
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

LXM: Better Splittable Pseudorandom Number Generators
(and Almost as Fast)

GUY L. STEELE JR., Oracle Labs, USA
SEBASTIANO VIGNA, Università degli Studi di Milano, Italy

In 2014, Steele, Lea, and Flood presented SplitMix, an object-oriented pseudorandom number generator
(PRNG) that is quite fast (9 64-bit arithmetic/logical operations per 64 bits generated) and also splittable. A
conventional PRNG object provides a generate method that returns one pseudorandom value and updates
the state of the PRNG; a splittable PRNG object also has a second operation, split, that replaces the original
PRNG object with two (seemingly) independent PRNG objects, by creating and returning a new such object
and updating the state of the original object. Splittable PRNG objects make it easy to organize the use of
pseudorandom numbers in multithreaded programs structured using fork-join parallelism. This overall strategy
still appears to be sound, but the specific arithmetic calculation used for generate in the SplitMix algorithm
has some detectable weaknesses, and the period of any one generator is limited to 264.

Here we present the LXM family of PRNG algorithms. The idea is an old one: combine the outputs of two
independent PRNG algorithms, then (optionally) feed the result to a mixing function. An LXM algorithm uses
a linear congruential subgenerator and an F2-linear subgenerator; the examples studied in this paper use an
LCG of period 216, 232, 264, or 2128 with one of the multipliers recommended by L’Ecuyer or by Steele and
Vigna, and an F2-linear generator of the xoshiro family or xoroshiro family as described by Blackman and
Vigna. Mixing functions studied in this paper include the MurmurHash3 finalizer function, David Stafford’s
variants, Doug Lea’s variants, and the null (identity) mixing function.

Like SplitMix, LXM provides both a generate operation and a split operation. Also like SplitMix, LXM
requires no locking or other synchronization (other than the usual memory fence after instance initialization),
and is suitable for use with simd instruction sets because it has no branches or loops.

We analyze the period and equidistribution properties of LXM generators, and present the results of
thorough testing of specific members of this family, using the TestU01 and PractRand test suites, not only on
single instances of the algorithm but also for collections of instances, used in parallel, ranging in size from 2
to 227. Single instances of LXM that include a strong mixing function appear to have no major weaknesses,
and LXM is significantly more robust than SplitMix against accidental correlation in a multithreaded setting.
We believe that LXM is suitable for the same sorts of applications as SplitMix, that is, “everyday” scientific
and machine-learning applications (but not cryptographic applications), especially when concurrent threads
or distributed processes are involved.
ACM Reference Format:
Guy L. Steele Jr. and Sebastiano Vigna. 2021. LXM: Better Splittable Pseudorandom Number Generators
(and Almost as Fast). 1, 1 (April 2021), 30 pages. https://doi.org/10.1145/1122445.1122456

Authors’ addresses: Guy L. Steele Jr., Oracle Labs, USA, guy.steele@oracle.com; Sebastiano Vigna, Università degli Studi di
Milano, Italy, vigna@acm.org.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2021 Association for Computing Machinery.
XXXX-XXXX/2021/4-ART $15.00
https://doi.org/10.1145/1122445.1122456

, Vol. 1, No. 1, Article . Publication date: April 2021.

https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456

50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98

2 Guy L. Steele Jr. and Sebastiano Vigna

1 INTRODUCTION
The SplitMix algorithm [Steele Jr. et al. 2014] is a fairly fast object-oriented pseudorandom number
generator designed to be splittable. A conventional PRNG object provides a generate method that
returns one pseudorandom value and updates the state of the PRNG; a splittable PRNG object
also has a second operation, split, that effectively replaces the original PRNG object with two
(seemingly) independent PRNG objects. Splittable PRNG objects make it easy to organize the use of
pseudorandom numbers in multithreaded programs structured using fork-join parallelism. This
algorithm was implemented as class SplittableRandom [Oracle Corporation 2014b] in the library
for the Java® programming language as part of Java Development Kit 8 (JDK8). One instance field
of the class is a parameter called gamma that serves as the additive constant for aWeyl generator
(whose state update function is 𝑠 ← 𝑠 + 𝑐 mod 2𝑤 for some odd constant 𝑐). The output of the Weyl
generator is then fed to a nonlinear bit-mixing function; it is best if distinct instances used for
parallel execution have distinct gamma values. Steele, Lea, and Flood realized that the structure of
the mixing function they chose implied that certain values for gamma would lead to poor statistical
quality of the output; the SplitMix algorithm avoids choosing such so-called “weak gamma values”
when creating new instances. Unfortunately, Steele (and others) subsequently identified additional
classes of weak gamma values. Moreover, the period of one instance of SplitMix is only 264, and
since all possible 64-bit values appear in the output, such an instance will fail a collision test [Knuth
1998, §3.3.2.I].

We undertook to design a possible replacement for SplitMix that would be much more robust,
support a much longer period for each instance, and still be reasonably fast. We believed the idea of
using a nonlinear mixing function was sound, but it was too much to expect a fast mixing function
to well scramble the output of something as simple as a Weyl generator. We turned to existing ideas
about combining two subgenerators. The result is the LXM family of algorithms presented here.

We tested various instances of LXM with the well-known TestU01 BigCrush test suite [L’Ecuyer
and Simard 2007; Simard 2009]. For additional assurance, we also used the PractRand test suite
[Doty-Humphrey 2011–2021], which is less well known than TestU01 but has the virtue of “failing
early” as soon as it detects an undesirable amount of bias.

The LXM algorithm is a fairly simple idea that combines building blocks already in the literature
in ways already studied in the literature—yet this precise combination seems not to have been
previously studied systematically or put into widespread practice. The principal contributions of
this paper are explaining why specific components were chosen and why they were combined in a
specific way, analyzing certain specific properties of the combination, comparing this structure to
prior work, and empirically probing for weaknesses through detailed quality tests and timing tests.

Section 2 describes the structure of the LXM algorithm in pragmatic terms and presents Java code
for two instances. Section 3 explains how the split operation is performed for LXM. Section 4 defines
special notations and terminology used in this paper. Section 5 presents a more mathematical
description of the LXM algorithm, and Section 6 discusses properties of the algorithm, such as
period and equidistribution. Section 7 presents results of testing form statistical quality; Section 8
presents timing tests for both LXM and SplitMix. Section 9 goes into more detail about how to
split and jump LXM generators. Related work is cited in Section 10; conclusions are in Section 11.

2 THE LXM GENERATION ALGORITHM
A member of the LXM family of algorithms for word size𝑤 (where𝑤 is any non-negative integer,
but typically either 64 or 32) consists of four components:

• L: a linear congruential pseudorandom number generator (LCG) with a 𝑘-bit state 𝑠 , 𝑘 ≥ 𝑤

, Vol. 1, No. 1, Article . Publication date: April 2021.

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147

LXM: Better Splittable Pseudorandom Number Generators (and Almost as Fast) 3

• X: an F2-linear [L’Ecuyer and Panneton 2009] pseudorandom number generator (we use the
term XBG, for “xor-based generator”) with an 𝑛-bit state 𝑥 , 𝑛 ≥ 𝑤

• a simple combining operation on two𝑤-bit operands that produces a𝑤-bit result
• M: a bijective mixing function that maps a𝑤-bit argument to a𝑤-bit result

The combining operation should have the property that if either argument is held constant, the
resulting one-argument function is bijective; typically it is either binary integer addition ‘+’ or
bitwise xor ‘⊕’ on𝑤-bit words. In most practical applications 𝑘 and 𝑛 are integer multiples of𝑤 .

The generate operation for an LXM generator is described by the following pseudocode, where
multiplier 𝑚 is an integer such that (𝑚 mod 8) = 5, additive constant 𝑎 is an odd integer, and
update matrix 𝑈 is an 𝑛 × 𝑛 matrix of bits. Elements of the matrix product of 𝑈 and a bit vector of
length 𝑛 are computed in the two-element field F2 (addition is xor). In practice,𝑈 is chosen so that
such matrix products can be computed by using a small number of instructions such as xor, shift,
and rotate operating on𝑤-bit words.

generate() :
𝑧 ← mix (combine(𝑤 high-order bits of 𝑠,𝑤 bits of 𝑡))
𝑠 ← LCG_update(𝑠)
𝑡 ← XBG_update(𝑡)
return 𝑧

LCG_update(𝑠) : return (𝑚𝑠 + 𝑎) mod 2𝑘

XBG_update(𝑡) : return 𝑈𝑡

This pseudocode uses the standard trick of using the old state values of the subgenerators to
compute the result to be returned; this allows the state updates for the two subgenerators to be
overlapped or interleaved not only with each other but with the computation of the combining and
mixing functions, which may be advantageous on processors that can execute multiple instructions
concurrently.
Figure 1 shows a specific implementation in the Java programming language of the generate

operation for 𝑤 = 64, 𝑘 = 64,𝑚 = 128. The period of the LCG is 264. The XBG is xoroshiro128
version 1.0 [Blackman and Vigna 2018], which has a period of 2128 − 1. The combining function is
binary addition. The mixing function is a variant of the MurmurHash3 mixing function [Appleby
2011, 2016] identified by Doug Lea. The additive parameter a may be initialized to any odd integer,
and the state variables s, x0, and x1 may be initialized to any values as long as x0 and x1 are not
both zero. Because the periods of the subgenerators are relatively prime, the overall period of this
LXM generator is 264 (2128 − 1) = 2192 − 264.
Figure 2 shows a second specific implementation, this time for 𝑤 = 64, 𝑘 = 128,𝑚 = 256. It

uses the same 64-bit mixing function but uses a different (256-bit) XBG, xoshiro256 [Blackman
and Vigna 2018]. It also illustrates some interesting engineering tradeoffs when implementing a
128-bit LCG using 64-bit arithmetic. Computing the (128-bit) low half of two 128-bit operands
requires computing the 128-bit product of the (64-bit) low halves, plus the (64-bit) low half of each
of two pairs of 64-bit values, consisting of the high half one of 128-bit operand and the low half of
the other. But testing seems to show that there is little extra benefit of using a 128-bit multiplier
over a 65-bit multiplier; on the other hand, theory tells us that a 64-bit multiplier will produce
an LCG of lower quality [Steele and Vigna 2021]. Therefore we choose to use a multiplier of the
form 264 +𝑚 where𝑚 < 264 and of course (𝑚 mod 8) = 5; this eliminates one 64-bit multiplication
in the implementation. On the other hand, there is a benefit to be gained by using a full 128-bit
additive parameter rather than settling for 64 bits. The code uses two long values ah and al to
represent the high half and the low half of the additive parameter, and similarly uses two long

, Vol. 1, No. 1, Article . Publication date: April 2021.

148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196

4 Guy L. Steele Jr. and Sebastiano Vigna

private static final long M = 0xd1342543de82ef95L; // Fixed multiplier
private final long a; // Per-instance additive parameter (must be odd)
private long s, x0, x1; // Per-instance state (x0 and x1 are never both zero)

public long nextLong() {
// Combining operation
long z = s + x0;
// Mixing function
z = (z ^ (z >>> 32)) * 0xdaba0b6eb09322e3L;
z = (z ^ (z >>> 32)) * 0xdaba0b6eb09322e3L;
z = (z ^ (z >>> 32));
// Update the LCG subgenerator
s = M * s + a;
// Update the XBG subgenerator (xoroshiro128v1_0)
long q0 = x0, q1 = x1;
q1 ^= q0;
q0 = Long.rotateLeft(q0, 24);
q0 = q0 ^ q1 ^ (q1 << 16);
q1 = Long.rotateLeft(q1, 37);
x0 = q0; x1 = q1;
// Return result
return z;

}

Fig. 1. Java code for the generate operation of an LXM generator with period 264 (2128 − 1)

values sh and sl to represent the high half and the low half of the LCG state. (Because Java has not
yet implemented the method Math.unsignedMultiplyHigh, code for this operation is included in
Figure 2, using the technique described in Hacker’s Delight [Warren 2012, §8.3, p. 175].)
These implementations, and some others, are currently scheduled to be incorporated into a

new package java.util.random as part of JDK17. This package will also include a new API
intended to better support interchangeable use of various PRNG algorithms within an application.
The centerpiece is a new interface RandomGenerator, which provides default implementations
for many standard methods such as nextFloat(), nextDouble(), nextGaussian(), ints(), and
longs(), provided only that any class that implements the interface must provide a method period
(for reporting the length of the state cycle) and either a nextLong() method (for generating a
pseudorandomly chosen 64-bit integer) or a nextInt() method (for generating a pseudorandomly
chosen 32-bit integer). Other new interfaces support the possibility that a specific PRNG algorithm
may provide a jump() method (for advancing a large distance along the state cycle) or a split()
method (for creating a new generator from an existing one, as described by Steele, Lea, and Flood
[2014]).

3 LXM IMPLEMENTATION OF SPLITTING
3.1 The Split Operation
Creating a new instance of an LXM algorithm from an existing one is done in a straightforward
way: the nextlong() or nextInt() method of the existing one is used to generate values for the
state variables of the LCG and XBG subgenerators and for the additive parameter of the LCG.
The additive parameter is then forced to be odd by setting its low-order bit to 1, but beyond that

, Vol. 1, No. 1, Article . Publication date: April 2021.

197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245

LXM: Better Splittable Pseudorandom Number Generators (and Almost as Fast) 5

private static final long ML = 0xd605bbb58c8abbfdL; // Low half of fixed multiplier
private final long ah, al; // Per-instance additive parameter (must be odd)
private long sh, sl, x0, x1, x2, x3; // Per-instance state (x0, x1, x2, x3 not all 0)

private long unsignedMultiplyHigh(long a, long b) {
return Math.multiplyHigh(ML, sl) + ((ML >> 63) & sl) + ((sl >> 63) & ML);

}

public long nextLong() {
// Combining operation
long z = sh + x0;
// Mixing function
z = (z ^ (z >>> 32)) * 0xdaba0b6eb09322e3L;
z = (z ^ (z >>> 32)) * 0xdaba0b6eb09322e3L;
z = (z ^ (z >>> 32));
// Update the LCG subgenerator
// The LCG is, in effect, "s = m * s + a" where m = ((1LL << 64) + ml)
final long u = ML * sl;
sh = (ML * sh) + unsignedMultiplyHigh(ML, sl) + sl + ah; // High half
sl = u + al; // Low half
if (Long.compareUnsigned(sl, u) < 0) ++sh; // Carry propagation
// Update the XBG subgenerator (xoshiro256 1.0)
long q0 = x0, q1 = x1, q2 = x2, q3 = x3;
long t = q1 << 17;
q2 ^= q0; q3 ^= q1; q1 ^= q2; q0 ^= q3; q2 ^= t;
q3 = Long.rotateLeft(q3, 45);
x0 = q0; x1 = q1; x2 = q2; x3 = q3;
// Return result
return z;

}

Fig. 2. Java code for the generate operation of an LXM generator with period 2128 (2256 − 1)

no additional vetting of the additive parameter (to reject “weak values” [Steele Jr. et al. 2014]) is
necessary. In the unlikely circumstance that the state for the XBG subgenerator is entirely 0, it is
necessary to force it to be nonzero; this can be done by making additional calls to nextlong() or
nextInt() .

3.2 The Splits Operation
Existing JDK PRNG implementations, such as classes Random and SplittableRandom [Oracle
Corporation 2014a,b], provide methods such as ints(), longs, and doubles that produce streams
of pseudorandomly chosen values. JDK17 introduces a new method rngs() that produces a stream
of PRNG instances; one can then use the map method of the stream to execute a piece of code many
times, perhaps in parallel, each with its own PRNG instance so that there is no competition for
a shared resource (such as a single, shared PRNG). PRNG algorithms that have a jump() method
may also provide a jumps() method that is then automatically used to implement the rngs()
method by jumping along the state cycle multiple times. On the other hand, PRNG algorithms
that have a split() method may also provide a splits() method that is then automatically used
to implement the rngs() method by using the split() method multiple times—but with a bit of

, Vol. 1, No. 1, Article . Publication date: April 2021.

246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294

6 Guy L. Steele Jr. and Sebastiano Vigna

cleverness. The details of the technique are outside the scope of this paper, which focuses on how
values are generated, and why; but we touch on it briefly in Section 9.

4 NOTATION AND TERMINOLOGY
We use the standard lambda notation 𝜆𝑥 .𝑒 to denote a function that takes one argument and returns
the value produced by the expression 𝑒 with the parameter 𝑥 bound to the given argument. If the
argument is expected to be a tuple, we use a “nested destructuring parameter binding” notation; for
example, if the argument is expected to be a 2-tuple containing a number and a 3-tuple, we could
use a notation such as 𝜆

(
𝑛, (𝑥,𝑦, 𝑧)

)
.𝑒 . In this paper we usually choose to use Greek letters such as

𝜎 and 𝜏 to name parameters.
We work with vectors and matrices whose elements are taken from the two-element field F2

(also known as GF(2) and Z/2Z). We casually refer to the elements of such vectors and matrices as
bits, and we use both the symbol ⊕ and the name xor to refer to addition within this field. We refer
to elements and subvectors of a bit vector 𝑣 by using brackets with 0-origin indexing, for example
𝑣 [𝑖] or 𝑣 [𝑖 . . 𝑗]; the notation 𝑖 . . 𝑗 (where 𝑖 ≤ 𝑗) indicates a range of integer subscript values from
𝑖 to 𝑗 , inclusive. Where necessary, we will assume that any integer 𝑗 in the range [0 . . 2𝑤) may
be implicitly treated as a bit vector 𝑣 of length 𝑤 , and vice versa, by satisfying the relationship
𝑗 =

∑𝑤−1
𝑖=0 𝑣 [𝑖]2𝑖 (where 𝑣 [𝑖] is implicitly converted to an integer before multiplying by 2𝑖).

