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Abstract
Like many past extensions to user programming models,
transactions can be added to the programming language
or implemented in a library using existing language fea-
tures. We describe a library-based transactional memory
API for C++. Designed to address the limitations of an
earlier API with similar functionality, the new interface
leverages macros, exceptions, multiple inheritance, generics
(templates), and overloading of operators (including pointer
dereference) in an attempt to minimize syntactic clutter, ad-
mit a wide variety of back-end implementations, avoid ar-
bitrary restrictions on otherwise valid language constructs,
enable privatization, catch as many programmer errors as
possible, and provide semantics that “seem natural” to C++
programmers.

Having used our API to construct several small and one
large application, we conclude that while the interface is a
significant improvement on earlier efforts, and makes it prac-
tical for systems researchers to build nontrivial applications,
it fails to realize the programming simplicity that was sup-
posed to be the motivation for transactions in the first place.

Several groups have proposed compiler support as a way
to improve the performance of transactions. We conjecture
that compiler—and language—support will be even more
important as a way to improve the programming model.

1. Introduction
Transactional Memory (TM) [17] offers an attractive alter-
native to locks in highly concurrent programs: the program-
mer indicates that certain code regions ought to run as iso-
lated, atomic units, and the underlying system attempts to
run those regions in parallel whenever possible. Implemen-
tations are typically speculative: transactions are pursued op-
timistically in parallel, but allowed to commit only in the
absence of conflicts with other transactions.

A hardware TM system can check for conflicts on nat-
urally occurring load and store instructions in a program’s
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instruction stream. Software or hybrid TM systems, how-
ever, require some sort of “hook” at which to perform their
checks. These hooks may be provided by the compiler or,
with an appropriate API, by an STM (software TM) library.
Both approaches are common in prior work. Compiler-based
systems [1,11–13,22,30] typically extend modern managed
languages, generally provide a clean programming model,
and make use of static analysis to perform important opti-
mizations. Library-based systems [5, 7–9, 14, 15, 20, 21, 23,
27] are substantially more portable, and might, at least in
principle, be easier to deploy as an incremental extension to
large existing systems.

Most of our own prior work in TM has adopted the
library-based approach, initially using a Java API [20] based
on that of DSTM [14], and later a similar API for C++ [21].
Unfortunately, as we discuss in Sections 2.2 and 3.4, this
API turns out to be both cumbersome and prone to pro-
grammer error. Motivated by experience with small-scale
microbenchmarks in DSTM, Herlihy chose to leverage run-
time code generation in C# to provide a simpler program-
ming model in his SXM system [9, 15]. Subsequently, he
employed byte code engineering to similar effect in Sun’s
Java-based DSTM2 [16].

Drawing inspiration from SXM and DSTM2, but using
different techniques, we have developed a transactional API
for C++ (referred to in this paper as RSTM2) that leverages
macros, multiple inheritance, generics (templates), and oper-
ator overloading (including pointer dereferences) to achieve
a similar reduction in syntactic clutter. As in the C# and Java
systems, we require the use of accessor functions to read and
write fields of transactional objects. Unlike these systems,
we invoke accessor functions through smart pointers [2] and
use initialization of the pointers as an extra bookkeeping
“hook”, allowing us to amortize overhead across multiple
accesses to the same object.

The RSTM2 API admits a wide variety of back-end im-
plementations. We currently use it with the original RSTM
back end [21], a C++ version of ASTM [20], a block-
ing, zero-indirection system based on redo logs [28] (sim-
ilar to the TL2 system of Dice et al. [5]), a dummy back
end that implements coarse-grain locks, and several hard-

1 TRANSACT 2007



ware/software hybrids [26, 28]. The API enables the com-
piler and runtime to catch programmer errors that would be
missed with the earlier interface. It also supports explicit
privatization [29], allowing a thread to elide bookkeeping
overheads when program logic guarantees that a given ob-
ject will not be accessed by other threads concurrently.

In Section 2 we briefly describe the behavior of a trans-
action at an abstract level. We also describe our original,
DSTM-like API. In Section 3 we present a more detailed
description of the new API, and show how it addresses lim-
itations of the original. We have used this API to build
a half-dozen microbenchmarks and one nontrivial applica-
tion. We describe the latter—an implementation of Delaunay
triangulation—in Section 4. Among other things, this appli-
cation makes extensive use of privatization based on geo-
metric partitioning of the input data set.

