

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Model Checking Cache Coherence in System-
Level Code

Nicholas Allen and Yang Zhao
Oracle Labs Brisbane
June 2016

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Program Agenda

Cache Coherence

Model Checking Approach

C to Promela Translation

Experimental Result

Conclusion and Next Steps

1

2

3

4

5

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Cache Coherence Issue

• A shared memory multiprocessor system with a separate cache for each
processor.

• Multiple copies for the same data in both main memory and caches.

• Coherence defines the proper access behaviors to the same memory
location.

Cache

Cache

Main
Memory

Client

Client

...... Coherency

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Cache Coherence Issue

• No cache coherence guarantee in hardware level.

• Must be dealt with explicitly in software by programmers.

–Writing back data from the cache into the memory if the cacheline is “dirty”.

flush(void* addr, size_t size)

– Invalidating a cacheline in a cache such that the next load has to fetch data from
memory.

Invalidate(void* addr, size_t size)

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Cache Coherence Issue

a = *p;

x = *p;

*p = x + 1;

invalidate(p);

z = *p;

y = *p;

flush(p);

Core 1 Core 2

Sync

Sync

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Cache Coherence Issue
DRAM Cache 1 Cache 2 Core 1 Core 2

2… …

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Cache Coherence Issue

a = *p;

DRAM Cache 1 Cache 2 Core 1 Core 2

2… …

2… … 2

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Cache Coherence Issue

a = *p;

x = *p;

DRAM Cache 1 Cache 2 Core 1 Core 2

Sync

2… …

2… … 2

2… … 22

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Cache Coherence Issue

a = *p;

x = *p;

*p = x + 1;

DRAM Cache 1 Cache 2 Core 1 Core 2

Sync

2… …

2… … 2

2… … 22

2… … 23

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Cache Coherence Issue

a = *p;

x = *p;

*p = x + 1;

flush(p);

DRAM Cache 1 Cache 2 Core 1 Core 2

Sync

2… …

2… … 2

2… … 22

2… … 23

3… … 23

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Cache Coherence Issue

a = *p;

x = *p;

*p = x + 1;

invalidate(p);

flush(p);

DRAM Cache 1 Cache 2 Core 1 Core 2

Sync

Sync

2… …

2… … 2

2… … 22

2… … 23

3… …

3… … 2

3

3

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Cache Coherence Issue

a = *p;

x = *p;

*p = x + 1;

invalidate(p);

z = *p;

flush(p);

DRAM Cache 1 Cache 2 Core 1 Core 2

Sync

Sync

2… …

2… … 2

2… … 22

2… … 23

3… …

3… … 3

3… … 2

3

3

3

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Cache Coherence Issue

2… …

2… … 2 a = *p;

2… … 2 x = *p;2

2… … 2 *p = x + 1;3

3… … invalidate(p);

3… … z = *p;3

3… … y = *p;3 3

3… … 2 flush(p);

y = z

3

3

3

DRAM Cache 1 Cache 2 Core 1 Core 2

Sync

Sync

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Cache Coherence Issue

a = *p;

x = *p;

*p = x + 1;

invalidate(p);

z = *p;

y = *p;

flush(p);

Core 1 Core 2

Sync

Sync

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Cache Coherence Issue

a = *p;

x = *p;

*p = x + 1;

DRAM Cache 1 Cache 2 Core 1 Core 2

Sync

2… …

2… … 2

2… … 22

2… … 23

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Cache Coherence Issue

a = *p;

x = *p;

*p = x + 1;

invalidate(p);

DRAM Cache 1 Cache 2 Core 1 Core 2

Sync

Sync

2… …

2… … 2

2… … 22

2… … 23

2… … 3

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Cache Coherence Issue

a = *p;

x = *p;

*p = x + 1;

invalidate(p);

z = *p;

DRAM Cache 1 Cache 2 Core 1 Core 2

Sync

Sync

2… …

2… … 2

2… … 22

2… … 23

2… … 3

2… … 3 2

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Cache Coherence Issue

2… …

2… … 2 a = *p;