Let 𝑆 and 𝑇 each be a finite set of values; we will also refer to 𝑆 and 𝑇 and types., in the sense
that the value of a variable of type 𝑆 must be an element of 𝑆 , and similarly for 𝑇 .
For our purposes, a pseudorandom number generator (abbreviated PRNG) with states of type 𝑆

and outputs of type 𝑇 is a triple (𝑠0, 𝑓 , 𝑔) where 𝑠0 ∈ 𝑆 is the initial state, 𝑓 : 𝑆 → 𝑆 is a bijective
function on states, and 𝑔 : 𝑆 → 𝑇 is a function from states to outputs. Such a generator produces a
sequence of states 𝑠0, 𝑠1, 𝑠2, . . . defined by the recurrence 𝑠𝑖 = 𝑓 (𝑠𝑖−1) for all 𝑖 > 0; it also produces a
sequence of outputs 𝑡0, 𝑡1, 𝑡2, . . . such that for all 𝑖 ≥ 0, 𝑡𝑖 = 𝑔(𝑠𝑖)). Thus for all 𝑖 ≥ 0, 𝑡𝑖 = 𝑔(𝑓 𝑖 (𝑠0)).
Because 𝑆 is finite, these sequences are periodic; because 𝑓 is bijective, the sequence does not

have a nonempty initial subsequence before commencing the periodic behavior. The period of the
generator is the smallest 𝑃 > 0 for which 𝑠𝑃 = 𝑠0; it follows that for all nonnegative integers 𝑖 and 𝑘 ,
𝑠𝑖+𝑘𝑝 = 𝑠𝑖 (and therefore 𝑡𝑖+𝑘𝑝 = 𝑡𝑖). We sometimes refer to the finite cyclic sequence 𝑠0, 𝑠1, . . . , 𝑠𝑃−1
as the state cycle of the generator; the size of this cycle is the period 𝑃 .

We use 𝑉 to refer to the bag (multiset) of outputs generated during one period of the generator,
that is, 𝑉 = * 𝑡𝑖 | 0 ≤ 𝑖 < 𝑃 +. We sometimes regard this multiset as a function 𝑉 : 𝑇 → N that
maps each element of 𝑇 to the number of times that value occurs in the multiset; in other words, it
is the number of times that that value appears within any length-𝑃 subsequence of the sequence of
outputs. The size of the multiset 𝑉 , written |𝑉 |, is defined to be

∑
𝑣∈𝑇 𝑉 (𝑣); it follows that |𝑉 | = 𝑃 .

Sometimes a PRNG with outputs of type 𝑇 is regarded as a PRNG with outputs of type 𝑇 𝑗 for
some 𝑗 > 0—that is, as generating tuples of length 𝑗 , where each element of the tuple is of type𝑇 . If
the underlying PRNG of type 𝑇 is the triple (𝑠0, 𝑓 , 𝑔), then the alternate view may be described by
the derived triple

((
𝑡0, 𝑡1, . . . , 𝑡 𝑗−1), 𝑠 𝑗−1

)
, 𝜆

(
(𝜏0, 𝜏1, . . . , 𝜏 𝑗−1), 𝜎 𝑗−1

)
.
(
(𝜏1, . . . , 𝜏 𝑗−2, 𝑔(𝜎 𝑗−1)), 𝑓 (𝜎 𝑗−1)

)
,

𝜆
(
(𝜏0, 𝜏1, . . . , 𝜏 𝑗−1), 𝜎 𝑗−1

)
.(𝜏0, 𝜏1, . . . , 𝜏 𝑗−1)

)
. In other words, the generated tuples are the (overlapping)

length- 𝑗 subsequences of the output sequence of the underlying PRNG. Note that the PRNG of
tuples has the same period as the underlying PRNG.

In prior literature, a PRNG with outputs of type𝑇 is described as “equidistributed” if the multiset
of values generated during each period has the property that for any two values 𝑥 and 𝑦 of type 𝑇 ,
|𝑀 (𝑥) −𝑀 (𝑦) | ≤ 1; that is, the generated values are distributed “as equally as possible” over the
values of type 𝑇 . More generally, a PRNG is described as “ 𝑗-dimensionally equidistributed” if it is

, Vol. 1, No. 1, Article . Publication date: April 2021.

295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343

LXM: Better Splittable Pseudorandom Number Generators (and Almost as Fast) 7

equidistributed when regarded as a generator of 𝑗-tuples as described in Section 4. Note that being
1-dimensionally equidistributed is the same as being equidistributed.

We introduce here a somewhat more detailed terminology: we will say that a PRNG that generates
values of type 𝑇 is 𝛿-distributed for any two values 𝑝 and 𝑞 of type 𝑇 , |𝑀 (𝑝) −𝑀 (𝑞) | ≤ 𝛿

⌈
|𝑀 |
|𝑇 |

⌉
.

(Omitting the ceiling brackets would make this definition slightly tighter, but including them
allows a more concise form for the 𝛿 values that is more convenient in practice for purposes of
comparison.) Since smaller values of 𝛿 are better, we will normally in each case cite the smallest
possible value of 𝛿 , and 𝛿 = 0, we will say that the PRNG is exactly equidistributed. More generally,
we will say a PRNG 𝑗-dimensionally 𝛿-distributed if it is 𝛿-distributed when regarded as a generator
of 𝑗-tuples; but if 𝛿 = 0, we will say that the PRNG is exactly 𝑗-dimensionally equidistributed.

5 THEORETICAL CONSTRUCTION OF THE LXM ALGORITHM
We define an LCG with state size 𝑘 such that 𝑘 ≥ 3, multiplier𝑚 such that (𝑚 mod 8) = 5, additive
parameter 𝑎 such that 1 ≤ 𝑎 < 2𝑘 and 𝑎 is odd, initial state 𝑠0 such that 0 ≤ 𝑠0 < 2𝑘 , and output
size𝑤 such that 0 ≤ 𝑤 ≤ 𝑘 , as the triple 𝐿 =

(
𝑠0, 𝜆𝜎.(𝑚𝜎 + 𝑎) mod 2𝑘 , 𝜆𝜎.

⌊
𝜎/2𝑘−𝑤

⌋)
, and we write

𝑡0, 𝑡1, 𝑡2, . . . to refer to its outputs.
We define an XBG with state size 𝑛, 𝑛-by-𝑛 bit matrix 𝑈 , initial state 𝑥0 where 𝑥0 is an 𝑛-bit

vector, output size 𝑤 such that 0 ≤ 𝑤 ≤ 𝑛 as the triple 𝑋 = (𝑥0, 𝜆𝜏 .𝑈𝜏, 𝜆𝜏 .𝜏 [0 . .𝑤 − 1]), and we
write 𝑦0, 𝑦1, 𝑦2, . . . to refer to its outputs, where 𝜏 [0 . .𝑤 − 1] produces a𝑤-bit vector containing
the first𝑤 bits of 𝜏 . (We use the first𝑤 bits or 𝜏 without loss of generality, because one can create
an equivalent XBG that delivers any desired size-𝑤 subset of the state bits, in any order, by using
some single fixed permutation to reorder the bits of the initial state and also to reorder both the
rows and columns of the matrix𝑈 .)

Given such an LCG and XBG, a binary combining operation on𝑤-bit values � (which is typically
either + or ⊕), and a bijective mixing function 𝜇 on𝑤-bit values, an LXM generator is the triple
𝐺 =

(
(𝑠0, 𝑥0), 𝜆(𝜎, 𝜏).(𝑚𝜎 + 𝑎) mod 2𝑘 ,𝑈𝜏), 𝜆(𝜎, 𝜏).𝜇 (

⌊
𝜎/2𝑘−𝑤

⌋
� 𝜏 [0 . .𝑤 − 1])

)
. It is easy to see

that the set of possible states of the LXM is the cross product of the sets of states of the LCM and
XBG; that the state update function for the LXM simply pairs an update of the LCG with an update
of the XBG; and that the output function combines an output of the LCG with a corresponding
output of the XBG and then applies the mixing function.

The reader may wonder, given that the state update function of the LCG uses an affine transfor-
mation𝑚𝜎 + 𝑎, why the state update function of the XBG does not more generally use an affine
transformation 𝑈𝜏 ⊕ 𝑣 . The answer has more to do with engineering than theory; we address it
below in Sections 6.5.2 and 6.5.3.

6 PROPERTIES OF THE LXM ALGORITHM
In this sectionwe discuss some properties of the LXM algorithm and how they derive from properties
of its components. First we provide brief answers to some obvious questions; the subsections that
follow elaborate on these answers.

Why use two subgenerators? The usual reasons: each is fairly small and fast, and they are chosen
so that the period of the LXM generator will be the product of their individual periods.
Why use an XBG for one subgenerator? XGBs are fast; they are already widely used to produce

pseudorandom sequences of fairly good quality; they have a well-understood theory, including for
which 𝑘 they are 𝑘-dimensionally equidistributed; and it is easy to scale their state size.

Why use an LCG? An LCG whose period is a power of 2 provides exact equidistribution, and
preserves any 𝑘-dimensional equidistribution contributed by the XBG. An LCG is fairly fast, and
uses hardware resources (multiply and add) that may be different from those needed by the XBG.

, Vol. 1, No. 1, Article . Publication date: April 2021.

344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392

8 Guy L. Steele Jr. and Sebastiano Vigna

The LCG provides an easy way to provide an additive parameter. Finally, mixing two generators
based on different algebraic operations may improve the quality of a PRNG.

Why have an additive parameter? Additive parameters are an alternative to using jump functions
to ensure non-overlap of multiple sequences, but are faster, easier to use, and easier to code.
Why use a nonlinear mixing function? The graph of every LCG with the same multiplier 𝑚

has the same shape, even if they have different additive parameters. A similar remark is true of
a generalized form of XBG. Changing the parameter just shifts (and perhaps flips) the graph. It
follows that the graph of the combined LCG/XOR part of LXM also always has the same shape
(more precisely, one of two shapes). A good mixing function reacts nonlinearly to the additive
parameter (as well as to more subtle linear correlations within the subgenerators). Testing confirms
that a good mixing function appears to make different streams relatively uncorrelated, but we don’t
have a theoretical proof.

6.1 Period
A well-known fact about LCGs of period 2𝑘 is that for all 0 ≤ 𝑗 < 𝑘 , the sequence of bits consisting
of successive values of bit 𝑗 of the overall state (where the least significant bit is bit 0 and the most
significant bit is bit 𝑘 −1) has period 2𝑗+1. Therefore the most significant bit has period 2𝑘 . It follows
trivially that the sequence of 𝑤-bit values consisting of successive values of bits 𝑘 − 1 through
𝑘 −𝑤 of the overall state has period 2𝑘 .

The XBG subgenerator of an LXM algorithm is always chosen so that the sequence of 𝑤-bit
values consisting of successive values of a specific set of𝑤 bits within the 𝑛 bits of state has an odd
period 𝑃 . Because any odd number is relatively prime to any power of 2, the overall period of an
LXM generator will be 2𝑘𝑃 . Note that the various xoroshiro and xoshiro algorithms each have
the maximum possible period, 2𝑛 − 1, so an LXM algorithm that uses one of these generators as its
XBG subgenerator will have period 2𝑘 (2𝑚 − 1).

6.2 Scalability of Period
The parameters 𝑘 (size of LCG state) and 𝑛 (size of XBG state) may be varied independently.
When 𝑘 is made very large, the cost of the multiplication operation grows quadratically (there are
subquadratic multiplication algorithms, but they are not cost-effective for values of 𝑘 within the
range of currently practical interest), so if a larger period is desired, it may be preferable to increase
𝑛 rather than 𝑘 . Fortunately the xoroshiro family of XBG generators easily grows to support state
sizes 2𝑤 , 4𝑤 , 8𝑤 , 16𝑤 , and beyond without a significant increase in computational cost per value
generated (though for the specific sizes 4𝑤 and 8𝑤 , the xoshiro algorithm may be preferable). For
𝑤 = 64 (the sweet spot for many of today’s microprocessors), practical choices for 𝑘 are 64 or 128
and for 𝑛 include 128, 256, 512, and 1024, supporting periods ranging from 2192 − 264 to 21152 − 2128.
For𝑤 = 32 (a sweet spot for smaller processors used in embedded applications), 𝑘 = 32 and𝑤 = 64
may be a good choice (period 296 − 232).

6.3 Probability of Overlapping Sequences
Given a PRNG algorithm with a single state cycle of period 𝑃 , suppose that we choose two distinct
positions on the cycle literally uniformly at random, and then for each one consider the sequence of
length ℓ consisting of the state at that position and the ℓ−1 states following it.What is the probability
that the two sequences will overlap?We care about this because long overlapping subsequences will
produce highly correlated (indeed, identical) outputs that would not be characteristic of sequences
of values chosen truly at random.

By symmetry, without loss of generality we may assign the first chosen position 𝑞1 the index ℓ ,
and then choose the second position 𝑞2 uniformly at random from the range of integers [0 . . 𝑃 − 1].

, Vol. 1, No. 1, Article . Publication date: April 2021.

393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441

LXM: Better Splittable Pseudorandom Number Generators (and Almost as Fast) 9

Overlap occurs if and only if 1 ≤ 𝑞2 ≤ 2ℓ − 1. The number of choices that allow overlap is 2ℓ − 1,
so the probability of overlap is (2ℓ − 1)/𝑃 .

Now suppose instead of one big state cycle of period 𝑃 , we have 𝐴 distinct state cycles of period
𝑃/𝐴, and we do the following process twice: first choose a state cycle uniformly at random, then
choose a position on that state cycle uniformly at random, then consider a state sequence of length
ℓ starting at that position. The two sequences can overlap only if they lie on the same state cycle
(probability 1/𝐴); if they do, the probability of overlap is (2ℓ − 1)/(𝑃/𝐴) as before, so the overall
probability is (2ℓ − 1)/𝐴(𝑃/𝐴) = (2ℓ − 1)/𝑃 . Thus this intuition: breaking the big state cycle up
into equal-sized pieces does not affect the probability of overlap.
In LXM, the effect of having an additive parameter in the LCG is to select one of a number

(typically 2𝑤−1 or 2𝑘−1) of state cycles (though, as we discuss below in Section 6.5.1, these state
cycles are not terribly different), each of period 2𝑘 (2𝑛 − 1). The point we wish to make here is
that bits in the additive parameter are just as effective as bits in the LCG state or the XBG state in
reducing the probability of overlap, except for the fact that the lowest bit of an additive parameter
is “wasted” because it must be 1. As an example, let’s compare an LXM algorithm 𝐿1with 𝑘 = 64 and
𝑛 = 128 with a modified LXM algorithm 𝐿2 with 𝑘 = 128 and 𝑛 = 128 but the additive parameter is 1
in every instance. Each instance of 𝐿1 has 64 bits of LCG state, a 64-bit additive parameter, and 128
bits of XBG state. Each instance of 𝐿2 has 128 bits of LCG state and 128 bits of XBG state, and it needs
no per-instance storage for the constant additive parameter. So the per-instance storage for each of
𝐿1 and 𝐿2 is 256 bits. For 𝐿2, the probability of overlap is (2ℓ −1)/(2128 (2128−1)) ≈ (2ℓ −1)/2256; for
𝐿1, the probability of overlap is (2ℓ − 1)/(263264 (2128 − 1)) ≈ (2ℓ − 1)/2255, which is the same except
for that one wasted bit. If we let ℓ = 250 and create 232 instances of 𝐿1, initializing their states and
additive parameters truly at random, then the chances that two of them will have the same additive
parameter are fairly high, thanks to the Birthday Paradox (choosing 230 values with replacement
from a set of 263 items), but the probability of any pair of instances overlapping is roughly 2−172,
and the probability that some pair out of the 232 instances will overlap is roughly 2−140 (because
232 is quite small compared to 2172, the effect of the Birthday Paradox can be neglected).
It follows that, under the crucial assumption that initializing the state of newly created instances

using the output of a PRNG is sufficiently close to truly random for this purpose, we can be confident
that instances produced by the split() operation described in Section 3.1 are highly likely to avoid
unwanted correlation due to accidental sequence overlap, and we can increase our confidence either
by increasing the size of the XBG state, increasing the size of the LCG state, and/or increasing the
number of bits in the additive parameter (remembering that this last size cannot usefully exceed
the size of the LCG state).