Our experience with the mesh application confirms that
RSTM2 suffices (where its predecessor did not) for large-
scale experimentation. Unfortunately, we have also discov-
ered several significant limitations and pitfalls in the API,
each of which could be addressed, in whole or in part, by
language and compiler support. Our conclusions are comple-
mentary to, though mostly orthogonal from, Boehm’s find-
ings with regard to library-level threads [3]. We conjecture
that experience similar to ours would emerge from large-
scale use of any library-based TM system, including those
for languages with built-in threads.

Our conclusion, to which we return in Section 5, is that
software transactional memory will not succeed at making
synchronization easy unless it becomes an integral part of
programming languages and compilers. While this conclu-
sion may not be surprising, it was nonetheless not obvious
to us until we tried to pursue the library-based approach as
far as possible. We hope our experience will encourage other
groups to experiment with language features, and in particu-
lar to consider the relationships among transactional, priva-
tized, and nonshared data and references.

2. Library-Based Software Transactional
Memory

A transaction is a program fragment that appears to execute
atomically and in isolation from concurrent transactions. In
typical implementations a transaction speculatively accesses
a set of shared memory locations and then attempts to com-
mit its speculative state, succeeding only if no conflict was
detected with other committed transactions.

STM runtimes rely on the notion of ownership of loca-
tions to enforce atomicity and isolation. Object-based STMs
manage ownership by embedding ownership metadata in
each transactional object. Word (or block) based STMs store
ownership metadata in a global hash table of ownership
records. Transactions must acquire exclusive ownership of
a location to write to it, while shared ownership is sufficient
for read-only access. Alternatively, a transaction may snap-

shot the metadata of locations it reads, verifying consistency
at commit time. Policies for resolving conflicts (contention
managers) are described in other papers [24].

2.1 STM API for Unmanaged Code
It is possible to use word-based STMs in strongly-typed lan-
guages, however these systems are a more natural fit in lan-
guages like C. The basic API for such systems has only
four operations: begin_txn initializes thread-specific trans-
action data; stm_read(&l) safely reads from location l;
stm_write(&l, v) speculatively writes value v to location
l; and end_txn tries to commit all speculative writes.

With this API, programmers bear the entire burden of
inserting calls to read and write shared data. There are no
mechanisms to detect access to shared locations outside the
API, or to elide redundant calls. Features like inheritance,
virtual methods, and operator overloading exacerbate the
difficulty of writing correct transactional code when this API
is used for C++.

2.2 Basic API for Object-Oriented Code
The original DSTM library [14] established a number of
practices that influence most object-oriented STM libraries.
In particular, DSTM hid each transactional object behind
an opaque TMObject header. The header can be queried to
obtain an Object reference, which must then be cast to the
appropriate type. The DSTM API has three main methods:

void beginTransaction(): initializes transaction data
structures and begins execution of a transaction.

Object open(mode): method called on an opaque object
header; returns an object that can be safely read or written
(depending on the value of mode).

bool commitTransaction(): attempts to commit the
transaction; fails if the transaction is not guaranteed to
be atomic and isolated.

The object returned by open can be accessed without
further API calls. This provides a caching benefit relative to
word-based STM, where calls to stm_read must repeatedly
inspect object metadata.

There are a number of programming pitfalls in the orig-
inal DSTM API. The programmer is responsible for creat-
ing wrappers for transactional objects, and can write code
that creates 0 (or > 1) headers for a single transactional ob-
ject. Likewise, the programmer must take care to ensure that
references to objects are replaced with references to trans-
actional headers in class member declarations. Since excep-
tions are used to interrupt transactions that abort, the pro-
grammer must wrap each transaction in a try/catch block.
Code can open an object with mode==READ and then mod-
ify the object (or continue to access it after the transaction
completes). If a single object is opened for reading and then
writing, the readable version remains usable, but logically
invalid (we refer to this as an alias error). Lastly, anecdotal
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evidence suggests the API is unnatural to the programmer,
and adds significant syntactic clutter.

2.3 Reflection-Based API
The SXM [9, 15] and DSTM2 [16] libraries extend and im-
prove upon the DSTM API by leveraging the robust runtime
support of C# and Java, respectively.

