more weaknesses with respect to
the following properties:

Complete Memory Safety: The strength of a policy characterizes whether an approach
provides full or partial memory safety [24]. We believe that a policy that implements com-
plete memory safety is essential, since even near-to-complete memory safety approaches
will still result in hard-to-debug errors, and since attackers have always found new ways
of exploitation which had previously been deemed secure [25].
Precompiled Library Interoperability: Sometimes, source code of shared libraries is closed
source or the source code of a library is no longer available. Being still able to execute
such libraries by guaranteeing binary compatibility can be a requirement for a memory
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safety approach [24]. We believe that supporting such libraries is important, but executing
them should not compromise complete memory safety.
Run-time Performance: The performance overhead of a memory safety approach has
to be kept minimal, since otherwise the approach will not be adapted in practice. An
analysis showed that techniques that introduce overheads of more than roughly 10% do
not tend to gain wide adoption [24].

2.2 State of the Art
Existing memory approaches do not fulfill all of the above requirements, namely complete
memory safety, interoperability with precompiled libraries, and run-time performance. Most
approaches adopted in practice have low overheads and support precompiled libraries but
prevent only a subset of spatial memory errors [24]. For example, stack canaries [6, 5] and
a non-executable stack can prevent stack overflows and the execution of data on the stack.
There are also approaches for heap overflows, and approaches such as DEP/WˆX that restrict
executing heap data. Address Layout Space Randomization [19] makes it difficult to perform
return-to-libc attacks, as long as no relevant pointers are exposed.

The only way to enforce complete spatial memory safety is to keep track of pointer bounds.
Bounds checkers [30, 15, 24] implement such an approach, but have overheads of 67% [15]
and more. Literature discriminates approaches that store bounds information as separate
metadata or add them to pointers (fat-pointer approaches) or objects. Before accessing
an object, these approaches look up the bounds information and check that an access is
within bounds. These approaches only provide limited interoperability with unprotected
precompiled libraries, since those libraries do not provide or maintain bounds information.

Complete memory safety approaches have overheads that vastly exceed the 10% required
for wide adoption. A complete memory safety approach not only needs to keep track of
pointers, but also needs to maintain allocation information. For example, SoftBound with
CETS [15, 16] is a recent complete memory safety approach that combines bounds checking
with checks if an object is still allocated. It has an average overhead of 116% [16].

3 Approach

In this paper we present Sulong, an ecosystem (see Figure 1) that executes LLVM-based
languages on the JVM. Sulong provides complete memory safety, supports precompiled
libraries, and will have a peak performance that is competitive with state of the art compilers.
Sulong executes LLVM IR, which is part of the LLVM static compilation framework [14] and
is produced by LLVM front ends (e.g. Clang for C/C++) that compile source languages
to this IR. Executing LLVM IR allows Sulong to support many different languages such
as C/C++, Fortran, and Objective-C. Instead of statically compiling the LLVM IR to
machine code, Sulong interprets it using a Truffle [29] AST interpreter. To build executable
ASTs, Sulong’s parser front end parses LLVM IR files and instantiates the AST node classes
that implement the LLVM IR operations. Sulong reaches excellent peak performance by
dynamically compiling these ASTs to machine code.

3.1 Complete Memory Safety
To provide complete memory safety in Sulong, we want to use managed Java memory
allocations instead of unmanaged native allocations. Thus, we must implement all memory
allocation mechanisms (stack and heap) by allocating Java objects.
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For stack allocations, LLVM IR has a special instruction alloca. We simply implement
the execution of this instruction by instantiating a Java object of the specified type. For
heap allocations, LLVM IR does not provide an instruction. Instead, LLVM IR programs use
external calls to allocation functions (e.g. malloc in C) implemented in a standard library.
Usually, a standard library is dynamically linked to the executable. For Sulong, we compile
the given standard library to LLVM IR and then link it with the program. Every function of
a standard library can only call other standard library functions or use system calls. Since
a standard library eventually has to use known system calls for memory allocations (such
as brk or mmap of the Linux Kernel API) we substitute the calls to such kernel memory
allocation functions with methods that allocate managed Java objects. Using this approach,
we can provide memory safety for both the application and the standard library in any
LLVM-based language. For memory safety on a finer granularity we additionally plan to
substitute some allocation functions (e.g., malloc) with Java equivalents.