6.4 Equidistribution
A 𝑘-bit LCG of period 2𝑘 produces each possible 𝑘-bit value exactly once during each cycle, so it is
exactly equidistributed. The high-order𝑤 bits of the output are likewise exactly equidistributed;
each of the 2𝑤 distinct values is produced 2𝑘−𝑤 times during the cycle.
An 𝑛-bit XBG of period 2𝑛 − 1 produces each 𝑤-bit value 2𝑛−𝑤 times, except that there is one

value, typically 0, that is produced only 2𝑛−𝑤 − 1 times. Such a generator is 2−(𝑛−𝑤) -distributed. For
example, for𝑤 = 64, the xoroshiro128 algorithm (𝑛 = 128) is 2−64-distributed, and the xoshiro256
algorithm (𝑛 = 256) is 2−192-distributed.
An LXM algorithm that combines two such subgenerators is exactly equidistributed, because

each position in the period of the LCG “meets” (and is therefore combined with) each position in
the period of the XBG exactly once during the period of the LXM generator, so for every position

, Vol. 1, No. 1, Article . Publication date: April 2021.

442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490

10 Guy L. Steele Jr. and Sebastiano Vigna

in the XBG cycle, the𝑤-bit value in that position has added to it every possible𝑤-bit value exactly
2𝑘−𝑤 times. (Applying a bijective mixing function leaves equidistribution qualities unaffected.)

If the 𝑛-bit XBG of period 2𝑛 − 1 is 𝑛/𝑤-dimensionally equidistributed—that is, using groups of
𝑛/𝑤 successive outputs to form 𝑛/𝑤 tuples results in generating every possible tuple except one
(call it 𝑍 , because it is typically the all-0 tuple), exactly once—then an LXM generator for which
𝑘 = 𝑤 is also 𝑛/𝑤-dimensionally equidistributed; precisely put, every possible 𝑛/𝑤-tuple of values
is generated 2𝑘 times, except that if 𝐷 is any 𝑛/𝑤-tuple that can be generated by the LCG itself,
then 𝐷 +𝑍 is generated by the LXM generator only 2𝑘 − 1 times. (This conclusion relies on the fact
that 𝑘 = 𝑤 guarantees that no two of the 2𝑘 𝑛/𝑤-tuples generated by the LCG are equal, whereas
this is generally not true when 𝑘 > 𝑤 .)

For example, xoroshiro128 is 2-dimensionally equidistributed [Blackman and Vigna 2018]; using
the terminology we define in Section 4, we can observe that xoroshiro128 is 2-dimensionally
1-distributed, and it follows that LXM using a 64-bit LCG and xoroshiro128 is 2-dimensionally
2−64-distributed; so both xoroshiro128 and the LXM based on it can be said to be 2-dimensionally
equidistributed, but the LXM has a much better 𝛿 value, reflecting the fact that it really can generate
all possible 2-tuples, though a few of them are generated very slightly less often than the others,
whereas for xoroshiro128 by itself there is one 2-tuple that is never generated.

Similarly, we can observe that because xoshiro256 is 4-dimensionally equidistributed (more pre-
cisely, 4-dimensionally 1-distributed), an LXMusing a 64-bit LCG and xoshiro256 is 4-dimensionally
2−64-distributed. Likewise, LXM using a 64-bit LCG and xoshiro512 is 8-dimensionally 2−64-
distributed, and LXM using a 64-bit LCG and xoroshiro1024 is 16-dimensionally 2−64-distributed.
To summarize, the LXM algorithm can improve the equidistribution properties of its XBG

component in two ways: (1) by making the sequence of𝑤 bit outputs exactly equidistributed rather
than approximately; and (2) when 𝑘 = 𝑤 and the XBG is 𝑗-dimensionally 𝛿-distributed for some
𝑗 > 1, by reducing 𝛿 by a factor of 2𝑤 .
(We also note that for an application that makes heavy use of, say, 2-tuples of 64-bit values, one

could use a modified version of LXM for which 𝑤 = 128 and 𝑘 = 128 for the LCG, but 𝑤 = 64
and 𝑛 ≥ 128 for the XBG, where for every generated 2-tuple of 64-bit values the LCG is advanced
once and the XBG is advanced twice. The overall generator would then be exactly 2-dimensionally
equidistributed. However, we have not yet studied nor tested such a generator in any depth.)

6.5 Why We Need a Nontrivial Mixing Function
6.5.1 The Shape of LCG Graphs. Durst [1989] observes that, in some sense, every LCG on𝑤-bit
words whose period is 2𝑤 that uses the same multiplier𝑚 produces “the same sequence”; if we
imagine a two-dimensional plot of points (𝑖, 𝑦𝑖), then changing the additive constant 𝑎 has the
effect of shifting the graph horizontally and vertically and possibly also flipping it top-to-bottom,
but the overall “shape” of the graph is unchanged.
To see this, choose any specific𝑚, 𝑎, and 𝑎′ such that𝑚 mod 8 = 5, and 𝑎 and 𝑎′ are odd, and

consider two LCGs 𝐿 = (𝑠0, 𝜆𝜎.(𝑚𝜎 + 𝑎) mod 2𝑤, 𝜆𝜎.𝜎) and 𝐿′ = (𝑠 ′0, 𝜆𝜎.(𝑚𝜎 + 𝑎′) mod 2𝑤, 𝜆𝜎.𝜎).
There are then two cases.
(i) If (𝑎 − 𝑎′) mod 4 = 0, let 𝑟 be a solution to the congruence 𝑎′ ≡ 𝑎 − (𝑚 − 1)𝑟 (mod 2𝑤); it is

unique because𝑚 − 1 and 𝑎 − 𝑎′ are multiples of 4, so we can rewrite it as 𝑚−1)
4 𝑟 ≡ 𝑎−𝑎′

4 (mod 2𝑤);
then, because𝑚 − 1 is an odd multiple of 4, 𝑚−14 has a multiplicative inverse modulo 2𝑤 , therefore
𝑟 =

(
𝑚−1
4

)−1 𝑎−𝑎′
4 mod 2𝑤 . Let 𝑖 be the smallest nonnegative integer such that 𝑠 ′𝑖 = 𝑟 + 𝑠0 mod 2𝑤 .

, Vol. 1, No. 1, Article . Publication date: April 2021.

491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

LXM: Better Splittable Pseudorandom Number Generators (and Almost as Fast) 11

Now an inductive argument: assume that 𝑠 ′𝑖+𝑗 = 𝑟 + 𝑠 𝑗 ; then

𝑙𝑐𝑟𝑠 ′𝑖+𝑗+1 = (𝑚𝑠 ′𝑖+𝑗 + 𝑎′) mod 2𝑤
= (𝑚(𝑟 + 𝑠 𝑗) + 𝑎 − (𝑚 − 1)𝑟) mod 2𝑤
= (𝑚𝑟 +𝑚𝑠 𝑗 + 𝑎 −𝑚𝑟 + 𝑟) mod 2𝑤
= (𝑟 +𝑚𝑠 𝑗 + 𝑎) mod 2𝑤
= (𝑟 + 𝑠 𝑗+1) mod 2𝑤

and we can conclude that 𝑠 ′𝑖+𝑗 = (𝑟 + 𝑠 𝑗) mod 2𝑤 is true for all 𝑗 ≥ 0. In words, the graph of 𝐿′ is
the result of shifting the graph of 𝐿 rightward by 𝑗 and upward by 𝑟 , where the upward shift is
actually a rotation modulo 2𝑤 .
(ii) If (𝑎 − 𝑎′) mod 4 = 2, let 𝑟 be a solution to the congruence 𝑎′ ≡ (−𝑎) + (𝑚 − 1)𝑟 (mod 2𝑤);

it is unique because both𝑚 − 1 and 𝑎 + 𝑎′ are multiples of 4, so we can rewrite it as 𝑚−1)
4 𝑟 ≡ 𝑎+𝑎′

4
(mod 2𝑤); therefore 𝑟 =

(
𝑚−1
4

)−1 𝑎+𝑎′
4 mod 2𝑤 . Let 𝑖 be the smallest nonnegative integer such that

𝑠 ′𝑖 = −(𝑠0 + 𝑟) mod 2𝑤 . Now an inductive argument: assume that 𝑠 ′𝑖+𝑗 = −𝑟 − 𝑠 𝑗 ; then

𝑠 ′𝑖+𝑗+1 = (𝑚𝑠 ′𝑖+𝑗 + 𝑎′) mod 2𝑤
= (𝑚(−(𝑠 𝑗 + 𝑟)) + ((−𝑎) + (𝑚 − 1)𝑟)) mod 2𝑤
= (−𝑚𝑠 𝑗 −𝑚𝑟 − 𝑎 +𝑚𝑟 − 𝑟) mod 2𝑤
= (−𝑚𝑠 𝑗 − 𝑎 − 𝑟) mod 2𝑤
= −(𝑠 𝑗+1 + 𝑟) mod 2𝑤

and we can conclude that 𝑠 ′𝑖+𝑗 = −(𝑠 𝑗 + 𝑟) mod 2𝑤 is true for all 𝑗 ≥ 0. In words, the graph of 𝐿′ is
the result of shifting the graph of 𝐿 rightward by 𝑗 and downward by 𝑟 (rotating modulo 2𝑤), then
flipping the graph vertically by negation of the 𝑦-axis (again modulo 2𝑤).
Because the output function selects the high-order bits of the LCG state, the effect is to shrink

the graph vertically (dividing by 2𝑘−𝑤) and then to apply a floor function; thus if 𝑘 > 𝑤 , the shape
still remains roughly the same, though there is some jitter. Thus it is clear that choosing different
additive parameters for an LCG is not, of itself, a good way to produce streams that will appear to
be independent.

6.5.2 The Shape of XBG Graphs. A similar (and simpler) argument shows that every full-period
XBG that uses the same matrix𝑈 produces “the same sequence”; to see this, choose an 𝑛-by-𝑛 bit
matrix 𝑈 whose characteristic polynomial is primitive (therefore 𝑈 is invertible), and also choose
two 𝑛-bit vectors 𝑣 and 𝑣 ′; then consider the two XBGs 𝑋 = (𝑥0, 𝜆𝜏 .(𝑈𝜏 ⊕ 𝑣), 𝜆𝜏 .𝑤 bits of 𝜏) and
𝑋 ′ = (𝑥 ′0, 𝜆𝜏 .(𝑈𝜏 ⊕ 𝑣 ′), 𝜆𝜏 .𝑤 bits of 𝜏). By the Cayley–Hamilton theorem and primitivity of the
characteristic polynomial, any polynomial in𝑈 of degree 𝑛− 1 or less can be expressed as a positive
power of𝑈 [Engelberg 2015]; it follows that because𝑈 is invertible,𝑈 ⊕ 𝐼 is invertible.

Now consider the equation 𝑣 ′ = 𝑣 ⊕ (𝑈 ⊕ 𝐼)𝑟 ; because (𝑈 ⊕ 𝐼) is invertible, we can easily solve
the equation to get the unique solution 𝑟 = (𝑈 ⊕ 𝐼)−1 (𝑣 ⊕ 𝑣 ′). Let 𝑖 be the smallest nonnegative
integer such that 𝑥 ′𝑖 = 𝑟 ⊕ 𝑥0. Now an inductive argument: assume that 𝑥 ′𝑖+𝑗 = 𝑟 ⊕ 𝑥 𝑗 ; then

𝑥 ′𝑖+𝑗+1 = (𝑈𝑥 ′𝑖+𝑗 ⊕ 𝑣 ′)
= (𝑈 (𝑟 + 𝑥 𝑗) ⊕ 𝑣 ⊕ (𝑈 ⊕ 𝐼)𝑟)
= (𝑈𝑟 ⊕ 𝑈𝑥 𝑗 ⊕ 𝑣 ⊕ 𝑈𝑟 ⊕ 𝑟)
= (𝑟 ⊕ 𝑈𝑥 𝑗 ⊕ 𝑣)
= (𝑟 ⊕ 𝑥 𝑗+1)

and we can conclude that 𝑥 ′𝑖+𝑗 = 𝑟 ⊕ 𝑥 𝑗 is true for all 𝑗 ≥ 0. In words, the graph of 𝑋 ′ is the result
of shifting the graph of 𝑋 rightward by 𝑗 and “xor-flipping” the vertical axis by 𝑟 .

, Vol. 1, No. 1, Article . Publication date: April 2021.

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588

12 Guy L. Steele Jr. and Sebastiano Vigna

Thus an XBG with state update function 𝜆𝜏 .(𝑈𝜏 ⊕ 𝑣) and output function 𝜆𝜏 .𝜏 [0 . .𝑤 − 1]
is effectively equivalent to an XBG with state update function 𝜆𝜏 .(𝑈𝜏) and output function
(𝜆𝜏 .(𝜏 [0 . .𝑤 − 1] ⊕ 𝑣), where 𝑣 = (((𝑈 ⊕ 𝐼)−1)𝑣) [0 . .𝑤 − 1] = (((𝑈 ⊕ 𝐼)−1) [0 . .𝑤 − 1; 0 . . 𝑛 − 1])𝑣 .
The graphs of all XBGs that use matrix 𝑈 have “the same shape” but “shifted” by an xor with a
constant.

An xor with a constant affects the bits of the XBG state independently, and the output function
simply selects the high-order bits of the XBG state without regard to the value of any state bit;
it follows that graphs of the output values will also have “the same shape.” Thus it is clear that
choosing different additive parameters for an XBG is not, of itself, a good way to produce streams
that will appear to be independent.

6.5.3 The purpose of the additive parameter. In the LXM algorithm, the real purpose of the additive
parameter in the LCG is not to select one of many LCG streams in hopes that these many streams
will appear to be independent, because they cannot. Similarly, an additive parameter in an XBG
will not select one of many independent streams. What we have seen is that, in effect, one might as
well use a fixed LCG and a fixed XBG, combine their outputs, then add (or xor) a parameter, then
apply the mixing function.

Then why does the parameter appear in the LCG rather than later in the algorithm? It is purely
an engineering tweak, a bit of optimization. From a theoretical point of view, we can equally well
introduce a parameter in any of three places: in the LCG, or in the XBG (by using an F2-affine
state update function 𝜆𝜏 .𝑈𝜏 ⊕ 𝑣 rather than the purely F2-linear state update function 𝜆𝜏 .𝑈𝜏), or
by using a combining function such as 𝜆(𝑝, 𝑞).𝑝 + 𝑞 + 𝑎. (We could even introduce parameters
in two, or all three, of those places, but there seems to be little extra benefit.) We observe that
introducing the parameter in the XBG or the combining function requires “extra work”—perhaps
one additional instruction—on today’s typical hardware architectures, but the LCG needs to add
some odd value in order to have full period, and it’s easy to make that odd value be a parameter
rather than a constant. Moreover, in the style of coding where the LCG update and XBG update are
potentially computed in parallel with the combining and mixing functions, and given that a good
mixing function takes longer to compute than the LCG update, adding the parameter in the LCG
rather than in the combining step moves that addition operation off the critical path.

The hope, then, is that the additive parameter, despite being implemented at part of the LCG, will,
in effect, select one of many mixing operations. In order to achieve this result, the mixing function
certainly needs to be nonlinear, and ideally its range will appear to be a random permutation of its
domain. Beyond this point theory offers us little firm guidance, and so we turn to empirical testing.

7 TESTING
We consider BigCrush to be the current gold standard for final testing of any prng algorithm
before deployment. However, we found PractRand to be an extremely useful additional tool for two
purposes: experimental exploration (because it fails fast on poor prng algorithms) and evaluating
relative degrees of weakness (because the length to which a tested sequence must grow before
failure is reported appears to be a more sensitive and repeatable metric than the 𝑝-value calculated
for a sequence of fixed length). An algorithm that passes PractRand at the 4 TB threshold is worthy
of final testing with BigCrush.
In testing variations of the LXM algorithm, we have performed over 52,000 complete runs of

PractRand and over 50,000 complete runs of TestU01 BigCrush. For reasons of space we are unable
to present and describe here all the results of these tests, but we do present and describe tables that
summarize salient results from BigCrush, and we describe and summarize in prose form salient
results from PractRand.

, Vol. 1, No. 1, Article . Publication date: April 2021.

589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637

LXM: Better Splittable Pseudorandom Number Generators (and Almost as Fast) 13

7.1 Test Framework
We built a small testing framework to control thousands of test runs of multiple prng algorithms,
using both the BigCrush test suite and the PractRand test suite.

Nearly all the tests were performed on a cluster of 16 nodes, each with two sockets, each with an
E5-2660 2.2Ghz Intel Xeon processor (each having eight cores collectively supporting 16 threads).
Therefore 512 threads can execute simultaneously. (A very small fraction of the tests were run on a
Macintosh Pro with two 2.8 GHz quad-core Xeon processors. This was done to validate the testing
software before reserving time on the big cluster. The results of these initial runs constituted valid
measurements and were retained.)
We made no attempt to parallelize the PractRand BigCrush test suites; instead, we used make

files to generate thousands of jobs at a time. Each make file describes one batch of test runs. Each
make file includes code to find out which of the compute nodes it is being run on, so that a different
subset of the batch of test runs will be run on each node. The use of make files allowed a very simple
form of crash recovery: simply a matter of re-issuing the make command.

Each individual run tested the behavior of one prng algorithm, starting it from one specific state
and testing the statistical quality of its output stream. While BigCrush and PractRand differ in the
kinds of statistical tests they employ and the way they report the results of their analysis, they are
alike in four key ways:
• There is a simple way to code new prng algorithms in C (or C++) and link them into the test
suite. (This strategy means there is no I/O overhead for piping the prng output stream into
the test suite.)
• Results are reported by printing text to “standard output”; each report includes statistical
information and also an indication of the total amount of CPU time (user execution time)
consumed by the test.
• Each has a command-line interface that allows specification of which prng algorithm to test.
• The command-line interface does not allow a complete specification of the initial state of
the prng, but does allow specification of a 64-bit seed from which the initial state can be
constructed, and the construction code can be user-specified and bundled with the code for
the prng algorithm itself.