In both SXM and DSTM2 a transactional block is gener-
ated as a closure and is passed to the STM runtime, which
executes it inside a try/catch block and, if desired, nests
it in a loop that retries it until it commits. Both systems also
make heavy use of reflection and dynamic code generation
(C# Reflection.Emit; Java byte-code engineering) to cre-
ate objects that contain both transactional metadata and ac-
cessor methods; the latter make hidden open calls, detect
alias errors, and perform other algorithm-specific operations.
Finally, both exploit automatic garbage collection for trans-
actionally safe memory management. Though available only
in managed code, we find the accessor-based API to be a sig-
nificant improvement over explicit open calls. It eliminates
the performance-enhancing caching of DSTM, but makes
programming simpler and more natural.

2.4 Object-Based API for Unmanaged Code
The original RSTM library (referred to here as RSTM1 [21])
used a C++ version of the DSTM API, with four extensions.
First, RSTM1 delineates transactions with BEGIN_TRANS-
ACTION and END_TRANSACTION macros, hiding the nested
while/try blocks of DSTM. Second, it distinguishes more
explicitly between opening for read and opening for write,
with open_RO returning a const pointer and open_RW re-
turning a bare pointer. Third, it uses multiple inheritance to
allow a back end to inject metadata into each shared object—
in particular a back-pointer to the object header, used for
run-time checks. Fourth, it uses generics (templates) to re-
place the general-purpose TMObject header type with spe-
cific Shared<foo> types, thereby avoiding casts on the re-
turns from open_RO and open_RW.

3. Smart Pointer API
Our new RSTM2 API uses the C++ smart pointer pattern [2]
to hide the internal metadata organization of the back-end
implementation and to provide the necessary STM system
hooks. This allows application code to closely resemble non-
transactional code, while remaining independent of any par-
ticular back end. At the same time programming errors that
are unique to library STM implementations, such as alias er-
rors caused by out of place modification [16], can be handled
correctly and transparently.

Smart pointers rely heavily on template metaprogram-
ming and operator overloading support in C++. The first
three subsections below describe transactional objects, smart
pointer types, and other library calls. The fourth presents

brief examples that illustrate the RSTM2 API and its advan-
tages over RSTM1.

3.1 Making Objects Transactional
As in RSTM1 we use multiple inheritance to inject metadata
into objects by providing a class from which all transactional
objects must inherit. This metadata is implementation spe-
cific, thus the RSTM2 API does not directly provide such
a class, but rather assumes that it is available in the back
end and exported as stm::Object. Implementations of this
class must provide transaction-aware versions of operator
new and operator delete. These must be compatible with
any allocator, and must defer reclamation until no concurrent
transaction can access a deleted object [8, 18].

Implementations of stm::Object also define abstract
methods to clone an object, deactivate a clone, and (for some
back ends) copy a clone back to the original. These must
be implemented by the user program. For objects that have
neither internal pointers nor heap-allocated components, the
cloning and copy-back routines can simply call the copy
constructor; the deactivation routine can be empty.

Since the API is independent of the back end, but must
support a variety of metadata organizations, we require that
any user-level reference to a transactional object, whether
stand-alone or embedded in an object itself, be realized as a
smart pointer. Thus in a linked list of node objects, the next
pointer must be of type sh_ptr<node> rather than node*.

Additionally, in order to support per-access validation in
systems that require it (these include the redo-log and hy-
brid systems mentioned in Section 1), and to provide a nat-
ural hook for word-based STMs, RSTM2 requires the use
of accessor-declaring macros. Each use of the DECLARE_
FIELD(t, n) macro creates a protected field of type t
with name n, and generates public getter and setter meth-
ods to access that field. The getter takes a parameter used
for post-access validation. Individual STM implementations
define the type of this parameter, so that it can be a no-op
when appropriate.

3.2 Smart Pointer Types
The following four generic smart pointers hide all meta-
data manipulation behind operators for construction, assign-
ment (operator =), and dereference (operator -> and the
rarely-used operator *).

sh_ptr<T>: opaque reference to a transactional object of
type T. An sh_ptr cannot be dereferenced, but it can
be copied and compared to other sh_ptrs, or used to
initialize other kinds of smart pointers when dereference
is required. Reference fields in linked structures should
always be sh_ptrs.

rd_ptr<T>: similar to a const pointer; permits reading of
a transactional object, but does not allow writing.