2… … 2 x = *p;2

2… … 2 *p = x + 1;3

2… … invalidate(p);3

2… … z = *p;3 2

2… … y = *p;3 2

y != z

DRAM Cache 1 Cache 2 Core 1 Core 2

Sync

Sync

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Cache Coherence Issue

• Hardware

– 32 Cores

– 8 GB DRAM

• Software
– ~50,000 lines of C code

• Approach

– Investigate software model checking to verify cache coherence

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Model Checking

• A formal technique which automatically verifies the desired behavioral
properties p of a given system , on the basis of a user-defined model M and
initial state s.

M, s |= p

• Verification procedure is an exhaustive search of the state space of the
design.

– No proofs

– Counterexamples

– State-space explosion

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Model Checking Tools

• Initial investigation suggests SPIN is the best choice.

Model
Language

Properties
Language

Concurrency
Support

Scalability

SPIN
Promela
(C-like)

LTL
User assertions

Yes
Multi-core, State compression,

Partial order reduction

CBMC / LLBMC C/C++
Built-in options
User assertions

Partial
SAT-solver/ SMT-solver

Bounded checking

NuSMV / NuSMV2 SMV LTL and CTL Yes SAT-solver

BLAST /
CPAChecker

C
Program

instrumentation
No

Counterexample-driven,
Refinement

CADP / FDR2 LOTOS / CSP
Automata /

User assertions
Yes Compressing states

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Cache Coherence Model in Promela

• Model the main memory

– Accurate

– Flat memory: an array of bytes

• Each C language pointer in Promela is an integer, which is used to index the DRAM array.

• Model the cache
– For each particular memory location, it has 4 possible states (U/I/S/M) at all N cores.

byte DRAM[MAX_ELEMENT];

typedef CACHE {

State state[N];

}

CACHE cache[MAX_ELEMENT];

U: Unknown

I: Invalid

S: Shared

M: Modified

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Cache Coherence Model in Promela

• State Transition Diagram

–Operations: LOAD, STORE, MALLOC, FREE, FLUSH and INVALIDATE

Invalid Modified

SharedUnknown

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Cache Coherence Model in Promela

• State Transition Diagram

–Operations: LOAD, STORE, MALLOC, FREE, FLUSH and INVALIDATE

Invalid Modified

SharedUnknown

M
A

LLO
C

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Cache Coherence Model in Promela

• State Transition Diagram

–Operations: LOAD, STORE, MALLOC, FREE, FLUSH and INVALIDATE

Invalid Modified

SharedUnknown

M
A

LLO
C

STORE?

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Cache Coherence Model in Promela

• State Transition Diagram

–Operations: LOAD, STORE, MALLOC, FREE, FLUSH and INVALIDATE

Invalid Modified

SharedUnknown

M
A

LLO
C

STORE?
STO

R
E?

LOAD / STORE

LOAD?

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Cache Coherence Model in Promela

• State Transition Diagram

–Operations: LOAD, STORE, MALLOC, FREE, FLUSH and INVALIDATE

Invalid Modified

SharedUnknown

M
A

LLO
C

STORE?
STO

R
E?

LOAD / STORE

LOAD?

FL
U

SH

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Cache Coherence Model in Promela

• State Transition Diagram

–Operations: LOAD, STORE, MALLOC, FREE, FLUSH and INVALIDATE

Invalid Modified

SharedUnknown

M
A

LLO
C

STORE?
STO

R
E?

LOAD / STORE

LOAD?

FL
U

SH

FR
EE

FREE

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Cache Coherence Model in Promela

• State Transition Diagram

–Operations: LOAD, STORE, MALLOC, FREE, FLUSH and INVALIDATE

Invalid ModifiedSTORE?

LOAD / STORE

Local operations

Shared

LOAD?

FL
U

SH

STO
R

E?

Local operations with CC-related assertions

Unknown

M
A

LLO
C

LOAD?