We designed a detailed encoding that would allow us to use the single 64-bit integer parameter in
the command line to specify a wide variety of initial states.

7.1.1 Distilling BigCrush Reports. The BigCrush test suite runs 106 individual tests [L’Ecuyer
and Simard 2013, function bbattery_BigCrush, pp. 148–152], computing 160 test statistics and
𝑝-values [L’Ecuyer and Simard 2007]. A single test run typically prints about 110 kilobytes of
information; at the end is either the message “All tests were passed” or a list of anomalies, that
is, tests whose 𝑝-values were outside the range [0.001 . . 0.999].
For every algorithm tested with TestU01, we ran the entire suite three times, once in each of

three distinct modes, identified by the letters f, g, and u. The f mode generates double values by
generating a 64-bit integer, then right-shifting it by 11 and dividing by 253 to produce a value in the
range [0.0 . . 1.0). The g mode generates double values by generating a 64-bit integer, reversing
the order of its bits so that bit 𝑗 becomes bit 63 − 𝑗 , then right-shifting it by 11 and dividing by 253.
The u mode generates double values by generating a 64-bit integer, then dividing each half (first
the low half, then the high half) by 232 to produce two double values, one after the other. (Late in
our testing process we added a fourth mode, w, which generates double values by generating a
64-bit integer, then reversing the bit order of each half and dividing by 232.) As it turned out, we
observed in the measured results no obvious differences between testing modes.

, Vol. 1, No. 1, Article . Publication date: April 2021.

638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686

14 Guy L. Steele Jr. and Sebastiano Vigna

32 bits
𝑚2 = 2891336453 𝐴8 = 0x4E1FD53B 𝑆8 = 0x4C3CA493
𝑚4 = 29943829 𝐴10 = 0x950F5BFF 𝑆10 = 0x734B1FEF
𝑚6 = 32310901 𝐴12 = 0xFB999853 𝑆12 = 0x36BAE016

64 bits
𝑚2 = 2862933555777941757 𝐴8 = 0x856FA2A9BC6917B7 𝑆8 = 0xCFEADA5EE4037657
𝑚4 = 3202034522624059733 𝐴10 = 0x873C0F33448D2C35 𝑆10 = 0x0D1729016D5CA71D
𝑚6 = 3935559000370003845 𝐴12 = 0xD321702ECD7BDA75 𝑆12 = 0xAF5AA696D8C097F6

Table 1. Some of the “magic constants” used in testing. Multiplier values𝑚 are presented in decimal form and
are among those recommended by L’Ecuyer [1999, Table 4, p. 258]; all others are presented in hexadecimal
form and are random values originally obtained from HotBits [Walker 1996], with 𝐴 values forced to be odd.

The distillation software for BigCrush test runs distills the list of anomalies for each test run
into a pair of integers (𝑙, 𝑐) (a warning level and a count) in this manner: If a test run file is missing,
then (𝑙, 𝑐) = (−1, 0). If a test run file is present but is incomplete or malformed, then (𝑙, 𝑐) = (−2, 0)
(this can happen if a test run was terminated before completion). If a test run file is present and all
tests were passed (10−3 < 𝑝 < 1 − 1𝑜−3), then (𝑙, 𝑐) = (0, 0). Otherwise, the test run file was present
and well-formed but reported one or more anomalies. Each anomaly is categorized according to its
reported 𝑝-value (or, if 𝑝 > 0.5, by using 1 − 𝑝) into one of seven warning levels: if 𝑝 ≤ eps then 7,
else if 𝑝 ≤ eps1 then 6, else if 𝑝 ≤ 10−12 then 5, else if 𝑝 ≤ 10−9 then 4, else if 𝑝 ≤ 10−6 then 3, else
if 𝑝 ≤ 10−4 then 2, else if 𝑝 ≤ 10−3 then 1; then 𝑓 is the highest warning level among all anomalies
for the test run, and 𝑐 is the number of anomalies having that highest warning level. We regard a
run as a complete failure if 𝑓 is 6 or 7.

7.1.2 Distilling PractRand Reports. The PractRand test suite runs for an indefinite amount of time,
normally producing intermediate reports after processing 2𝑚 bytes of generated pseudorandom
values for all𝑚 ≥ 27. We chose to provide command-line arguments that cause additional reports
to be produced after processing 0.375 × 240, 0.75 × 240, 1.25 × 240, 1.5 × 240, 1.75 × 240, 2.25 × 240,
2.5× 240, 2.75× 240, 3× 240, 3.25× 240, 3.5× 240, and 3.75× 240 bytes. We also provide command-line
arguments that terminate the test run either after the first report that prints “FAIL” or after testing
4 terabytes of data, whichever comes first. For a report produced after processing 2𝑚 bytes of
generated values, PractRand computes 4𝑚 − 56 separate statistics; thus the first report (for𝑚 = 27)
reports 52 test results, and the report for𝑚 = 42 (4 terabytes) reports 112 test results.
The PractRand test suite is oriented toward testing 64-bit integer values and includes tests

specifically designed to probe weakness in the low-order bits, so we used PractRand directly on the
generated 64-bit values and made no attempt to define multiple testing modes.

A single test run that gets all the way to 4 terabytes typically prints about 5 kilobytes of informa-
tion. For each anomaly reported, PractRand prints not only a 𝑝-value but also a word or phrase
describing that 𝑝-value; in increasing order of severity, they are unusual, suspicious, SUSPICIOUS,
very suspicious, VERY SUSPICIOUS, and FAIL. (PractRand may further print a varying number of
exclamation points after the word “FAIL” but we chose to ignore those: failure is failure.) We relied
on these nonnumerical descriptions in distilling the reports.

The distillation software for PractRand test runs distills a set of anomalies into a pair of integers
(𝑙, 𝑐) (a warning level, ranging from 1 for unusual to 6 for FAIL, and a count) in a manner similar
to that used for BigCrush. In addition, for each warning, the amount of data processed is recorded.

, Vol. 1, No. 1, Article . Publication date: April 2021.

687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735

LXM: Better Splittable Pseudorandom Number Generators (and Almost as Fast) 15

uint16_t madeup16(uint16_t z) {
z = (uint16_t)((z ^ (z >> 8)) * 0xca6b);
z = (uint16_t)((z ^ (z >> 9)) * 0xae35);
return (uint16_t)(z ^ (z >> 8)); }

uint16_t starstar16(uint16_t z) {
z = z * 5;
return ((z << 7) | (z >> 9)) * 9; }

uint32_t murmur32(uint32_t z) {
z ^= (z >> 16);
z *= 0x85ebca6bul;
z ^= (z >> 13);
z *= 0xc2b2ae35ul;
return z ^ (z >> 16); }

uint32_t degski32(uint32_t z) {
z ^= (z >> 16);
z *= 0x45d9f3bul;
z ^= (z >> 16);
z *= 0x45d9f3bul;
return z ^ (z >> 16); }

uint64_t lea64(uint64_t z) {
z ^= (z >> 32);
z *= 0xdaba0b6eb09322e3ull;
z ^= (z >> 32);
z *= 0xdaba0b6eb09322e3ull;
return z ^ (z >> 32); }

uint64_t murmur64(uint64_t z) {
z ^= (z >> 33);
z *= 0xff51afd7ed558ccdull;
z ^= (z >> 33);
z *= 0xc4ceb9fe1a85ec53ull;
return z ^ (z >> 33); }

uint64_t degski64(uint64_t z) {
z ^= (z >> 32);
z *= 0xd6e8feb86659fd93ull;
z ^= (z >> 32);
z *= 0xd6e8feb86659fd93ull;
return z ^ (z >> 32); }

Fig. 3. Mixing functions used during testing

7.2 Results of BigCrush Tests
To save space, Table 1 lists some constants that are referred to by name in later tables. Not shown
for lack of space are similar constants 𝑋8, 𝑋10, and 𝑋12; also not shown are similar 16-bit and 128-bit
constants.

Table 2 and other tables after it present summarized BigCrush results; the LATEX source for these
tables was generated automatically by the distillation software described in Section 7.1. Each line
of the table summarizes a set of tests that differ only in stream count (the number of instances
whose outputs are used in round-robin fashion) and mode. The first line of the table’s footer shows
the total number of test runs and the total CPU-thread time expended’ the second line shows the
set of stream counts and set of modes used for every line in the table.

For each line in the table, the first three columns show𝑤 , 𝑘 , and 𝑛. The next two columns name
the mixing function and initialization strategy. The next five columns give𝑚, 𝑎, 𝑠0, 𝑥0, and the
combining function (+ or ⊕); if a value is underlined, then every instance uses the indicated value;
otherwise each instance uses a value generated by some other instance in a manner dictated by the
particular initialization strategy. 𝑁 is the total number of test runs for that line of the table. The
next eight columns show the number of test runs whose highest warning level was 0, 1, 2, . . . , 7;
recall that warning levels 6 and 7 indicate complete failure. The last two columns give the total
number of warnings (Σ) and the smallest 𝑝-value (𝑃worst) seen during the 𝑁 runs.

Figure 3 shows C definitions of some mixing functions we have tested: murmur32 and murmur64,
the MurmurHash3 finalizers [Appleby 2011]; degski2 and degski64 [degski 2018]; lea64, by Doug
Lea; starstar16 [Blackman and Vigna 2018]; and madeup16, by one of the authors of this paper.
These are the five initialization strategies that appear in the tables (let 𝜅 be the stream count,

and it is implicitly understood that as the non-underlined values for an instance are filled in, the
underlined values are also filled in as specified in the table):

, Vol. 1, No. 1, Article . Publication date: April 2021.

736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784

16 Guy L. Steele Jr. and Sebastiano Vigna

same uses the listed𝑚, 𝑧, 𝑠0, and 𝑥0 values to create a single extra instance of the LXM, outputs
of which is used to initialize non-underlined values for the 𝜅 instances to be tested.

tree 𝑏 uses𝑚, 𝑧, 𝑠0, and 𝑥0 to initialize instance 0, then for all 1 ≤ 𝑗 < 𝜅 in ascending order,
output from instance ⌊ 𝑗/𝑏⌋ is used to initialize non-underlined values for instance 𝑗 .

skip uses𝑚, 𝑧, 𝑠0, and 𝑥0 to initialize instance 0, then for all 1 ≤ 𝑗 < 𝜅 in ascending order, all
non-underlined values for instance 𝑖 are copied from those of instance 𝑖 − 1 and then the
state of the XBG is advanced one position.

jump is the same as skip, except that the XBG is advanced by 2𝑛/2 positions.
leap is the same as skip, except that the XBG is advanced by 23𝑛/4 positions.

7.2.1 Scaling the Number of Streams. Table 2 shows results from LXM instances that use a 64-bit
LCG, either xoroshiro128 or xoshiro256, and either one of three mixers or none. The combining
function is + (addition). They are tested for stream counts 1, 2, 4, 8, 16, . . . , 224 and also three other
non-power-of-two stream counts, chosen arbitrarily. For each stream count 𝜅 , five different initial-
ization procedures are tested: same, tree 2, skip, jump, and leap. We observe BigCrush fails only
the cases that use no mixing function and use skip, jump, or leap initialization. All three mixing
functions appear to be equally effective in this set of tests.
We ran similar tests using a 128-bit LCG (with a 64-bit multiplier and either a 64-bit or 128-bit

additive parameter) and xoroshiro128 for the XBG, using the same set of stream counts and the
same five initialization procedures. The table of results (Appendix, Table 10) is quite similar to
Table 2.

7.2.2 Tree-shaped (Potentially Parallel) Initialization Strategies. Table 3 shows BigCrush results
from LXM instances that use a 64-bit LCG, either xoroshiro128 or xoshiro256, and no mixing
function. The combining function is + (addition). They are tested for stream counts 28, 212, 214, 217,
221, and 224. For each stream count, six different branching factors for the tree are tested: 3, 4, 5, 16,
32, and 256 (the tests shown in Table 2 cover the case of branching factor 2). None of these tests
fail. Out of 216 tests, just one has a warning level as high as 3.

7.2.3 Instances with Very Similar Additive Constants. Table 4 shows BigCrush results from LXM
instances with 𝑘 = 32 and 𝑛 = 64, 𝑘 = 32 and 𝑛 = 128, 𝑘 = 64 and 𝑛 = 128, or 𝑘 = 64 and
𝑛 = 256. The combining function is + (addition). We tested all 200 combinations of 25 stream
counts ({ 2𝑗 | 0 ≤ 𝑗 ≤ 24 }), two different multipliers𝑚4 and𝑚6 for the LCG, 2 mixing functions
(none, or murmur of the appropriate word size), and two ways to choose the additive constants. The
initialization strategy was the same in all cases, except that the additive constants were chosen
to be very similar: for stream count 𝜅, for 0 ≤ 𝑖 < 𝜅, the additive parameter was either 1 + 32𝑖 or
𝐴8 + 32𝑖 . All cases with no mixing function and a stream count below 1024 fail. All cases using
a murmur mixer passed, and out of 2000 tests, just one has a warning level as high as 3. (We also
tested multiplier𝑚2; the results, not shown here for lack of space, were similar.)

On the other hand, certain contrived tests fail BigCrush spectacularly: if the initial states 𝑠0 and
𝑥0 of two instances are identical (a situation unlikely in practice) and on top of that their additive
constants 𝑎 differ only in the high-order bit (even less likely), then the values produced by the
combining function will differ only in the high-order bit, and it’s asking too much of a fast mixing
function to produce apparently independent streams from such inputs.
We conclude that the mixing function may play a valuable defensive role when the additive

constants of the LCGs are somewhat similar, but in very rare cases may fail to do the job; it’s
important to try to initialize multiple instances to very different states.

7.2.4 Instances That Use xor for the Combining Function. Table 5, which may be compared with
Table 4, shows BigCrush results from LXM instances with either 𝑘 = 32 and 𝑛 = 64, or 𝑘 = 64 and

, Vol. 1, No. 1, Article . Publication date: April 2021.