3 TRANSACT 2007



T*

implicit conversion

explicit conversion
rd_ptr<T>

wr_ptr<T>

un_ptr<T> sh_ptr<T>

Figure 1. Permitted conversions among smart pointer types.
The T* to sh_ptr<T> case is for initialization only (oper-
ator new returns an ordinary pointer).

wr_ptr<T>: permits reading and writing of a transactional
object.

un_ptr<T>: similar to wr_ptr, but for privatized objects,
outside transactions only.

Figure 1 shows the implicit and explicit conversions
permitted among the different smart pointer types. Im-
plicit conversions can be performed using implicit con-
structor (rd_ptr<foo> p = q) or operator = syntax. Ex-
plicit conversions are performed using explicit constructors
(rd_ptr<foo> p(q)), casts, or, when transitioning from an
sh_ptr, operator =. Within a transaction, these conven-
tions make it easy to move back and forth between sh_ptrs
and either rd_ptrs or wr_ptrs (similarly, outside a transac-
tion, between sh_ptrs and un_ptrs). Explicit syntax is re-
quired to upgrade a rd_ptr to a wr_ptr. Both rd_ptrs and
wr_ptrs can be used only within a transaction; un_ptrs
can be used only outside. Only sh_ptrs can safely refer to
(nonprivatized) transactional objects outside a transaction.

Enforcing these conventions results in one peculiarity:
a wr_ptr can be initialized from a rd_ptr using explicit
constructor syntax (e.g., wr_ptr<T> w(r);), but not us-
ing “assignment” syntax (wr_ptr<T> w = r;). Explicit-
constructor examples can be seen on lines 3, 4, and 12 of Fig-
ure 3. To enable the more intuitive assignment-style declara-
tion we would have to provide an implicit constructor, which
C++ could then use when passing parameters, allowing a
rd_ptr to be passed to a function that expects a wr_ptr,
thereby violating const semantics.

3.3 Other Library Calls
Each thread, when created, must call stm::init to gain
access to the TM system. Before completing, it must call
stm::shutdown. These calls ensure that the thread has a
transaction descriptor, and that the necessary memory man-
agement infrastructure is in place for correct creation and
deletion of transactional objects. In some C++ implemen-
tations it may not be safe to call destructors from within a
transaction. The tx_delete function schedules destruction
for the end of the current transaction.

As in RSTM1, transactions are delimited by BEGIN_
TRANSACTION and END_TRANSACTION macros. These con-
tain loop control and try block fragments that compile with-
out error only when lexically matched.

Lastly, we provide two special-purpose functions. The
first, tx_release, can be used for early release [14], in
which an object is removed from a transaction’s read set. The
second, stm::fence, is used outside of a transaction to en-
sure that all speculative state has coalesced before nontrans-
actional code uses un_ptrs. Early release is an application-
specific optimization, and must be used with care to ensure
consistency. The transactional fence serves as a hook to pri-
vatize shared objects [29]. Its use is not required if (as in the
mesh application of Section 4) privatization is achieved by
global consensus (e.g., barriers).

3.4 Examples
The two chief benefits of the RSTM2 API are its approxi-
mation of the look of nontransactional code and its ability to
catch programmer errors, either statically (via the type sys-
tem) or dynamically (via hooks into the runtime).

Figures 2 and 3 show code to insert an object in a sorted
linked list using the RSTM1 and RSTM2 APIs, respectively.
Where the old API requires frequent calls to open_XX (e.g.,
to traverse the list), the new relies on smart pointers whose
presence is apparent only in declarations and casts. Note the
explicit constructors mentioned in Section 3.2: the declara-
tion at line 12, for example, initializes insert_point to be
a copy of previous. In addition to simplifying the code,
the lack of open_XX calls allows us to create generic func-
tions that can be called in both transactional and privatized
contexts; we discuss this further in Section 4.

For back ends that require per-access hooks, the program-
mer must use the accessors, validators, and DECLARE_FIELD
macros mentioned in Section 3.1. In the loop of Figure 3,
for example, the last line would be written current =
previous->get_next(previous.v());. The need for
accessors and validators is independent of the choice be-
tween smart pointers and open_XX.