To guarantee spatial and temporal safety with Java objects we base our approach on
the work of ManagedC [13]. For every stack and heap allocation Sulong returns an instance
of class ManagedAllocation with different subclasses for primitives, functions, arrays, and
other objects (see Figure 2). Every ManagedAllocation subclass contains a content field
with a reference to the actual data, e.g., a Java integer array for a LLVM I32 array. The
different subclasses have additional fields to provide information for the access, e.g., arrays
and structures have an additional layout table as explained below. When a programmer wants
to reclaim memory, e.g., with a free call of the C standard library that would eventually
invoke a system call, we instead set the content field to null. The Java garbage collector can
then collect the object previously referenced by the content field. Even if the programmer
forgets to deallocate an object, the garbage collector eventually collects it if there are no
references to it. If, however, the program tries to free a ManagedAllocation twice, or
dereference a freed object, Sulong recognizes null in the content field and reports an error.
Refusing execution and exiting the program after such an error guarantees temporal memory
safety.

To support pointers and pointer arithmetics, Sulong implements managed pointers via a
ManagedAddress class. A ManagedAddress contains a reference to a ManagedAllocation,
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as well as an offset. The offset is relative to the referenced object, i.e., it can specify the
offset inside a compound object (array, struct, or vector). Pointer arithmetics use this
ManagedAddress to perform pointer calculations. For example, a pointer increment will
create a new ManagedAddress by adding the size of the referenced data type to the offset
of the given managed pointer. When dereferencing a pointer, Sulong uses the reference
to the ManagedAllocation and the given offset to dereference the object. For compound
objects Sulong needs to map the offset to an object, e.g, for an I32 array it maps the offset
8 (twice the size of an int) to an index 2 of a Java integer array. ManagedAllocations
that represent compound objects thus provide layout information to map an offset to a
member (and a type for structs) of the content field. If an access is out-of-bounds, the
JVM automatically prevents the invalid access and thus guarantees spatial memory safety.
Trivially, this approach can also prevent null pointer references which have a null value in
the ManagedAddress field.

3.2 Eliminating Overheads by Dynamic Compilation

Our approach has potential performance overheads compared to the execution of unsafe code
generated by static compilation, since we use managed allocations that require additional
checks for accesses. For example, for an access to an array element in an LLVM IR program,
the compiler has to insert guards to ensure that the ManagedAllocation and its content
field are not null, that the ManagedAllocation type is of the expected subclass, and that
the access is in-bounds. If such a guard fails the compiled code is discarded and execution
is continued in the interpreter. While bounds checks alone proved to be prohibitively
expensive in static compilation [25], dynamic compilers can optimize or even eliminate object
allocations as well as type checks and bounds checks based on run-time feedback. Our
dynamic compiler Graal benefits from profiling information collected by the underlying
JVM which includes branch probabilities, type profiles, exception probabilities, and method
invocation counters [22].

We are confident that managed allocations do not impede peak performance because
previous work on Truffle/C and ManagedC [11, 13] demonstrated that using Java allocations
instead of native memory when executing C code on Truffle does not impede peak performance
on average. Using Java allocations is even faster in some cases, since the dynamic compiler
can make better assumptions about aliasing than when using unmanaged native memory.

For Sulong, Graal can minimize the overhead of managed memory, since escape analysis
in combination with scalar replacement [23] can often eliminate allocations and instead use
local variables or allocate objects on the stack. For heap-allocated objects, typed-checked
inlining [22] can speculatively inline calls by inserting a guard before the call site, which
can reduce the overhead when calling methods of the ManagedAllocation subclasses. Array
bounds check elimination [28, 27] can identify situations where bounds checks are redundant
and can fully remove bounds checks that it can prove to never fail. If it cannot prove full
redundancy, the optimization can often still move checks out of loops where they are likely
to be executed less often than inside the loop. Graal can also apply code motion [3, 8] to
move other loop-invariant code out of a loop. Finally, conditional elimination [22] can remove
conditional expressions where conditions can be proven to be true or false, which can remove
or simplify type checks within an if-statement that checks for the same type.
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3.3 Support of Precompiled Libraries
As initially stated, lacking interoperability with precompiled libraries can prevent the adoption
of a memory safety approach. Sulong provides complete memory safety as long as the complete
program is available as LLVM IR. Thus, we also translate precompiled libraries to LLVM IR.
We explained how we support the standard libraries by compiling them to LLVM IR and
substituting the system calls for memory allocations with Java equivalents.