785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833

LXM: Better Splittable Pseudorandom Number Generators (and Almost as Fast) 17

𝑤 𝑘 𝑛 mixer init 𝑚 𝑎 𝑠0 𝑥0 � 𝑁 0 1 2 3 4 5 6 7 Σ 𝑝worst
64 64 128 murmur64 same 𝑚2 𝐴8 𝑆8 𝑋8 + 84 61 19 3 1 28 2.0E-7
64 64 128 murmur64 tree 2 𝑚2 𝐴8 𝑆8 𝑋8 + 84 54 26 4 37 3.0E-5
64 64 128 murmur64 skip 𝑚2 𝐴8 𝑆8 𝑋8 + 84 59 19 6 29 3.0E-6
64 64 128 murmur64 jump 𝑚2 𝐴8 𝑆8 𝑋8 + 84 58 22 4 34 3.8E-5
64 64 128 murmur64 leap 𝑚2 𝐴8 𝑆8 𝑋8 + 84 65 15 4 24 6.0E-5
64 64 128 degski64 same 𝑚2 𝐴8 𝑆8 𝑋8 + 84 56 19 9 36 3.7E-5
64 64 128 degski64 tree 2 𝑚2 𝐴8 𝑆8 𝑋8 + 84 64 12 8 24 1.0E-5
64 64 128 degski64 skip 𝑚2 𝐴8 𝑆8 𝑋8 + 84 58 22 4 31 1.6E-6
64 64 128 degski64 jump 𝑚2 𝐴8 𝑆8 𝑋8 + 84 61 18 5 30 2.3E-5
64 64 128 degski64 leap 𝑚2 𝐴8 𝑆8 𝑋8 + 84 57 20 7 32 3.0E-5
64 64 128 lea64 same 𝑚2 𝐴8 𝑆8 𝑋8 + 84 63 19 1 1 24 2.8E-7
64 64 128 lea64 tree 2 𝑚2 𝐴8 𝑆8 𝑋8 + 84 60 20 4 30 4.4E-6
64 64 128 lea64 skip 𝑚2 𝐴8 𝑆8 𝑋8 + 84 62 21 1 26 9.4E-5
64 64 128 lea64 jump 𝑚2 𝐴8 𝑆8 𝑋8 + 84 52 26 6 40 2.8E-5
64 64 128 lea64 leap 𝑚2 𝐴8 𝑆8 𝑋8 + 84 56 18 10 35 2.7E-6
64 64 128 none same 𝑚2 𝐴8 𝑆8 𝑋8 + 84 50 29 5 38 4.6E-5
64 64 128 none tree 2 𝑚2 𝐴8 𝑆8 𝑋8 + 84 57 23 4 33 1.1E-5
64 64 128 none skip 𝑚2 𝐴8 𝑆8 𝑋8 + 84 2 0 1 0 0 0 0 81 6406 eps
64 64 128 none jump 𝑚2 𝐴8 𝑆8 𝑋8 + 84 41 7 2 0 0 0 1 33 103 eps
64 64 128 none leap 𝑚2 𝐴8 𝑆8 𝑋8 + 84 43 5 3 0 0 0 0 33 104 eps
64 64 256 murmur64 same 𝑚2 𝐴8 𝑆8 𝑋8 + 84 63 16 5 23 7.1E-6
64 64 256 murmur64 tree 2 𝑚2 𝐴8 𝑆8 𝑋8 + 84 55 23 6 36 4.4E-6
64 64 256 murmur64 skip 𝑚2 𝐴8 𝑆8 𝑋8 + 84 57 21 6 32 1.1E-5
64 64 256 murmur64 jump 𝑚2 𝐴8 𝑆8 𝑋8 + 84 66 15 3 21 3.2E-5
64 64 256 murmur64 leap 𝑚2 𝐴8 𝑆8 𝑋8 + 84 59 20 5 30 1.9E-5
64 64 256 degski64 same 𝑚2 𝐴8 𝑆8 𝑋8 + 84 60 17 7 30 1.8E-5
64 64 256 degski64 tree 2 𝑚2 𝐴8 𝑆8 𝑋8 + 84 60 20 4 26 8.1E-5
64 64 256 degski64 skip 𝑚2 𝐴8 𝑆8 𝑋8 + 84 51 27 6 39 1.6E-5
64 64 256 degski64 jump 𝑚2 𝐴8 𝑆8 𝑋8 + 84 62 19 2 1 31 2.4E-7
64 64 256 degski64 leap 𝑚2 𝐴8 𝑆8 𝑋8 + 84 58 22 4 30 1.1E-5
64 64 256 lea64 same 𝑚2 𝐴8 𝑆8 𝑋8 + 84 63 18 3 22 7.4E-6
64 64 256 lea64 tree 2 𝑚2 𝐴8 𝑆8 𝑋8 + 84 53 24 7 36 1.9E-6
64 64 256 lea64 skip 𝑚2 𝐴8 𝑆8 𝑋8 + 84 59 18 7 26 3.7E-6
64 64 256 lea64 jump 𝑚2 𝐴8 𝑆8 𝑋8 + 84 63 18 3 26 3.0E-5
64 64 256 lea64 leap 𝑚2 𝐴8 𝑆8 𝑋8 + 84 62 17 5 27 2.4E-5
64 64 256 none same 𝑚2 𝐴8 𝑆8 𝑋8 + 84 55 27 2 38 4.5E-5
64 64 256 none tree 2 𝑚2 𝐴8 𝑆8 𝑋8 + 84 52 30 2 41 3.2E-5
64 64 256 none skip 𝑚2 𝐴8 𝑆8 𝑋8 + 84 2 1 0 0 0 0 0 81 6318 eps
64 64 256 none jump 𝑚2 𝐴8 𝑆8 𝑋8 + 84 32 17 2 0 0 0 0 33 95 eps
64 64 256 none leap 𝑚2 𝐴8 𝑆8 𝑋8 + 84 38 13 0 0 0 0 0 33 86 eps
3360 complete runs of BigCrush Total CPU-thread time: 1433 days + 13:31:27
Stream counts used: { 2𝑗 | 0 ≤ 𝑗 ≤ 24 } ∪ { 1900547, 5242880, 12582912 } Modes used: u f g

Table 2. Test measurements for gemini52A

, Vol. 1, No. 1, Article . Publication date: April 2021.

834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882

18 Guy L. Steele Jr. and Sebastiano Vigna

𝑤 𝑘 𝑛 mixer init 𝑚 𝑎 𝑠0 𝑥0 � 𝑁 0 1 2 3 4 5 6 7 Σ 𝑝worst
64 64 128 none tree 3 𝑚2 𝐴8 𝑆8 𝑋8 + 18 10 6 2 8 1.8E-5
64 64 128 none tree 4 𝑚2 𝐴8 𝑆8 𝑋8 + 18 15 3 3 4.8E-4
64 64 128 none tree 5 𝑚2 𝐴8 𝑆8 𝑋8 + 18 10 6 2 9 3.3E-5
64 64 128 none tree 16 𝑚2 𝐴8 𝑆8 𝑋8 + 18 9 9 11 1.3E-4
64 64 128 none tree 32 𝑚2 𝐴8 𝑆8 𝑋8 + 18 10 6 2 12 1.6E-5
64 64 128 none tree 256𝑚2 𝐴8 𝑆8 𝑋8 + 18 13 4 1 5 1.0E-4
64 64 256 none tree 3 𝑚2 𝐴8 𝑆8 𝑋8 + 18 15 3 3 1.1E-4
64 64 256 none tree 4 𝑚2 𝐴8 𝑆8 𝑋8 + 18 9 6 3 9 1.8E-5
64 64 256 none tree 5 𝑚2 𝐴8 𝑆8 𝑋8 + 18 11 7 7 1.5E-4
64 64 256 none tree 16 𝑚2 𝐴8 𝑆8 𝑋8 + 18 10 6 1 1 9 2.2E-7
64 64 256 none tree 32 𝑚2 𝐴8 𝑆8 𝑋8 + 18 14 3 1 7 4.2E-5
64 64 256 none tree 256𝑚2 𝐴8 𝑆8 𝑋8 + 18 9 6 3 12 4.1E-5
216 complete runs of BigCrush Total CPU-thread time: 96 days + 15:34:05
Stream counts used: { 28, 212, 214, 217, 221, 224 } Modes used: u f g

Table 3. Test measurements for gemini56

𝑛 = 256. The combining function is ⊕ (xor). As in Section 7.2.3, we tested all 200 combinations of
25 stream counts ({ 2𝑗 | 0 ≤ 𝑗 ≤ 24 }), two different multipliers𝑚4 and𝑚6 for the LCG, 2 mixing
functions (none, or murmur of the appropriate word size), and two ways to choose the additive
constants. The initialization strategy was the same in all cases, except that the additive constants
were chosen to be very similar: for stream count 𝜅 , for 0 ≤ 𝑖 < 𝜅 , the additive parameter was either
1 + 32𝑖 or 𝐴8 + 32𝑖 . All cases with no mixing function and a stream count below 1024 fail. All cases
using a murmur mixer passed, and out of 1000 tests, just two have a warning level as high as 3. (We
also tested multiplier𝑚2; the results, not shown here for lack of space, were similar.)
We conclude that when a good mixing function is used, using xor for the combining function

appears to be no worse than using addition.

7.2.5 Scaling the State Size. One way to see how a family of PRNGs behaves is to consider the
behavior of very small members of the family. We tested three small variants: 𝑤 = 32, 𝑘 = 32,
𝑛 = 128; 𝑤 = 32, 𝑘 = 32, 𝑛 = 64; and𝑤 = 16, 𝑘 = 16, 𝑛 = 32. In each case the combining function
was addition.

Small PRNGs: Table 6 shows BigCrush results for 𝑤 = 32, 𝑘 = 32, and 𝑛 either 64 or 128. The
64-bit XBG algorithm is xoroshiro64 [Blackman and Vigna 2018], that is,

{ q1 ^= q0; q0 = (q0 << 26) | (q0 >> 6); q0 = q0 ^ q1 ^ (q1 << 9);
q1 = (q1 << 13) | (q1 >> 19); }

with output q0. The 128-bit XBG algorithm is xoshiro128 [Blackman and Vigna 2018], that is,
{ uint32_t t = q1 << 9; q2 ^= q0; q3 ^= q1; q1 ^= q2; q0 ^= q3;
q2 ^= t; q3 = (q3 << 11) | (q3 >> 21); }

with output q1. We tested all 240 combinations of 25 stream counts ({ 2𝑗 | 0 ≤ 𝑗 ≤ 24 }), 4 mixing
functions (none, murmur32, degski32, and lea32), and 2 initialization strategies (same and tree
2). For 𝑛 = 64, the version with no mixer always failed when the number of streams was less than
64; for 𝑛 = 128, the version with no mixer always failed when the number of streams was less than
16. In all other cases, no warning level worse than 2 was observed, except for one case with 𝑛 = 64
and stream count 256, which had warning level 3.

, Vol. 1, No. 1, Article . Publication date: April 2021.

883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931

LXM: Better Splittable Pseudorandom Number Generators (and Almost as Fast) 19

𝑤 𝑘 𝑛 mixer init 𝑚 𝑎 𝑠0 𝑥0 � 𝑁 0 1 2 3 4 5 6 7 Σ 𝑝worst
32 32 64 none same 𝑚4 1+32𝑖 𝑆8 𝑋8 + 125 55 18 4 0 0 0 37 11 105 eps
32 32 64 none same 𝑚4 𝐴8+32𝑖 𝑆8 𝑋8 + 125 58 17 2 0 0 0 37 11 112 eps
32 32 64 none same 𝑚6 1+32𝑖 𝑆8 𝑋8 + 125 58 17 2 0 0 0 37 11 97 eps
32 32 64 none same 𝑚6 𝐴8+32𝑖 𝑆8 𝑋8 + 125 58 14 5 0 0 0 37 11 107 eps
32 32 64 murmur same 𝑚4 1+32𝑖 𝑆8 𝑋8 + 125 87 32 6 44 3.5E-5
32 32 64 murmur same 𝑚4 𝐴8+32𝑖 𝑆8 𝑋8 + 125 82 36 7 52 1.8E-6
32 32 64 murmur same 𝑚6 1+32𝑖 𝑆8 𝑋8 + 125 93 27 5 35 4.1E-5
32 32 64 murmur same 𝑚6 𝐴8+32𝑖 𝑆8 𝑋8 + 125 95 24 5 1 38 5.8E-7
32 32 128 none same 𝑚4 1+32𝑖 𝑆8 𝑋8 + 125 64 15 5 0 0 0 35 6 86 eps
32 32 128 none same 𝑚4 𝐴8+32𝑖 𝑆8 𝑋8 + 125 61 17 6 0 0 0 35 6 93 eps
32 32 128 none same 𝑚6 1+32𝑖 𝑆8 𝑋8 + 125 64 11 9 0 0 0 35 6 101 eps
32 32 128 none same 𝑚6 𝐴8+32𝑖 𝑆8 𝑋8 + 125 61 19 4 0 0 0 35 6 84 eps
32 32 128 murmur same 𝑚4 1+32𝑖 𝑆8 𝑋8 + 125 90 29 6 41 2.4E-5
32 32 128 murmur same 𝑚4 𝐴8+32𝑖 𝑆8 𝑋8 + 125 77 45 3 54 8.7E-6
32 32 128 murmur same 𝑚6 1+32𝑖 𝑆8 𝑋8 + 125 82 34 9 58 1.6E-6
32 32 128 murmur same 𝑚6 𝐴8+32𝑖 𝑆8 𝑋8 + 125 85 35 5 47 4.6E-5
64 64 128 none same 𝑚4 1+32𝑖 𝑆8 𝑋8 + 125 77 28 9 0 0 0 9 2 59 eps
64 64 128 none same 𝑚4 𝐴8+32𝑖 𝑆8 𝑋8 + 125 79 30 4 1 0 0 9 2 57 eps
64 64 128 none same 𝑚6 1+32𝑖 𝑆8 𝑋8 + 125 78 28 7 1 0 0 9 2 63 eps
64 64 128 none same 𝑚6 𝐴8+32𝑖 𝑆8 𝑋8 + 125 76 38 0 0 0 0 9 2 59 eps
64 64 128 murmur same 𝑚4 1+32𝑖 𝑆8 𝑋8 + 125 89 31 5 46 1.1E-5
64 64 128 murmur same 𝑚4 𝐴8+32𝑖 𝑆8 𝑋8 + 125 91 27 7 36 1.1E-5
64 64 128 murmur same 𝑚6 1+32𝑖 𝑆8 𝑋8 + 125 87 31 7 45 8.0E-5
64 64 128 murmur same 𝑚6 𝐴8+32𝑖 𝑆8 𝑋8 + 125 86 33 6 47 2.7E-5
64 64 256 none same 𝑚4 1+32𝑖 𝑆8 𝑋8 + 125 89 19 5 2 0 0 9 1 43 eps
64 64 256 none same 𝑚4 𝐴8+32𝑖 𝑆8 𝑋8 + 125 83 29 3 0 0 0 9 1 53 eps
64 64 256 none same 𝑚6 1+32𝑖 𝑆8 𝑋8 + 125 80 28 7 0 0 0 9 1 56 eps
64 64 256 none same 𝑚6 𝐴8+32𝑖 𝑆8 𝑋8 + 125 83 26 5 1 0 0 9 1 52 eps
64 64 256 murmur same 𝑚4 1+32𝑖 𝑆8 𝑋8 + 125 88 35 2 42 8.2E-6
64 64 256 murmur same 𝑚4 𝐴8+32𝑖 𝑆8 𝑋8 + 125 87 30 8 44 3.4E-5
64 64 256 murmur same 𝑚6 1+32𝑖 𝑆8 𝑋8 + 125 84 33 8 48 6.7E-6
64 64 256 murmur same 𝑚6 𝐴8+32𝑖 𝑆8 𝑋8 + 125 93 26 6 40 6.3E-6
4000 complete runs of BigCrush Total CPU-thread time: 1845 days + 12:33:10
Stream counts used: { 2𝑗 | 0 ≤ 𝑗 ≤ 24 } Modes used: u v w f g

Table 4. Test measurements for gemini57A

Very small PRNGs: Table 7 shows BigCrush results for 𝑤 = 16, 𝑘 = 16, 𝑛 = 32; the 32-bit XBG
algorithm is

{ q ^= (q << 13); q ^= (q >> 17); q ^= (q << 5); }

which uses one of the triples of shift constants recommended by Marsaglia [2003, §3]. We tested all
240 combinations of 40 stream counts ({ 2𝑗 | 0 ≤ 𝑗 ≤ 24 } ∪ {256 + 16 𝑗 | 1 ≤ 𝑗 ≤ 15 }), 3 mixing
functions (none, starstar16, and madeup16), and 2 initialization strategies (same and tree 2). The
version with no mixer always failed when the number of streams was less than 336; no warning
level worse than 2 was observed for stream counts above 367. The starstar16 mixer produced
no warning level worse than 2. The madeup16 mixer (so called because its constants were chosen

, Vol. 1, No. 1, Article . Publication date: April 2021.

932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980

20 Guy L. Steele Jr. and Sebastiano Vigna

𝑤 𝑘 𝑛 mixer init 𝑚 𝑎 𝑠0 𝑥0 � 𝑁 0 1 2 3 4 5 6 7 Σ 𝑝worst
32 32 64 none same 𝑚4 1+32𝑖 𝑆8 𝑋8 ⊕ 125 47 16 2 0 0 0 35 25 149 eps
32 32 64 none same 𝑚4 𝐴8+32𝑖 𝑆8 𝑋8 ⊕ 125 49 13 1 2 0 0 35 25 151 eps
32 32 64 none same 𝑚6 1+32𝑖 𝑆8 𝑋8 ⊕ 125 48 13 4 0 0 0 35 25 142 eps
32 32 64 none same 𝑚6 𝐴8+32𝑖 𝑆8 𝑋8 ⊕ 125 48 12 5 0 0 0 35 25 171 eps
32 32 64 murmur same 𝑚4 1+32𝑖 𝑆8 𝑋8 ⊕ 125 94 29 2 38 4.6E-6
32 32 64 murmur same 𝑚4 𝐴8+32𝑖 𝑆8 𝑋8 ⊕ 125 97 25 3 33 3.7E-5
32 32 64 murmur same 𝑚6 1+32𝑖 𝑆8 𝑋8 ⊕ 125 88 32 5 42 2.1E-5
32 32 64 murmur same 𝑚6 𝐴8+32𝑖 𝑆8 𝑋8 ⊕ 125 86 34 5 46 2.2E-5
64 64 128 none same 𝑚4 1+32𝑖 𝑆8 𝑋8 ⊕ 125 76 24 4 0 0 0 7 14 64 eps
64 64 128 none same 𝑚4 𝐴8+32𝑖 𝑆8 𝑋8 ⊕ 125 78 19 7 0 0 0 7 14 64 eps
64 64 128 none same 𝑚6 1+32𝑖 𝑆8 𝑋8 ⊕ 125 70 31 3 0 0 0 7 14 81 eps
64 64 128 none same 𝑚6 𝐴8+32𝑖 𝑆8 𝑋8 ⊕ 125 68 33 3 0 0 0 7 14 83 eps
64 64 128 murmur same 𝑚4 1+32𝑖 𝑆8 𝑋8 ⊕ 125 85 31 8 1 49 7.6E-7
64 64 128 murmur same 𝑚4 𝐴8+32𝑖 𝑆8 𝑋8 ⊕ 125 82 35 7 1 57 2.0E-7
64 64 128 murmur same 𝑚6 1+32𝑖 𝑆8 𝑋8 ⊕ 125 81 35 9 51 2.3E-5
64 64 128 murmur same 𝑚6 𝐴8+32𝑖 𝑆8 𝑋8 ⊕ 125 91 28 6 40 1.9E-5
2000 complete runs of BigCrush Total CPU-thread time: 832 days + 23:59:39
Stream counts used: { 2𝑗 | 0 ≤ 𝑗 ≤ 24 } Modes used: u v w f g

Table 5. Test measurements for gemini57B

at whim, with no attempt to optimize avalanche statistics) also produced no warning level worse
than 2. So even at this very small scale we see that, on the one hand, even a simple mixing function
clearly improves the quality, and on the other hand, even a simple mixing function suffices to get
adequate quality. Focusing on the single-stream case, we find it remarkable that a PRNG with just
48 bits of state is able to pass BigCrush, and that (with the madeup16 mixer) PractRand tests 1TB
of its output (239 generated values) before failing it.