As an example of error checking, consider Figure 4,
which depicts a bug caused by updates to clones. With the
RSTM back end, opening an object for writing creates a new
version of the object, and turns existing read-only references
into dangling pointers. In this example, r1 is initialized to a
clean object. When w1 is initialized, it clones that object and
modifies the clone. The initialization of r2 uses the clone
as well, but r1 now holds a reference to a stale immutable
copy. The assertion at the end of the transaction may fail
when logically it should succeed.

The assertion need not fail, however, if we add a check
in rd_ptr::operator ->. The check can detect that the
object r1 points to has been acquired by the current trans-
action, and then silently change the reference in r1 to the
clone. Alternatively, if we want to minimize overhead, we
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1 void list::insert(int val) {

2 BEGIN_TRANSACTION;

3 const node* previous = head->open_RO();

4 const node* current =

5 previous->next->open_RO();

6

7 while (current != NULL) {

8 if (current->val >= val) break;

9 previous = current;

10 current = current->next->open_RO();

11 }

12 if (!current || current->val > val) {

13 node* n =

14 new node(val, current->shared());

15 previous->open_RW()->next =

16 new Shared<node>(n);

17 }

18 END_TRANSACTION;

19 }

Figure 2. Insertion in a sorted linked list using RSTM1.

1 void list::insert(int val) {

2 BEGIN_TRANSACTION;

3 rd_ptr<LLNode> previous(head);

4 rd_ptr<LLNode> current(previous->next);

5

6 while (current != NULL) {

7 if (current->val >= val) break;

8 previous = current;

9 current = previous->next;

10 }

11 if (!current || current->val > val) {

12 wr_ptr<LLNode> insert_point(previous);

13 insert_point->next =

14 sh_ptr<LLNode>(new LLNode(val, current));

15 }

16 END_TRANSACTION;

17 }

Figure 3. Insertion in a sorted linked list using RSTM2
(with smart pointers, but without accessors and validators).

BEGIN_TRANSACTION;

rd_ptr<LLNode> r1(head);

wr_ptr<LLNode> w1(head);

w1->val++;

rd_ptr<LLNode> r2(head);

assert(r1->val == r2->val);

END_TRANSACTION;

Figure 4. An alias error, which RSTM2 can detect.

can arrange for the check to print an error message when run
in debug mode, and then elide it in production code. Similar
optional checks ensure that rd_ptrs and wr_ptrs are used
only within transactions, and that un_ptrs are used only
outside transactions. RSTM1 and other traditional library-
based APIs provide no way to catch such errors.

4. Experience with the API
We have used our API to construct a parallel implementa-
tion of Delaunay triangulation [4]. Given a set of points P
in the plane, a triangulation partitions the convex hull of P
into a set of triangles such that (1) the vertices of the trian-
gles, taken together, are P , and (2) no two triangles intersect
except by sharing an edge. A Delaunay triangulation has the
added property that no point lies in the interior of any trian-
gle’s circumcircle (the unique circle determined by its ver-
tices). If not all points are colinear, a triangulation must exist.
If no four points are cocircular, the Delaunay triangulation is
unique.

Delaunay triangulation is widely used in finite element
analysis, where it promotes numerical stability, and in graph-
ical rendering, where it promotes aesthetically pleasing
shading of complex surfaces. In practice, Delaunay meshes
are typically refined by introducing additional points where
needed to eliminate narrow triangles.

4.1 Transactional Implementation
At the 2006 Workshop on Transactional Workloads, Kulkar-
ni et al. proposed refinement of a (preexisting) Delaunay
triangulation as an ideal TM application [19]. Our code
addresses the complementary problem of constructing the
initial triangulation; we do not yet consider refinement.

We begin by sorting points into geometric regions, one
for each available processor. We then employ Dwyer’s se-
quential solver [6] to find, in parallel, the Delaunay trian-
gulations of the points in each region. For uniformly dis-
tributed points (which we assume), Dwyer’s algorithm runs
in O(n log log n) time, where n is the number of points.
Given triangulations of each region, we employ a mix of
transactions and thread-local computation to “stitch” the re-
gions together, updating previously chosen edges when nec-
essary to maintain the Delaunay circumcircle property.