For other system calls (e.g., file descriptor operations), we can use the Graal native
function interface [12] which allows us to directly invoke native functions from Java. Using
the Graal Native Function Interface (Graal NFI) is generally unsafe, since invalid memory
accesses could go unnoticed in native functions. However, we decided to trust system calls
since they are implemented as part of the OS, and since the system call interface has been
designed to be robust against usage errors.

For precompiled libraries where the source code is not available, using the Graal NFI
would break complete memory safety since a precompiled library could contain an exploitable
memory error, and since we cannot assume any bounds information for pointers passed to or
returned by the library. Therefore, we want to follow a binary translation approach [21] to
support precompiled libraries. A binary translation approach translates a source instruction
set to a target instruction set which is LLVM IR in our case. Several tools exist that translate
code of a source instruction set to LLVM IR including QEMU [2], MC-Semantics for X86 [7],
and LLBT for ARM [20]. Projects such as Apple’s Rosetta which translated PowerPC
applications to Intel X86 binaries demonstrated that such an approach is feasible in practice.
By translating the machine code of the precompiled library to LLVM IR, we can execute
it and still provide memory safety for it. We will evaluate if such an approach can be used
to convert large libraries to LLVM IR, for which we could again provide complete memory
safety.

4 Evaluation Strategy

We plan to evaluate Sulong with respect to safety and performance and want to show that
Sulong is a sound and efficient approach for getting rid of memory errors.

Our first hypothesis is that our approach is memory safe and detects memory errors during
run-time. For an empirical evaluation we will use NIST’s Juliet test suite for C/C++ which
contains 61,387 synthetic test cases with examples for 118 Common Weakness Enumeration
categories (CWEs) [9]. Juliet contains test cases for memory bug CWEs such as buffer
overflows and underflows, uses after free, invalid frees and double frees. We expect to detect
all memory errors that are exhibited during run-time. Apart from synthetic test cases we also
want to evaluate memory safety by testing our approach on large C or C++ projects. Using
the NIST National Vulnerability Database [17] we will identify programs with exploitable
memory bugs, and will then execute these programs with an attack vector using Sulong. By
demonstrating that Sulong can detect real world security bugs we will show that Sulong is a
sound approach to safely execute real world programs.

Our second hypothesis is that our memory safety approach does not incur significant
overheads and that is competitive with optimizing static compilers. To argue that the
memory safety does not incur substantial overheads, we will provide a Sulong version,
subsequently referred to as SulongUNSAF E , that uses the same memory model as native
applications. SulongUNSAF E will implement the native memory model by using the Java
Unsafe API through which Sulong allocates, deallocates, and accesses raw memory instead
of managed memory. We will then show that Sulong executes programs with the same
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peak performance as SulongUNSAF E and thus demonstrate, that there is no abstraction
overhead when using Java memory allocations. To argue that Sulong and SulongUNSAF E

are competitive with the execution speed of code compiled by state of the art optimizing
compilers, we will compare them with the performance of optimized code generated by
Clang and GCC. By reaching a comparable performance we will show that Sulong is efficient
enough to be used as a safer replacement for static compilers. In order to evaluate the
performance of Sulong, we want to evaluate typical C/C++ benchmarks. The Computer
Language Benchmark Game [10] provides small benchmark programs that typically consist
of up to a few hundred lines of code. Additionally, we want to evaluate Sulong’s performance
on the SPEC benchmarks [4]. The SPEC benchmarks are suitable for evaluating memory
safety approaches, since they are mainly CPU bound and suitable to measure the overhead
of memory accesses [24].

5 Conclusion

This paper presented the design of Sulong, a memory safe execution environment for C, C++,
and other LLVM-based languages which we currently develop. Sulong strives to provide
complete memory safety, support precompiled libraries, and reach the same peak performance
as code that was generated by state of the art static compilers which produce unsafe code.
Sulong guarantees temporal and spatial memory safety by using managed Java allocations
instead of unmanaged native allocations. By using a binary translation approach, Sulong
translates precompiled libraries to LLVM IR which it can safely execute then. Sulong uses a
dynamic compilation approach, through which it minimizes the overhead of bounds checks
and type checks. We want to proof the effectiveness of our approach by evaluating the peak
performance for benchmarks such as SPEC. We also want to demonstrate Sulong’s security
claim by applying it to the NIST Juliet suite and to case studies on real world programs.
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