7.2.6 LCG Multipliers. Most of our testing has used multipliers recommended by L’Ecuyer [1999,
Table 4, p. 258], but we have also run tests using some of the multipliers recently discovered by
Steele and Vigna [2021, Table 5, p. 17]. We have not detected any significant difference in test
results; if there is any difference in LXM quality related to LCG multiplier quality, it may require
more sensitive and perhaps more specialized tests to detect it.

7.3 Results of PractRand Tests
TO DO: briefly discuss

8 COMPARATIVE TIMING TESTS
In Table 8 we report comparative timings of a selection of LXM generators compared with SplitMix.
We tested two architectures: an Intel® Core™ i7-8700B CPU @3.20GHz (Haswell) and an AWS
Graviton 2 processor based on 64-bit Arm Neoverse cores @2.5GHz. We performed our tests using
two different compilers, gcc 10 and clang 10. In each case, we tested the next-state function in
two ways: forcing inlining, or blocking inlining: in the second case, the compiler has to reload the
constants involved at each call, and we also pay for the function call itself. The two timings gives
a differential view of the cost of pure computation (without constant loading) versus global cost.
We report the average of ten runs; the measurements are very stable, with relative standard error
below 2%, and in almost all cases below 0.5%.

, Vol. 1, No. 1, Article . Publication date: April 2021.

981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029

LXM: Better Splittable Pseudorandom Number Generators (and Almost as Fast) 21

𝑤 𝑘 𝑛 mixer init 𝑚 𝑎 𝑠0 𝑥0 � 𝑁 0 1 2 3 4 5 6 7 Σ 𝑝worst
32 32 64 none same 𝑚2 𝐴8 𝑆8 𝑋8 + 75 34 19 3 1 0 0 15 3 49 eps
32 32 64 none tree 2𝑚2 𝐴8 𝑆8 𝑋8 + 75 37 18 2 0 0 0 15 3 52 eps
32 32 64 murmur32 same 𝑚2 𝐴8 𝑆8 𝑋8 + 75 41 29 5 37 8.7E-6
32 32 64 murmur32 tree 2𝑚2 𝐴8 𝑆8 𝑋8 + 75 53 17 5 25 7.5E-6
32 32 64 degski32 same 𝑚2 𝐴8 𝑆8 𝑋8 + 75 49 24 2 27 2.3E-5
32 32 64 degski32 tree 2𝑚2 𝐴8 𝑆8 𝑋8 + 75 48 25 2 30 4.0E-5
32 32 64 lea32 same 𝑚2 𝐴8 𝑆8 𝑋8 + 75 48 22 5 33 3.9E-5
32 32 64 lea32 tree 2𝑚2 𝐴8 𝑆8 𝑋8 + 75 57 15 3 20 5.3E-5
32 32 128 none same 𝑚2 𝐴8 𝑆8 𝑋8 + 75 42 19 2 0 0 0 12 36 eps1
32 32 128 none tree 2𝑚2 𝐴8 𝑆8 𝑋8 + 75 44 17 2 0 0 0 12 39 eps1
32 32 128 murmur32 same 𝑚2 𝐴8 𝑆8 𝑋8 + 75 52 19 4 31 2.5E-5
32 32 128 murmur32 tree 2𝑚2 𝐴8 𝑆8 𝑋8 + 75 52 21 2 29 5.1E-6
32 32 128 degski32 same 𝑚2 𝐴8 𝑆8 𝑋8 + 75 60 11 4 17 1.1E-5
32 32 128 degski32 tree 2𝑚2 𝐴8 𝑆8 𝑋8 + 75 55 15 5 25 1.9E-5
32 32 128 lea32 same 𝑚2 𝐴8 𝑆8 𝑋8 + 75 61 11 3 16 5.3E-5
32 32 128 lea32 tree 2𝑚2 𝐴8 𝑆8 𝑋8 + 75 56 17 2 24 3.5E-5
1200 complete runs of BigCrush Total CPU-thread time: 599 days + 19:18:47
Stream counts used: { 2𝑗 | 0 ≤ 𝑗 ≤ 24 } Modes used: u f g

Table 6. Test measurements for gemini55A

𝑤 𝑘 𝑛 mixer init 𝑚 𝑎 𝑠0 𝑥0 � 𝑁 0 1 2 3 4 5 6 7 Σ 𝑝worst
16 16 32 none same 𝑚2 𝐴8 𝑆8 𝑋8 + 120 38 28 10 2 0 0 22 20 203 eps
16 16 32 none tree 2𝑚2 𝐴8 𝑆8 𝑋8 + 120 52 15 8 2 1 0 22 20 193 eps
16 16 32 madeup16 same 𝑚2 𝐴8 𝑆8 𝑋8 + 120 85 30 5 48 5.6E-6
16 16 32 madeup16 tree 2𝑚2 𝐴8 𝑆8 𝑋8 + 120 77 38 5 47 1.6E-5
16 16 32 starstar16 same 𝑚2 𝐴8 𝑆8 𝑋8 + 120 81 35 4 47 2.3E-5
16 16 32 starstar16 tree 2𝑚2 𝐴8 𝑆8 𝑋8 + 120 86 30 4 40 2.5E-5
720 complete runs of BigCrush Total CPU-thread time: 489 days + 6:50:16
Stream counts used: { 2𝑗 | 0 ≤ 𝑗 ≤ 24 } ∪ { 28+24𝑘 | 1 ≤ 𝑘 ≤ 15 } Modes used: u f g

Table 7. Test measurements for LXM kind L16X32

9 MORE ABOUT JUMPING AND SPLITTING
The standard way to jump an XBG by 𝑗 positions is use some precomputed representation of𝑈 𝑗 ,
then apply that matrix to the XBG state. One common convention is that “jump” advances by
𝑗 = 2𝑛/2 positions and “leap” (a “long jump”) advances by 𝑗 = 23𝑛/4 positions; this is advantageous
for LXM because if 𝑗 is a power of 2 at least as as the period of the LCG, then there is no need to
advance the LCG, because advancing by such a large power of 2 leaves the state unchanged. But
the representation of𝑈 𝑗 is typically not as efficient to apply as𝑈 .

Imagine instead that we wish to make an LXM jump backwards by 2𝑛 − 1 positions; that would
leave the XBG state unchanged, and put the LCG in the same state as if we had advanced the LCG
just one position. So advancing just the LCG is a simple way to get a cheaper LXM jump function.
And leaping backward by, say, 2𝑘/2 (2𝑛 − 1) positions is equally easy, because one can precompute
constants𝑚′ and 𝑎′ such that 𝜆𝜎.(𝑚′𝜎 + 𝑎′) mod 2𝑘 will advance the LCG by 2𝑘/2 positions.

, Vol. 1, No. 1, Article . Publication date: April 2021.

1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078

22 Guy L. Steele Jr. and Sebastiano Vigna

size Haswell ARM
(in bits) gcc clang gcc clang

𝑚 𝑎 out inline noinline inline noinline inline noinline inline noinline
L32X64 32 32 32 1.648 2.335 1.641 2.330 2.633 4.569 2.563 4.180
L32XX64 32 32 32 1.562 2.326 1.747 2.365 2.636 4.550 2.620 4.107
L32X128 32 32 32 1.605 2.575 1.574 2.504 2.912 5.249 2.682 4.735
SplitMix — 64 64 0.973 2.238 0.858 1.710 2.401 3.538 3.175 3.414
L64X128 64 64 64 1.646 2.287 1.682 2.267 3.601 4.810 3.601 4.342
L64XX128 64 64 64 1.559 2.498 1.747 2.274 3.601 4.832 3.602 4.359
L64X256 64 64 64 1.627 2.502 1.712 2.475 3.601 5.660 3.601 5.182
L128AX128 64 64 64 1.956 2.960 1.873 2.933 7.602 9.014 6.402 7.312
L128BX128 64 128 64 1.886 2.748 1.867 2.764 7.602 9.219 6.402 7.404
L128CX128 128 64 64 2.613 3.178 1.958 2.933 7.602 10.273 7.602 8.931
L128DX128 128 128 64 2.613 2.933 1.967 2.931 7.602 10.947 7.602 9.005
L128EX128 65 64 64 2.512 3.113 1.958 2.931 7.602 9.014 7.602 7.365
L128FX128 65 128 64 2.511 2.798 1.968 2.819 7.602 8.499 7.602 7.417
L128AX256 64 64 64 1.957 3.223 1.754 2.932 7.602 9.382 6.402 7.264
L128BX256 64 128 64 1.848 2.932 1.811 2.931 7.602 9.374 6.402 7.366
L128CX256 128 64 64 2.610 3.431 1.957 2.986 7.602 11.329 7.602 9.168
L128DX256 128 128 64 2.620 3.178 1.968 3.174 7.602 10.607 7.602 9.178
L128EX256 65 64 64 2.583 3.197 2.039 2.931 7.602 9.481 7.602 7.310
L128FX256 65 128 64 2.582 3.009 1.969 2.982 7.602 8.528 7.602 7.290

Table 8. Comparative timings (all measurements in nanoseconds per word generated)

But the point of jump functions is usually to create multiple generators in such a way that their
generated sequences will not overlap. We believe (but admit that we have not yet proved) that the
additive parameter provides a very simple way to do that if the mixing function is good: just ensure
that each instance has a different additive parameter. Choosing the additive value at random, as the
split()method does), may do that with high probability if 𝑘 is sufficiently larger than the number
of instances. On the other hand, it is very easy for the splits() method to ensure that all the
generators in a single generated stream have different additive parameters; this is even easier than
the cheap strategy for jumping. Testing seems to confirm that this strategy is effective, and splitting
is easier to use than jumping in applications structured to use recursive fork-join parallelism.

10 RELATEDWORK
Schaathun [2015] has recently surveyed a number of techniques for splittable pseudorandom gen-
erators. He traces the origin of the ideas to the 80’s, and in particular to Warnock’s work [Warnock
1983] in particle physics, where splitting occurs when a particle being simulated spawns new
particles. A few years later several studies proposed to use different additive constants of LCGs
to perform splitting, generating a Lehmer tree, until Durst [1989] proved that such sequences are
strictly correlated, as we discuss in Section 6.5.1. Notably, Schaathun concludes that the crypto-
graphic approach of Claessen and Pałka [2013], which uses cryptographic hashing on the splitting
tree, is the safest and the only one providing some theoretical guarantees. Later, Steele, Lea, and
Flood introduced SplitMix [2014, §7]; while they do not perform comparative measurements with
Claessen and Pałka’s approach, they conjecture that the latter should yield sequences with better
statistical qualities than SplitMix, while SplitMix should be faster.

, Vol. 1, No. 1, Article . Publication date: April 2021.

1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127

LXM: Better Splittable Pseudorandom Number Generators (and Almost as Fast) 23

Also the combination of generators of different nature has a long history. A relatively recent video
on YouTube [Losego 2016] has reverse-engineered the code used for random number generation by
the well-known video game Super Mario World [Nintendo 1990], which was released on November
21, 1990. The code merits study as an example of excellent engineering within a severely resource-
constrained computing environment (a Ricoh 5A22 CPU, closely related to the WDC 65C816), and
it happens to be very closely related to the LXM algorithm. The generator produces two 8-bit bytes
each time it is called; each byte is the result of one call to a subroutine. The subroutine implements
two subgenerators, each with one 8-bit byte of state, and the output of the subroutine is the bitwise
xor of the outputs 𝑠 and 𝑡 of the two subgenerators. One subgenerator is an LCG whose period
is 256, and the other an XBG using an F2-affine state update function whose period is 217, so the
overall period of the subgenerator (viewed as a generator of bytes) is 55552. (As far as we can tell,
the principal advantage of using an F2-affine state update function rather than a purely F2-linear
function—either would have been equally easy to implement—is that the state of the PRNG can be
reset by zeroing both state bytes.) The overall period of the main generator (viewed as a generator
of pairs of bytes) is therefore 27776. The update computation for the two subgenerators is

𝑠 ← 5 × 𝑠 + 1; 𝑡 ← (𝑡 ≪ 1) ⊕ 1 ⊕
(
(𝑡 ⊕ (𝑡 ≪ 3))≫ 7

)
The spectral quality of the multiplier 5 is far from the best possible, but on a microprocessor with
no multiply instruction, 5 is the fastest possible nontrivial multiplier that provides full period (the
entire LCG update is five instructions). The period 217 for the xor-based subgenerator is not the
best possible, but the update computation for a subgenerator of period 255 would take many more
instructions; 217 is the longest period possible among xor-based subgenerators that use relatively
few instructions (the entire update is eight instructions) and have odd period. Computing the bitwise
xor of the subgenerator outputs rather than the sum saves one instruction on a microprocessor
that has no add instruction, only add-with-carry. The result is a random number generator that is
small, fast, and adequate in quality for the application.
Generators in Marsaglia and Zaman’s KISS family [Marsaglia and Zaman 1993] combine three

or four independent generator of different nature to improve the randomness of the output.
L’Ecuyer and Granger-Piché [2003] study combined generators with components from different

families, focusing on combining one linear subgenerator with another subgenerator that may or
may not be linear. They prove that, under appropriate conditions, combining an LFSR (which is one
kind of XBG) with another generator will preserve equidistribution properties of the LFSR. They
also test a number of combined generators and conclude that “combining two different types of
linear generators, such as a LCG or MRG with a LFSR, seems to do as well as the linear-nonlinear
combinations, at least from the empirical perspective.”
The xorgens generator [Brent 2010] combines an F2-linear generator using four xorshift op-

erations with a Weyl generator. The author furthermore suggests subjecting the output of the
Weyl generator to a simple mixing function 𝜆𝜎.𝜎 ⊕ rotate(𝜎,𝛾) (for some constant 𝛾 ≈ 𝑤/2) before,
rather than after, adding it to the output of the xorshift generator.

Recently a number of interacting online blogs and projects have reported discovering improved
mixing functions, as well as improved tools and techniques for discovering and testing them
[Ettinger 2019; Evensen 2018, 2019, 2020; Mulvey 2016; Wellons 2018, 2019]; we speculate that such
mixers might provide useful improvements when used in LXM algorithms.

11 CONCLUSIONS AND FUTUREWORK
At the end of their paper, Steele, Lea, and Flood [2014] commented: “It would be a delightful outcome
if, in the end, the best way to split off a new prng is indeed simply to ‘pick one at random.’ ” Perhaps
we have now achieved that: our testing suggests that if the arguments to the LXM constructor are

, Vol. 1, No. 1, Article . Publication date: April 2021.

1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176

24 Guy L. Steele Jr. and Sebastiano Vigna

themselves chosen uniformly at random—with no need to filter out any “weak values” other than
ensuring that the additive parameter a is odd and that the initial state of the XBG subgenerator
is nonzero—then the interleaved outputs of two or more generators constructed in this way will
pass the BigCrush test suite [L’Ecuyer and Simard 2007; Simard 2009] and also the PractRand test
suite [Doty-Humphrey 2011–2021] with extremely high probability.

The SplitMix algorithm used in JDK8 has 127 bits of state (of which 64 are updated per 64 bits
generated) and uses 9 arithmetic operations per 64 bits generated [Steele Jr. et al. 2014]. The 64-bit
LXM algorithm L64X128, which has a 64-bit LCG and xoroshiro128 as subgenerators, uses 255
bits of state (of which 192 are updated per 64 bits generated) and uses 17 arithmetic operations (or
possibly 14, on architectures that allow operations on 32-bit halfwords of 64-bit registers) per 64
bits generated (see Figure 1). Our timing measurements confirm that on contemporary architectures
and using popular compilers, the basic generate operation for L64X128 is somewhat slower than
that for SplitMix, but never by more than a factor of 2. For applications in which it is desired to
have a significantly smaller probability of statistical correlations among multiple generators being
used by parallel tasks, especially when it is desirable to create new generator instances on the fly
(for example, when forking new threads), L64X128 may be very attractive. This instance of LXM,
and several others, will be provided in JDK17 later in 2021 as part of a new RandomGenerator API
designed to make it easier for applications to use a variety of PRNG algorithms interchangeably.
Work yet to be done includes (1) exploration of even better mixing functions, (2) exploration

of different congruential components, such as Marsaglia’s multiply-with-carry generators, and
(3) even more thorough testing of (a) LXM generator combinations and (b) a simplified generator
that consists only of an additive constant (or a Weyl generator), an XBG generator, a combining
function, and a mixing function.

ACKNOWLEDGMENTS
The first author thanks ⟨anonymized ⟩ for her critique of very early stages of this work, which has
allowed us to greatly improve our presentation. We thank ⟨anonymized ⟩ for their assistance in
testing and integrating specific instances of the LXM algorithm for deployment in JDK17.

, Vol. 1, No. 1, Article . Publication date: April 2021.