All told, our application comprises approximately 3200
lines of heavily-commented C++, spread across 24 source
files. There are three transactional types (subclasses of
stm::Object) and three static occurrences of transactions.

The first transactional type represents an edge between
two points. As suggested by Guibas and Stolfi [10], an edge
object contains pointers to its two endpoints and to the four
neighboring edges found by rotating clockwise and counter-
clockwise about those endpoints. The second transactional
type contains, for a given point, a reference to some adjacent
edge, from which others can be found by following neighbor
links. The third transactional type is used to create links in
the chains of a global hash set, used to hold created edges.

The first static transaction protects a call to the edge
constructor. This in turn calls 11 additional (non-accessor,
non-library) routines, directly or indirectly, for a total (not
including headers) of 72 lines of code. The second static
transaction protects the body of a subroutine used (twice)
when stitching regions together. Together with the bodies of
17 called routines, it comprises 155 lines of code. The third
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static transaction is used to “reconsider” edges that may not
satisfy the circumcircle property in light of subsequent re-
gion stitching. Together with the bodies of 16 called rou-
tines, it comprises 214 lines of code.

Performance results are reasonable (details appear in a
companion paper [25]). Linked to our redo-log (TL2-like)
back end and running on a 16-processor SunFire 6800, tri-
angulation of 100,000 points takes 0.26 seconds, a speedup
of 7.7 over an optimized, single-threaded implementation of
Dwyer’s sequential algorithm. On an 8-core Sun T1000, the
maximum speedup is 3.6. Performance is limited by memory
bandwidth on both machines; speedup decreases with larger
numbers of points.

Transaction overhead is a relatively insignificant contrib-
utor to run time: initial triangulation of thread-private re-
gions consumes more than 90% of total run time (usually
more than 95%). Run times for redo-log, coarse-grain locks,
and fine-grain locks (implemented separately with #ifdefs)
are within a few percent of one another. This means, of
course, that transactional memory offers no advantage over
coarse-grain locks in this particular program—neither per-
formance nor convenience—except perhaps for the comfort
of knowing from the outset that lock-induced bottlenecks
would never require a major re-write of the code.

Interestingly, with so much geometrically-partitioned
computation, performance is critically dependent on avoid-
ing overhead outside transactions. Because it imposes an ex-
tra level of indirection on every inter-object reference (lead-
ing to a two-fold increase in cache misses in memory-limited
private code), the RSTM back end achieves only half the per-
formance of redo-log. We consider this a powerful argument
for zero-indirection systems.

4.2 Capabilities
Starting with an implementation of Dwyer’s sequential
solver he had previously written in Java, one of the authors
(Scott) was able to build and tune the application in his spare
time over the course of a three-month period. The result is,
in our opinion, reasonably clear and readable. We believe it
would have been much more difficult to build using RSTM1.
Moreover automatic checks on smart pointers caught several
usage errors that would simply have resulted in erroneous
behavior with the earlier API. Approximately half the de-
velopment time was devoted to (1) finding the constructor
bug discussed in Section 4.3.1 below, and (2) developing a
template-based means of sharing subroutines between trans-
actional and privatized computations.

Our code contains 11 functions that operate on trans-
actional data and that are called both within a transac-
tion (on data that are actively shared) and in the course of
geometrically-partitioned computation (on data that are tem-
porarily private to one thread). Examples include the edge
constructor and destructor methods, the hash set insert and
remove methods, several utility routines, and the key routine
that reconsiders a potentially non-Delaunay edge.

template<class edgeRp, class edgeWp>

bool reconsider(edgeWp self, const int my_seam, ... ) {

...

point* x = ...

point* y = ...

// outlying corners of bounding quadrilateral

if (!txnal<edgeRp>() &&

(closest_seam(x) != my_seam

|| closest_seam(y) != my_seam)) {

return false; // defer to synchronized phase

}

...

return true;

}

Figure 5. Skeleton of code to reconsider a potentially non-
Delaunay edge. Reconsideration must be deferred if we
are running (barrier-protected) private code and the edge’s
bounding quadrilateral does not lie entirely within the cur-
rent thread’s geometric region.

A simplified snippet of the latter routine appears in Fig-
ure 5. It is instantiated in private code with template param-
eters <un_ptr<edge>, un_ptr<edge> >, and in transac-
tional code with <rd_ptr<edge>, wr_ptr<edge> >. In-
ternally, it uses a txnal<pointer type>() generic predicate
to choose between alternative code paths.