FR
EE

FREE

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Cache Coherence Model in Promela

2… …

DRAM Cache 1 Cache 2 Core 1 Core 2

2… … 2 a = *p;

2… … 2 x = *p;2

2… … 2 *p = x + 1;3

2… … invalidate(p);3

2… … z = *p;3 2

2… … y = *p;3 2

LOAD(2, p_addr, a);

LOAD(1, p_addr, x);

STORE(1, p_addr, x+1);

INVALIDATE(2, p_addr);

LOAD(2, p_addr, z);

SI

II

SS

SM

IM

Assertion fails, since
there exists a Modified

state at Core 1.U: Undefined I: Invalid
S: Shared M: Modified

Sync

Sync

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Automated Translation of C code to Model

• Translation of program from LLVM IR to Promela

• Generates Promela model with equivalent semantics to original program

–With instrumentation added for each memory operation to check cache coherence

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Automated Translation of C code to Model

• Optimisations

– Group consecutive non-memory operations into atomic blocks
• Avoids exploration of different interleavings of operations that cannot affect each other

• 10x speedup in verification

– Use SPIN’s bounded context switch mode
• “Relatively low bounds on the number of context switches suffice for a model checker to visit all the

reachable states of a model at least once.” (Musuvathi, PLDI2007)

• Only explore execution paths with the number of preemptions less than a specified bound

• 8x speedup in verification with a bound of 2

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Results - Scalability

• Larger synthetic example:
concurrent quicksort

– ~200 lines of code

• Tested performance of model
checking with different
configurations

– Number of concurrent cores

– Number of elements to be sorted

• Largest test: 256 elements, 3 cores

– Verification took ~5 hours

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Results - Scalability

• Translated model for a C code base for about 50,000 LoC

– ~6,000,000 lines of Promela (~1,150,000 with no function inlining)

• SPIN cannot process a model this large

– Compiling the model did not terminate after 90 hours

• Optimisations implemented in SPIN
– Compiling the model completes in 4 hours

– Verifier code generated is 100,000,000 lines of C code

– Compiling with gcc ran out of memory (64G)

• Current approach using SPIN does not scale for our project.

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Further Investigation into Other Model Checkers

• More model checkers have been evaluated

– Explicit State model checkers: Murphi/PReach, DIVINE

– Symbolic model checkers: CBMC, LLBMC, ESBMC, SAL, Mocha, Alloy, SATABS, CSeq

– Hybrid: LTSmin

• Initial experimental result

–Many of them are designed for state transition systems, and only work well for
algorithm verification.

– Some of them use inlining to handle method calls and then exclude recursive calls.

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Further Investigation into Other Model Checkers

Model
Checker

Concurrency Recursion Quicksort
8 elements, 1 core

Quicksort
32 elements, 1 core

Quicksort
8 elements, 2 cores

SPIN Yes Yes 38 s 42 s 112 s

LLBMC No Yes (bounded) 40 s 1500 s N/A

CSeq Yes No N/A N/A N/A

LTSMin Yes Yes > 4 h > 4 h > 4 h

SATABS Partial (doesn’t
support shared
dynamic memory)

No (ignores
recursion)

> 4 h > 4 h N/A

CBMC Yes Yes (bounded) 48 s > 2 h > 2 h

• SPIN still appears to be the best choice

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Conclusion

• Current approach of full software model checking for the verification of
cache coherence will not scale for our 50k LoC codebase.

– Accurate model of program memory and execution produces large models and causes
state explosion

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

Next Steps

• Reduce model size and complexity via abstraction of the program

– No longer verification (may have false positives / negatives)

– Use abstracted memory model (e.g. based on points-to analysis)

– Use slicing to separate the program into multiple smaller parts involving a subset of
cores and verify independently
• May be applied to either accurate or abstracted memory models

–Manually abstract some auxiliary functions

• Reduce the number of interleavings explored

– Group successive operations that only have local effects as one atomic operation
• Use static analysis to determine which memory accesses do not access shared memory

– Partial Order Reduction

Copyright © 2016, Oracle and/or its affiliates. All rights reserved. |