1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225

LXM: Better Splittable Pseudorandom Number Generators (and Almost as Fast) 25

REFERENCES
Austin Appleby. 2011. MurmurHash3 (project wiki page). 3 April 2011. https://github.com/aappleby/smhasher/wiki/

MurmurHash3 Archived at https://web.archive.org/web/20210601000000*/https://github.com/aappleby/smhasher/wiki/
MurmurHash3

Describes the MurmurHash3 hashing algorithm, and gives code for 32-bit and 64-bit finalizers (mixing functions).
Formerly at http://code.google.com/p/smhasher/wiki/MurmurHash3 Retrieved 10 Sept. 2013.

Austin Appleby. 2016. SMHasher (GitHub project). 8 Jan. 2016. https://github.com/aappleby/smhasher (also at Internet
Archive 6 April 2021 20:10:30).

The home for the MurmurHash family of hash functions along with the SMHasher test suite used to verify them.
David Blackman and Sebastiano Vigna. 2018. Scrambled Linear Pseudorandom Number Generators. 3 May 2018. 41 pages.

https://arxiv.org/abs/1805.01407 To appear in ACM Transactions on Mathematical Software.
Richard P. Brent. 2010. Some long-period random number generators using shifts and xors. 10 April 2010. 11 pages.

https://arxiv.org/abs/1004.3115
Koen Claessen and Michał H. Pałka. 2013. Splittable Pseudorandom Number Generators Using Cryptographic Hashing. In

Proceedings of the 2013 ACM SIGPLAN Symposium on Haskell (Boston, Massachusetts, USA) (Haskell ’13). Association for
Computing Machinery, New York, NY, USA (Sept.), 47–58. ISBN 9781450323833. https://doi.org/10.1145/2503778.2503784

degski. 2018. invertible_hash_functions.hpp (GitHub project). https://gist.github.com/degski/
6e2069d6035ae04d5d6f64981c995ec2 (also at Internet Archive 23 March 2019 04:52:58).

Code for four hash functions similar in structure to MurmurHash3.
Chris Doty-Humphrey. 2011–2021. PractRand. 2011–2021. http://pracrand.sourceforge.net/ (also at Internet Archive 12

Nov. 2020 03:13:23). Undated; the year 2011 for its first appearance has been inferred from external sources. The software
is called “PractRand” but the SourceForge project name is “pracrand”.

Mark J. Durst. 1989. Using Linear Congruential Generators for Parallel Random Number Generation. In Proceedings of the
21st Conference on Winter Simulation (Washington, D.C., USA) (WSC ’89). Association for Computing Machinery, New
York, NY, USA, 462–466. ISBN 0911801588. https://doi.org/10.1145/76738.76798

Shlomo Engelberg. 2015. A Mathematical Introduction To Control Theory (second edition). Vol. 4. Imperial College Press.
Tommy Ettinger. 2019. PelicanRNG. 16 July 2019. https://github.com/tommyettinger/sarong/blob/master/src/main/java/

sarong/PelicanRNG.java GitHub project; accessed April 2, 2021.
Pelle Evensen. 2018. On the mixing functions in “Fast Splittable Pseudorandom Number Generators”, MurmurHash3 and

David Stafford’s improved variants on the MurmurHash3 finalizer (blog post). 13 July 2018. http://mostlymangling.
blogspot.com/2018/07/on-mixing-functions-in-fast-splittable.html (also at Internet Archive 18 Jan. 2021 16:26:29).

Pelle Evensen. 2019. Better, stronger mixer and a test procedure (blog post). 24 Jan. 2019. http://mostlymangling.blogspot.
com/2019/01/better-stronger-mixer-and-test-procedure.html (also at Internet Archive 1 Dec. 2020 06:10:00).

Pelle Evensen. 2020. NASAM: Not Another Strange Acronym Mixer! (blog post). 3 Jan. 2020. http://mostlymangling.
blogspot.com/2020/01/nasam-not-another-strange-acronym-mixer.html (also at Internet Archive 7 Feb. 2021 12:33:45).

Donald E. Knuth. 1998. The Art of Computer Programming, Volume 2: Seminumerical Algorithms (third ed.). Addison-Wesley,
Reading, Massachusetts, USA. ISBN 9780201896848.

Pierre L’Ecuyer. 1999. Tables of Linear Congruential Generators of Different Sizes and Good Lattice Structure. Math. Comp.
68, 225 (Jan.), 249–260. https://doi.org/10.1090/S0025-5718-99-00996-5

Pierre L’Ecuyer and Jacinthe Granger-Piché. 2003. Combined generators with components from different families. Mathemat-
ics and Computers in Simulation 62, 3 (3 March), 395–404. https://doi.org/10.1016/S0378-4754(02)00234-3 Preprint at https:
//www.iro.umontreal.ca/~lecuyer/myftp/papers/linnlin.pdf Also at https://www.researchgate.net/publication/222418141
3rd IMACS Seminar on Monte Carlo Methods.

Pierre L’Ecuyer and François Panneton. 2009. F2-Linear Random Number Generators. In Advancing the Fron-
tiers of Simulation: A Festschrift in Honor of George Samuel Fishman, Christos Alexopoulos, David Goldsman, and
James R. Wilson (Eds.). International Series in Operations Research & Management Science, Vol. 133. Springer Sci-
ence and Business Media, New York, NY, USA, 169–193. ISBN 9781441908162. https://doi.org/10.1007/b110059_9
Also at https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.483.8737&rep=rep1&type=pdf (retrieved 14 April
2021) Also at https://www.researchgate.net/profile/Pierre-Lecuyer/publication/225226425_F2-Linear_Random_Number_
Generators/links/09e415108471274e7f000000/F2-Linear-Random-Number-Generators.pdf (retrieved 14 April 2021)

Pierre L’Ecuyer and Richard Simard. 2007. TestU01: A C Library for Empirical Testing of Random Number Generators. ACM
Trans. Math. Software 33, 4 (Aug.), Article 22, 40 pages. https://doi.org/10.1145/1268776.1268777

Pierre L’Ecuyer and Richard Simard. 2013. TestU01: A Software Library in ANSI C for Empirical Testing of Random Number
Generators: User’s guide, compact version. 16 May 2013. http://simul.iro.umontreal.ca/testu01/guideshorttestu01.pdf
(also at Internet Archive 17 Feb. 2021 14:37:38).

Alex Losego. 2016. Super Mario World—Random Number Generation (video). YouTube. 5 Oct. 2016. Duration 14:04.
https://youtu.be/q15yNrJHOak

, Vol. 1, No. 1, Article . Publication date: April 2021.

https://github.com/aappleby/smhasher/wiki/MurmurHash3
https://github.com/aappleby/smhasher/wiki/MurmurHash3
https://web.archive.org/web/20210601000000*/https://github.com/aappleby/smhasher/wiki/MurmurHash3
https://web.archive.org/web/20210601000000*/https://github.com/aappleby/smhasher/wiki/MurmurHash3
https://github.com/aappleby/smhasher
https://web.archive.org/web/20210406201030/https://github.com/aappleby/smhasher
https://web.archive.org/web/20210406201030/https://github.com/aappleby/smhasher
https://arxiv.org/abs/1805.01407
https://arxiv.org/abs/1004.3115
https://doi.org/10.1145/2503778.2503784
https://gist.github.com/degski/6e2069d6035ae04d5d6f64981c995ec2
https://gist.github.com/degski/6e2069d6035ae04d5d6f64981c995ec2
https://web.archive.org/web/20190323045258/https://gist.github.com/degski/6e2069d6035ae04d5d6f64981c995ec2
http://pracrand.sourceforge.net/
https://web.archive.org/web/20201112031323/http://pracrand.sourceforge.net/
https://web.archive.org/web/20201112031323/http://pracrand.sourceforge.net/
https://doi.org/10.1145/76738.76798
https://github.com/tommyettinger/sarong/blob/master/src/main/java/sarong/PelicanRNG.java
https://github.com/tommyettinger/sarong/blob/master/src/main/java/sarong/PelicanRNG.java
http://mostlymangling.blogspot.com/2018/07/on-mixing-functions-in-fast-splittable.html
http://mostlymangling.blogspot.com/2018/07/on-mixing-functions-in-fast-splittable.html
https://web.archive.org/web/20210118162629/http://mostlymangling.blogspot.com/2018/07/on-mixing-functions-in-fast-splittable.html
http://mostlymangling.blogspot.com/2019/01/better-stronger-mixer-and-test-procedure.html
http://mostlymangling.blogspot.com/2019/01/better-stronger-mixer-and-test-procedure.html
https://web.archive.org/web/20201201061000/http://mostlymangling.blogspot.com/2019/01/better-stronger-mixer-and-test-procedure.html
http://mostlymangling.blogspot.com/2020/01/nasam-not-another-strange-acronym-mixer.html
http://mostlymangling.blogspot.com/2020/01/nasam-not-another-strange-acronym-mixer.html
https://web.archive.org/web/20210207123345/http://mostlymangling.blogspot.com/2020/01/nasam-not-another-strange-acronym-mixer.html
https://doi.org/10.1090/S0025-5718-99-00996-5
https://doi.org/10.1016/S0378-4754(02)00234-3
https://www.iro.umontreal.ca/~lecuyer/myftp/papers/linnlin.pdf
https://www.iro.umontreal.ca/~lecuyer/myftp/papers/linnlin.pdf
https://www.researchgate.net/publication/222418141
https://doi.org/10.1007/b110059_9
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.483.8737&rep=rep1&type=pdf
https://www.researchgate.net/profile/Pierre-Lecuyer/publication/225226425_F2-Linear_Random_Number_Generators/links/09e415108471274e7f000000/F2-Linear-Random-Number-Generators.pdf
https://www.researchgate.net/profile/Pierre-Lecuyer/publication/225226425_F2-Linear_Random_Number_Generators/links/09e415108471274e7f000000/F2-Linear-Random-Number-Generators.pdf
https://doi.org/10.1145/1268776.1268777
http://simul.iro.umontreal.ca/testu01/guideshorttestu01.pdf
https://web.archive.org/web/20210217143738/http://simul.iro.umontreal.ca/testu01/guideshorttestu01.pdf
https://youtu.be/q15yNrJHOak

1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274

26 Guy L. Steele Jr. and Sebastiano Vigna

How does random number generation work in Super Mario World? It’s all explained right here.
George Marsaglia. 2003. Xorshift RNGs. Journal of Statistical Software 8, 14 (4 Jul.), 1–6. http://www.jstatsoft.org/v08/i14
George Marsaglia and Arif Zaman. 1993. The KISS generator. Technical Report. Florida State University, Tallahassee, FL,

USA.
Bret Mulvey. 2016. Hash Functions (blog post). 2016. https://papa.bretmulvey.com/post/124027987928/hash-functions (also

at Internet Archive 7 Nov. 2020 22:32:40).
Contains a list of reversible operations on bit vectors that are easily implemented in a few machine instructions, plus
a discussion of how to compute first-order avalanche statistics.

Nintendo. 1990. Super Mario World (video game for Super Nintendo Entertainment System). 21 Nov. 1990. Sold in the form
of a proprietary cartridge.

Oracle Corporation. 2014a. Java Platform Standard Edition 8 Documentation: Class Random (online documentation).
https://docs.oracle.com/javase/8/docs/api/java/util/Random.html (also at Internet Archive 31 March 2014 01:25:08).

Oracle Corporation. 2014b. Java Platform Standard Edition 8 Documentation: Class SplittableRandom (online documentation).
https://docs.oracle.com/javase/8/docs/api/java/util/SplittableRandom.html (also at Internet Archive 30 March 2014
23:59:53).

Hans Georg Schaathun. 2015. Evaluation of splittable pseudo-random generators. Journal of Functional Programming 25
(17 June), Article e6, 19 pages. https://doi.org/10.1017/S095679681500012X Preprint at http://www.hg.schaathun.net/
research/Papers/hgs2015jfp.pdf

Richard Simard. 2009. TestU01 version 1.2.3 (website). Aug. 2009. http://simul.iro.umontreal.ca/testu01/tu01.html (also at
Internet Archive 12 Nov. 2020 00:20:45).

Guy Steele and Sebastiano Vigna. 2021. Computationally Easy, Spectrally Good Multipliers for Congruential Pseudorandom
Number Generators. 22 Jan. 2021. 23 pages. https://arxiv.org/abs/2001.05304

Guy L. Steele Jr., Doug Lea, and Christine H. Flood. 2014. Fast Splittable Pseudorandom Number Generators. In OOPSLA
’14: Proceedings of the 2014 ACM International Conference on Object-oriented Programming, Systems, Languages, and
Applications (Portland, Oregon, USA) (OOPSLA ’14). ACM, New York, NY, USA, 453–472. ISBN 9781450325851. https:
//doi.org/10.1145/2660193.2660195

John Walker. 1996. HotBits: Genuine random numbers, generated by radioactive decay (data server). May 1996. http:
//www.fourmilab.ch/hotbits/ (also at Internet Archive 1 March 2021 15:29:15).

HotBits is an Internet resource that brings genuine random numbers, generated by a process fundamentally governed
by the inherent uncertainty in the quantum mechanical laws of nature, directly to your computer in a variety of
forms.

Tony T. Warnock. 1983. Synchronization of random number generators. Congressus numerantium 37, 135–144.
Henry S. Warren, Jr. 2012. Hacker’s Delight. Pearson Education, Boston, Massachusetts, USA. ISBN 9780133085013.
Chris Wellons. 2018. Prospecting for Hash Functions (blog post). 31 July 2018. https://nullprogram.com/blog/2018/07/31/

(also at Internet Archive 25 Nov. 2020 19:01:27).
Description of software that searches for better mixing functions, using Bret Mulvey’s list of invertible operations as
primitive building blocks.

Christopher Wellons. 2019. Hash Function Prospector (GitHub project). March 2019. https://github.com/skeeto/hash-
prospector (also at Internet Archive 12 Nov. 2020 01:46:36).

Software that searches for good mixing functions.

, Vol. 1, No. 1, Article . Publication date: April 2021.

http://www.jstatsoft.org/v08/i14
https://papa.bretmulvey.com/post/124027987928/hash-functions
https://web.archive.org/web/20201107223240/https://papa.bretmulvey.com/post/124027987928/hash-functions
https://docs.oracle.com/javase/8/docs/api/java/util/Random.html
https://web.archive.org/web/20140331012508/http://docs.oracle.com/javase/8/docs/api/java/util/Random.html
https://docs.oracle.com/javase/8/docs/api/java/util/SplittableRandom.html
https://web.archive.org/web/20140330235953/https://docs.oracle.com/javase/8/docs/api/java/util/SplittableRandom.html
https://web.archive.org/web/20140330235953/https://docs.oracle.com/javase/8/docs/api/java/util/SplittableRandom.html
https://doi.org/10.1017/S095679681500012X
http://www.hg.schaathun.net/research/Papers/hgs2015jfp.pdf
http://www.hg.schaathun.net/research/Papers/hgs2015jfp.pdf
http://simul.iro.umontreal.ca/testu01/tu01.html
https://web.archive.org/web/20201112002045/http://simul.iro.umontreal.ca/testu01/tu01.html
https://arxiv.org/abs/2001.05304
https://doi.org/10.1145/2660193.2660195
https://doi.org/10.1145/2660193.2660195
http://www.fourmilab.ch/hotbits/
http://www.fourmilab.ch/hotbits/
https://web.archive.org/web/20210301152915/http://www.fourmilab.ch/hotbits/
https://nullprogram.com/blog/2018/07/31/
https://web.archive.org/web/20201125190127/https://nullprogram.com/blog/2018/07/31/
https://github.com/skeeto/hash-prospector
https://github.com/skeeto/hash-prospector
https://web.archive.org/web/20201112014636/https://github.com/skeeto/hash-prospector

1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323

LXM: Better Splittable Pseudorandom Number Generators (and Almost as Fast) 27

A ADDITIONAL TEST DATA
This material may appear in the final version of the paper if nothing more important displaces it.