In a few other places in the code, we use generic type
constructors to declare pointer types analogous to (i.e.,
transactional or nontransactional, as appropriate) some other
pointer type. For example, if edgeRp is a template parameter
that may be either rd_ptr<edge> or un_ptr<edge>, then
edgeRp::w_analogue<foo>::type will be wr_ptr<foo>
or un_ptr<foo>, respectively.

4.3 Limitations
The most obvious problem with the API is simple awk-
wardness. Accessors are not a natural way to access fields
of an object in C++, though they could easily be made so
with compiler support, as in C#. Validator arguments to get-
ters, required for post-access consistency checks in zero-
indirection systems, are pure syntactic clutter. While they
could be eliminated with trivial compiler support, we see no
way to hide them in a purely library-based system.

Several of our back ends, including RSTM and redo-
log, create new copies of objects. Any class for which bit-
wise copying does not suffice must provide clone and
deactivate or redo methods. These expose implementa-
tion details that should ideally be hidden from the program-
mer. (None of our current applications requires nontrivial
copies.) In a similar vein, the use of templates to support
transactional/private code sharing is too cumbersome to ask
of naive programmers. With compiler support (as in McRT
and Bartok), a similar effect could be achieved transparently
via automatic function cloning.

More problematically, our four different flavors of smart
pointers, while useful for catching errors, introduce a level
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of complexity that seems out of place in a programming
model intended to simplify concurrency. In future work, we
hope to develop language mechanisms that provide similar
functionality in a more implicit fashion.

4.3.1 Programming Restrictions
Beyond simple awkwardness, our API imposes several im-
portant restrictions on transactions and transactional objects.
One cannot safely escape a transaction, for example, in any
way other than falling off the end—no gotos, no breaks, no
returns. This restriction would disappear if C++ offered a
Java-like try. . . finally construct, but in the current lan-
guage we can neither support nonlocal exits nor catch them
statically. One early version of the mesh application had an
errant return in a transaction; the behavior that resulted
would not have made any sense to a programmer unfamiliar
with STM system internals.

A more significant restriction imposed by the API is a
prohibition against most nonstatic methods in transactional
classes: because we insist that fields be accessed through
smart pointers, we cannot safely use the this parameter of
a C++ member function. The replacement idiom—a static
method with explicit sh_ptr parameter—is unnatural to a
C++ programmer. With compiler support, this could be an
sh_ptr.

Destructors are also problematic, for reasons similar to
those that led to their omission from garbage collected lan-
guages: we want to allow a TM-specific memory manager to
delay space reclamation until any concurrent transaction that
may be using the object has aborted. This means we can’t
control when the destructor will execute. A similar problem
occurs with constructors in our RSTM and redo-log systems:
if a constructor does anything that conflicts with another
transaction, and leads to an abort, normal C++ exception
propagation causes a call to the destructor for the base class,
followed by the (TM-specific) operator delete. Unfortu-
nately, our TM-specific operator new has already, at this
point, placed the object on a list to be deleted on abort, at
which point it detects a dangling reference. This unexpected
interaction was the source of the most time-consuming bug
in the development of the mesh. While it could be addressed
by a change to the memory management routines, it illus-
trates a more general problem: a library that changes such
fundamental notions as the timing of storage reclamation can
interact with user code in unexpected ways—ways that may
be extraordinarily difficult for the programmer to diagnose.

4.3.2 Pitfalls
Because nontransactional (nonshared) objects do not revert
their values on abort, care must be taken when communi-
cating information across transaction boundaries. In particu-
lar, a transaction can safely read or write a nontransactional
variable (assuming, in the latter case, it always writes before
committing), but not both. The second-most difficult bug in

the mesh had the following general form (hidden in quite a
bit of other code):

int x = 0;

BEGIN_TRANSACTION(X)

...

x++;

... // an abort here is dangerous

END_TRANSACTION(X)

// x == 1 + number of post-increment aborts

The correct alternative looks like this:

int x = 0;

int x_t;

BEGIN_TRANSACTION(X)

x_t = x;

...

x_t++;

...

END_TRANSACTION(X)

x = x_t; // x == 1

A compiler could recognize the problem here, and gener-
ate the second version of the code, though it might in the
general case require run-time alias checks. Unfortunately,
nothing in the smart-pointer API prevents the programmer
from writing the incorrect version.

4.3.3 Fundamental Problems
The example above is a manifestation of a deeper problem:
by default, data in our API are nontransational; they retain
their values on abort. Only instances of classes derived from
stm::Object revert to earlier values. Purists would argue
that in the absence of open nesting, every object should re-
vert its value on abort, unless the compiler can prove that it
will have no effect on program behavior. Even if one be-
lieves, however, that an STM implementation should dis-
tinguish between transactional and nontransactional data (to
avoid bookkeeping overhead on the latter, or to provide a
simple alternative to open nesting), it seems clear that data
should be transactional by default, rather than the other way
around. Unfortunately, we see no way to obtain this behavior
with a library-based API.

Finally, while we are able to use templates (awkwardly)
to share code between transactional and privatized uses of
transactional data, there is no comparable way to share code
between transactional and nonshared instances of otherwise
identical abstractions. For example, if we have a preexisting
(nontransactional) queue class, we cannot share its code
with a transactional queue whose components are derived
from stm::Object. Again, it seems easy to address this
problem with language and compiler support.

5. Conclusions
We have described an application programming interface
for transactional memory in C++. Our interface is shared
among several back-end systems, covering nonblocking
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(indirection-based) and (blocking) zero-indirection software
systems, coarse-grain locks, and several software/hardware
hybrids. It addresses several problems encountered with an
earlier, more conventional library interface, including the
awkwardness of repeated foo* ↔ Shared<foo> conver-
sions, accidental use of foo* references outside their trans-
actional context, silent invalidation of const references
when an object is upgraded to writable, and the inability to
share functions between transactional and privatized code.
The key to the new API is its use of C++ smart pointers,
which provide both per-access and amortized (per reference)
hooks into the back-end system.

We have used our interface to construct a parallel imple-
mentation of Delaunay triangulation. Our experience con-
firms that the API can be used to build nontrivial applica-
tions. It allows us to access sharable objects in both trans-
actional and privatized contexts and, using generics, to call
a common set of functions from both. At the same time, we
find that that the programming model supported by the API
is too complex and nonorthogonal to give to naive users.
Problems include remaining awkward constructs, limitations
on the programming model, pitfalls in the communication
of values across transaction boundaries, and fundamental is-
sues with default nontransactional semantics and the distinc-
tion between sharable and nonsharable data.

For most of the problems we encountered, there ex-
ist straightforward language and compiler-based solutions.
Among other things, a compiler can easily support real field
references (instead of accessor functions); invisible post-
access consistency checks; break and return inside trans-
actions; and nontrivial constructors and nonstatic methods
on transactional objects (in effect, making this a smart
pointer). With just a bit more work, the compiler can cre-
ate clone, deactivate, and redo methods automatically;
generate alternative versions of functions that are called on
both transactional and privatized data, eliminating the tem-
plate hackery of Figure 5; and identify and automatically
re-write code of the form shown in Section 4.3.2 (a simple
dataflow problem). Finally, a compiler can (as in all exist-
ing compiler-based TM systems) arrange to revert all data
on transaction abort (using lightweight checkpoints or undo
logs for thread-local objects).

At one time, we had hoped that library-based systems
might allow important classes of programmers to move to
transactional memory at low investment cost. Given that the
whole point of TM is to simplify concurrent programming,
however, our experience suggests that this hope was naive.
Interfaces like RSTM2 can remain a useful tool for systems
researchers, but application programmers are going to need
language and compiler support.

In future work, we hope to integrate solutions for the
problems of Section 4.3 into a compiler or source-to-source
translator. Toward this end, we are exploring ways to dis-
tinguish among transactional, privatized, and nonshared

(thread-local) data. Questions include: Should the notion of
sharing status be associated with classes, object instances,
references, or some combination of these? Should it be de-
termined statically or dynamically? How should it propagate
through parameters? While these questions should probably
not be exposed to programmers in most cases, it seems likely
that the compiler will need to reason about them internally.
Ultimately, a successful transactional language will need to
combine simple, intuitive behavior (at least in the common
case) with implementations that avoid unnecessary overhead
when run on legacy machines.
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