𝑤 𝑘 𝑛 mixer init 𝑚 𝑎 𝑠0 𝑥0 � 𝑁 0 1 2 3 4 5 6 7 Σ 𝑝worst
64 64 128 none jump 0 0 0 𝑋8 + 50 0 0 0 0 0 0 0 50 348 eps
64 64 128 none leap 0 0 0 𝑋8 + 50 0 0 0 0 0 0 0 50 342 eps
64 64 128 starstar jump 0 0 0 𝑋8 + 50 35 12 3 18 6.4E-6
64 64 128 starstar leap 0 0 0 𝑋8 + 50 35 13 2 18 2.8E-5
64 64 256 none jump 0 0 0 𝑋8 + 50 0 0 0 0 0 0 0 50 320 eps
64 64 256 none leap 0 0 0 𝑋8 + 50 0 0 0 0 0 0 0 50 323 eps
64 64 256 starstar jump 0 0 0 𝑋8 + 50 29 19 2 28 1.3E-5
64 64 256 starstar leap 0 0 0 𝑋8 + 50 32 15 3 24 3.8E-6
400 complete runs of BigCrush Total CPU-thread time: 170 days + 18:35:04
Stream counts used: { 2𝑗 | 0 ≤ 𝑗 ≤ 24 } Modes used: u f

Table 9. Test measurements for jumping and leaping, with and without starstar mixer

Table 9 show the results of tests in which𝑚, 𝑠 , and 𝑎 are all set to 0, which forces the output of the
LCG always to be 0; this is a testing-framework trick that allows us to test just the combination of
an XBG and a mixing function. This table confirms the report of Blackman and Vigna [2018, Table 1]
that xoroshiro128 and xoshiro256 fail BigCrush systematically when no mixing function is used,
but using even a simple mixing function such as starstar allows these generators to pass. Our
results further show that using a simple mixing function allows these generators to pass BigCrush
even when multiple streams are used. For these tests, multiple streams were initialized by starting
with one instance of the generator and repeatedly advancing the state by jumping or leaping (that
is, advancing the state around the state cycle by either 2𝑛/2 or 23𝑛/4 positions).
Tables 10 and 11 show results from LXM instances that use a 128-bit LCG, xoroshiro128 for

the XBG, and either one of three mixers or none. Four different LCG variants are tested: 128A
indicates a 64-bit multiplier (zero-extended to 128 bits on each use) and a 64-bit additive constant
(zero-extended to 128 bits on each use); 128B indicates a 64-bit multiplier (zero-extended to 128
bits on each use) and a 128-bit additive constant; 128C indicates a 128-bit multiplier and a 64-bit
additive constant (zero-extended to 128 bits on each use); 128D indicates a 128-bit multiplier and
a 128-bit additive constant. They are tested for stream counts 1, 2, 4, 8, 16, . . . , 224 and also three
other non-power-of-two stream counts, chosen arbitrarily. For each stream count, five different
initialization procedures are tested. BigCrush results in failure only for the cases that use no mixing
function and use skip, jump, or leap initialization (compare Table 2).
TO DO: Tables of results from PractRand

, Vol. 1, No. 1, Article . Publication date: April 2021.

1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372

28 Guy L. Steele Jr. and Sebastiano Vigna

𝑤 𝑘 𝑛 mixer init 𝑚 𝑎 𝑠0 𝑥0 � 𝑁 0 1 2 3 4 5 6 7 Σ 𝑝worst
64 128A 128 murmur64 same 𝑚2 𝐴8 𝑆8 𝑋8 + 84 60 19 5 33 6.3E-6
64 128A 128 murmur64 tree 2 𝑚2 𝐴8 𝑆8 𝑋8 + 84 62 17 4 1 28 8.6E-7
64 128A 128 murmur64 skip 𝑚2 𝐴8 𝑆8 𝑋8 + 84 60 18 6 30 2.4E-6
64 128A 128 murmur64 jump 𝑚2 𝐴8 𝑆8 𝑋8 + 84 62 13 9 23 4.4E-5
64 128A 128 murmur64 leap 𝑚2 𝐴8 𝑆8 𝑋8 + 84 55 25 4 32 1.8E-5
64 128A 128 degski64 same 𝑚2 𝐴8 𝑆8 𝑋8 + 84 64 15 5 26 1.0E-5
64 128A 128 degski64 tree 2 𝑚2 𝐴8 𝑆8 𝑋8 + 84 66 16 2 22 2.8E-5
64 128A 128 degski64 skip 𝑚2 𝐴8 𝑆8 𝑋8 + 84 66 17 1 18 9.3E-5
64 128A 128 degski64 jump 𝑚2 𝐴8 𝑆8 𝑋8 + 84 57 18 9 36 4.2E-6
64 128A 128 degski64 leap 𝑚2 𝐴8 𝑆8 𝑋8 + 84 61 21 2 25 4.0E-6
64 128A 128 lea64 same 𝑚2 𝐴8 𝑆8 𝑋8 + 84 63 17 4 26 5.1E-5
64 128A 128 lea64 tree 2 𝑚2 𝐴8 𝑆8 𝑋8 + 84 61 18 5 28 1.1E-5
64 128A 128 lea64 skip 𝑚2 𝐴8 𝑆8 𝑋8 + 84 61 20 3 28 2.3E-6
64 128A 128 lea64 jump 𝑚2 𝐴8 𝑆8 𝑋8 + 84 56 25 3 41 3.8E-6
64 128A 128 lea64 leap 𝑚2 𝐴8 𝑆8 𝑋8 + 84 66 15 3 21 5.0E-5
64 128A 128 none same 𝑚2 𝐴8 𝑆8 𝑋8 + 84 65 17 1 1 23 9.8E-7
64 128A 128 none tree 2 𝑚2 𝐴8 𝑆8 𝑋8 + 84 56 25 3 34 1.6E-6
64 128A 128 none skip 𝑚2 𝐴8 𝑆8 𝑋8 + 84 5 1 0 0 0 0 0 78 6486 eps
64 128A 128 none jump 𝑚2 𝐴8 𝑆8 𝑋8 + 84 30 14 4 0 0 0 0 36 127 eps
64 128A 128 none leap 𝑚2 𝐴8 𝑆8 𝑋8 + 84 34 11 3 0 0 0 0 36 124 eps
64 128B 128 murmur64 same 𝑚2 𝐴8 𝑆8 𝑋8 + 84 60 21 3 27 6.2E-5
64 128B 128 murmur64 tree 2 𝑚2 𝐴8 𝑆8 𝑋8 + 84 61 18 5 27 3.1E-5
64 128B 128 murmur64 skip 𝑚2 𝐴8 𝑆8 𝑋8 + 84 64 19 1 22 1.0E-4
64 128B 128 murmur64 jump 𝑚2 𝐴8 𝑆8 𝑋8 + 84 58 19 7 33 6.3E-6
64 128B 128 murmur64 leap 𝑚2 𝐴8 𝑆8 𝑋8 + 81 54 21 6 31 2.8E-5
64 128B 128 degski64 same 𝑚2 𝐴8 𝑆8 𝑋8 + 84 63 15 6 29 5.3E-6
64 128B 128 degski64 tree 2 𝑚2 𝐴8 𝑆8 𝑋8 + 84 61 20 3 27 3.4E-6
64 128B 128 degski64 skip 𝑚2 𝐴8 𝑆8 𝑋8 + 84 64 17 3 20 1.6E-6
64 128B 128 degski64 jump 𝑚2 𝐴8 𝑆8 𝑋8 + 84 62 17 5 33 2.3E-5
64 128B 128 degski64 leap 𝑚2 𝐴8 𝑆8 𝑋8 + 81 65 11 5 21 1.1E-6
64 128B 128 lea64 same 𝑚2 𝐴8 𝑆8 𝑋8 + 84 60 18 5 1 27 9.8E-7
64 128B 128 lea64 tree 2 𝑚2 𝐴8 𝑆8 𝑋8 + 84 64 16 3 1 22 3.4E-7
64 128B 128 lea64 skip 𝑚2 𝐴8 𝑆8 𝑋8 + 84 65 16 3 22 8.7E-5
64 128B 128 lea64 jump 𝑚2 𝐴8 𝑆8 𝑋8 + 84 61 20 3 28 2.0E-5
64 128B 128 lea64 leap 𝑚2 𝐴8 𝑆8 𝑋8 + 78 57 17 4 31 7.0E-5
64 128B 128 none same 𝑚2 𝐴8 𝑆8 𝑋8 + 84 64 19 1 23 2.1E-5
64 128B 128 none tree 2 𝑚2 𝐴8 𝑆8 𝑋8 + 84 60 17 7 26 2.5E-6
64 128B 128 none skip 𝑚2 𝐴8 𝑆8 𝑋8 + 84 3 2 1 0 0 0 0 78 6523 eps
64 128B 128 none jump 𝑚2 𝐴8 𝑆8 𝑋8 + 84 32 14 2 0 0 0 0 36 118 eps
64 128B 128 none leap 𝑚2 𝐴8 𝑆8 𝑋8 + 80 34 11 2 0 0 0 0 33 112 eps
3344 out of 3360 runs of BigCrush were completed Total CPU-thread time: 1334 days + 18:00:30
Stream counts used: { 2𝑗 | 0 ≤ 𝑗 ≤ 24 } ∪ { 1900547, 5242880, 12582912 } Modes used: u f g

Table 10. Test measurements for gemini52B

, Vol. 1, No. 1, Article . Publication date: April 2021.

1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421

LXM: Better Splittable Pseudorandom Number Generators (and Almost as Fast) 29

𝑤 𝑘 𝑛 mixer init 𝑚 𝑎 𝑠0 𝑥0 � 𝑁 0 1 2 3 4 5 6 7 Σ 𝑝worst
64 128C 128 murmur64 same 𝑚2 𝐴8 𝑆8 𝑋8 + 84 55 25 4 31 2.9E-6
64 128C 128 murmur64 tree 2 𝑚2 𝐴8 𝑆8 𝑋8 + 84 57 23 4 33 3.4E-5
64 128C 128 murmur64 skip 𝑚2 𝐴8 𝑆8 𝑋8 + 84 63 16 5 24 2.8E-5
64 128C 128 murmur64 jump 𝑚2 𝐴8 𝑆8 𝑋8 + 84 63 17 4 27 2.7E-6
64 128C 128 murmur64 leap 𝑚2 𝐴8 𝑆8 𝑋8 + 74 57 16 1 21 1.0E-4
64 128C 128 degski64 same 𝑚2 𝐴8 𝑆8 𝑋8 + 84 52 26 6 35 4.9E-6
64 128C 128 degski64 tree 2 𝑚2 𝐴8 𝑆8 𝑋8 + 84 54 26 4 35 3.4E-5
64 128C 128 degski64 skip 𝑚2 𝐴8 𝑆8 𝑋8 + 84 62 18 4 27 1.8E-5
64 128C 128 degski64 jump 𝑚2 𝐴8 𝑆8 𝑋8 + 84 63 18 3 25 6.0E-5
64 128C 128 degski64 leap 𝑚2 𝐴8 𝑆8 𝑋8 + 73 42 26 5 38 3.3E-6
64 128C 128 lea64 same 𝑚2 𝐴8 𝑆8 𝑋8 + 84 63 18 3 23 1.0E-5
64 128C 128 lea64 tree 2 𝑚2 𝐴8 𝑆8 𝑋8 + 84 61 20 3 30 2.2E-6
64 128C 128 lea64 skip 𝑚2 𝐴8 𝑆8 𝑋8 + 84 65 17 2 20 7.5E-5
64 128C 128 lea64 jump 𝑚2 𝐴8 𝑆8 𝑋8 + 84 59 23 2 25 5.0E-6
64 128C 128 lea64 leap 𝑚2 𝐴8 𝑆8 𝑋8 + 73 55 16 2 19 1.6E-5
64 128C 128 none same 𝑚2 𝐴8 𝑆8 𝑋8 + 84 59 22 3 26 1.6E-5
64 128C 128 none tree 2 𝑚2 𝐴8 𝑆8 𝑋8 + 84 56 27 1 29 4.8E-5
64 128C 128 none skip 𝑚2 𝐴8 𝑆8 𝑋8 + 84 4 2 0 0 0 0 0 78 6497 eps
64 128C 128 none jump 𝑚2 𝐴8 𝑆8 𝑋8 + 84 33 11 4 0 0 0 0 36 122 eps
64 128C 128 none leap 𝑚2 𝐴8 𝑆8 𝑋8 + 73 32 8 3 0 0 0 0 30 97 eps
64 128D 128 murmur64 same 𝑚2 𝐴8 𝑆8 𝑋8 + 84 58 21 5 33 1.6E-5
64 128D 128 murmur64 tree 2 𝑚2 𝐴8 𝑆8 𝑋8 + 84 58 20 6 31 2.1E-5
64 128D 128 murmur64 skip 𝑚2 𝐴8 𝑆8 𝑋8 + 84 61 18 5 27 2.3E-6
64 128D 128 murmur64 jump 𝑚2 𝐴8 𝑆8 𝑋8 + 84 63 15 6 26 1.1E-6
64 128D 128 murmur64 leap 𝑚2 𝐴8 𝑆8 𝑋8 + 73 46 25 2 32 7.1E-5
64 128D 128 degski64 same 𝑚2 𝐴8 𝑆8 𝑋8 + 84 66 12 6 20 3.5E-5
64 128D 128 degski64 tree 2 𝑚2 𝐴8 𝑆8 𝑋8 + 84 55 22 7 32 2.4E-6
64 128D 128 degski64 skip 𝑚2 𝐴8 𝑆8 𝑋8 + 84 66 14 4 21 5.0E-6
64 128D 128 degski64 jump 𝑚2 𝐴8 𝑆8 𝑋8 + 84 62 16 6 30 2.2E-5
64 128D 128 degski64 leap 𝑚2 𝐴8 𝑆8 𝑋8 + 73 44 22 7 37 5.8E-6
64 128D 128 lea64 same 𝑚2 𝐴8 𝑆8 𝑋8 + 84 59 20 5 31 2.3E-5
64 128D 128 lea64 tree 2 𝑚2 𝐴8 𝑆8 𝑋8 + 84 61 19 3 1 25 2.4E-8
64 128D 128 lea64 skip 𝑚2 𝐴8 𝑆8 𝑋8 + 84 56 23 5 34 3.7E-5
64 128D 128 lea64 jump 𝑚2 𝐴8 𝑆8 𝑋8 + 84 60 22 2 27 2.7E-5
64 128D 128 lea64 leap 𝑚2 𝐴8 𝑆8 𝑋8 + 73 48 23 2 28 7.5E-5
64 128D 128 none same 𝑚2 𝐴8 𝑆8 𝑋8 + 84 56 26 2 31 4.4E-6
64 128D 128 none tree 2 𝑚2 𝐴8 𝑆8 𝑋8 + 84 60 19 5 27 2.4E-5
64 128D 128 none skip 𝑚2 𝐴8 𝑆8 𝑋8 + 84 5 1 0 0 0 0 0 78 6511 eps
64 128D 128 none jump 𝑚2 𝐴8 𝑆8 𝑋8 + 84 28 10 9 1 0 0 0 36 124 eps
64 128D 128 none leap 𝑚2 𝐴8 𝑆8 𝑋8 + 73 28 10 4 1 0 0 0 30 101 eps
3273 out of 3360 runs of BigCrush were completed Total CPU-thread time: 1292 days + 0:39:24
Stream counts used: { 2𝑗 | 0 ≤ 𝑗 ≤ 24 } ∪ { 1900547, 5242880, 12582912 } Modes used: u f g

Table 11. Test measurements for gemini52C

, Vol. 1, No. 1, Article . Publication date: April 2021.

1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470

30 Guy L. Steele Jr. and Sebastiano Vigna

Haswell ARM
gcc clang gcc clang

inline noinline inline noinline inline noinline inline noinline
L32X64_gen32 1.648 2.335 1.641 2.330 2.633 4.569 2.563 4.180
L32XX64_gen32 1.562 2.326 1.747 2.365 2.636 4.550 2.620 4.107
L32X128_gen32 1.605 2.575 1.574 2.504 2.912 5.249 2.682 4.735
L64X128_gen64 1.646 2.287 1.682 2.267 3.601 4.810 3.601 4.342
L64XX128_gen64 1.559 2.498 1.747 2.274 3.601 4.832 3.602 4.359
L64X256_gen64 1.627 2.502 1.712 2.475 3.601 5.660 3.601 5.182
L128AX128_gen64 1.956 2.960 1.873 2.933 7.602 9.014 6.402 7.312
L128BX128_gen64 1.886 2.748 1.867 2.764 7.602 9.219 6.402 7.404
L128CX128_gen64 2.613 3.178 1.958 2.933 7.602 10.273 7.602 8.931
L128DX128_gen64 2.613 2.933 1.967 2.931 7.602 10.947 7.602 9.005
L128AX256_gen64 1.957 3.223 1.754 2.932 7.602 9.382 6.402 7.264
L128BX256_gen64 1.848 2.932 1.811 2.931 7.602 9.374 6.402 7.366
L128CX256_gen64 2.610 3.431 1.957 2.986 7.602 11.329 7.602 9.168
L128DX256_gen64 2.620 3.178 1.968 3.174 7.602 10.607 7.602 9.178
L128EX128_gen64 2.512 3.113 1.958 2.931 7.602 9.014 7.602 7.365
L128FX128_gen64 2.511 2.798 1.968 2.819 7.602 8.499 7.602 7.417
L128EX256_gen64 2.583 3.197 2.039 2.931 7.602 9.481 7.602 7.310
L128FX256_gen64 2.582 3.009 1.969 2.982 7.602 8.528 7.602 7.290
SplitMix_gen64 0.973 2.238 0.858 1.710 2.401 3.538 3.175 3.414

Table 12. Comparative timings (all measurements in nanoseconds per word generated)

, Vol. 1, No. 1, Article . Publication date: April 2021.

	Abstract
	1 Introduction
	2 The LXM Generation Algorithm
	3 LXM Implementation of Splitting
	3.1 The Split Operation
	3.2 The Splits Operation

	4 Notation and Terminology
	5 Theoretical Construction of the LXM Algorithm
	6 Properties of the LXM Algorithm
	6.1 Period
	6.2 Scalability of Period
	6.3 Probability of Overlapping Sequences
	6.4 Equidistribution
	6.5 Why We Need a Nontrivial Mixing Function

	7 Testing
	7.1 Test Framework
	7.2 Results of BigCrush Tests
	7.3 Results of PractRand Tests

	8 Comparative Timing Tests
	9 More about Jumping and Splitting
	10 Related Work
	11 Conclusions and Future Work
	Acknowledgments
	References
	A Additional Test Data

