
IEEE TRANSCATIONS ON COMPUTER AIDED DESIGN, VOL. TBD, NO. TBD, JANUARY TBD 1

Constrained Circuit Optimization
Using Logical Effort

George Chen, Member, IEEE, Jo Ebergen, Member, IEEE, and Jiyang Cheng

Abstract—We present a simple and efficient algorithm that
computes the trade-off curve for path delay and total area of
a circuit path. Each point on the trade-off curve represents the
minimum area for a given delay constraint or, conversely, the
minimum path delay for a given area constraint, where gate
sizes are the only variables. The graph of the area-versus-delay
function permits the designer to choose the best combination of
transistor area and path delay by choosing the proper gate sizes.
A similar algorithm efficiently computes the trade-offs between
path delay and energy dissipation of the path. The algorithms
permit any single circuit path, including those that contain loops.
For such cyclic paths, the path delay is the cycle time and the
constraint for the path delay is the constraint for the cycle time.
The derivation of the algorithm is based on the theory of Logical
Effort and Langragian relaxation.

Index Terms—Logical Effort, Optimization, Area, Energy.

I. INTRODUCTION

T IMING closure is challenging to manage and achieve
in advanced microprocessor design due to the sheer

size of the chip and the multitude of designers involved.
In a typical advanced microprocessor design, tens, if not
hundreds, of individual blocks are hierarchically assembled.
After assembling the blocks, the design group, typically a
central “integration” team, runs static timing analysis to find
paths that don’t meet the timing requirements.

A path which fails may pass through two or more blocks
owned by different engineers and assembled by a third. These
engineers then attempt to find a solution for the violating
path, whether by resizing gates, introducing more buffers, or
possibly a more expensive architectural change.

One method that can be used in analyzing such violations
is Logical Effort. This technique was first introduced over 15
years ago as a method to easily minimize the delay through a
series of logic gates [1] to allow designers to analyze circuit
topologies for speed. Since then, designers have used logical
effort in the design of combinational and asynchronous circuits
[2]–[6] .

Within the CAD domain, tool developers have started to har-
ness logical effort for optimization: [7] examines technology
mapping when the libraries and associated delay calculations
are based upon logical effort, [8] uses logical effort as the
delay model in exploring heuristic gate sizing algorithms with
discrete-sized cells, and [9] describes LEOPARD, an area-
delay optimization tool.

G. Chen and J. Cheng are with Processor CAD group at Sun Microsystems,
Sunnyvale, CA.

J. Ebergen is with Sun Labs at Sun Microsystems, Menlo Park, CA.
Manuscript received TBD; revised TBD.

Our work extends and combines these domains by providing
a simple analytical model, based on Logical Effort, that can
be used to study area-delay or energy-delay tradeoffs along
a single path. This technique can be used to assist designers
in solving paths with long interconnect, typically those that
cross block boundaries. By means of a number of simple
examples we show that generating a trade-off curve for single-
path delays is extremely easy, and can be done almost on
the back of an envelope. Our generation of trade-off curves
avoids pitfalls of starting in infeasible points [10] or scaling
issues [10], [11]. Our method allows circuits with feedback.

There are many papers related to constrained optimization.
Most of the related work deals with the more general problem
of optimization of combinational circuits, which have multiple
paths between inputs and outputs and have no feedback loops.
We only deal with single paths, but those paths may contain
feedback loops. The paper on TILOS [12] was one of the first
optimization methods to solve the problem of minimization
of total transistor area subject to certain delay constraints.
Several papers have proposed improved and more accurate
methods to solve the constrained optimization problem for
multi-path networks, in particular [10], [13], and more recently
[14]. Chen and others propose a solution to the constrained
optimization problem for multi-path networks in [15] using
Lagrangian relaxation, a technique we use as well. Tennakoon
and Sechen suggest an improvement in [11] to the method in
[15]. Because these methods deal with multiple paths between
inputs and outputs instead of a single path, these methods are
more complicated. The method of Lagrangian relaxation is
used also in [16], [17] for solving a constrained minimization
problem involving wire sizing.

II. REVIEW AND NOTATION

For our delay model we use a simple Elmore RC delay
model that is similar to the delay model in Logical Effort [1].
In this section we briefly derive this model from the Elmore
RC model and explain how it differs from the Logical Effort
model.

In Figure 1(a), gate 0 drives gate 1 and a fixed load
represented by CL. Figure 1(b) represents our equivalent delay
model. Cp0 represents the intrinsic or parasitic capacitance for
gate 0. Cin1 represents the input capacitance for gate 1. The
Elmore RC model yields the following delay d0 for gate 0.

d0 = k(R0Cp0 + R0CL + R0Cin1)

for some constant k.
In our delay model we assume that the drive resistance of a

gate scales inversely proportional with the size of a gate and

IEEE TRANSCATIONS ON COMPUTER AIDED DESIGN, VOL. TBD, NO. TBD, JANUARY TBD 2

Gate 0 Gate 1

CL

CL
Cin1

R0 Cp0 Cp1R1

(a)

(b)

Fig. 1. The delay model. (a) Gate 0 drives gate 1 and load CL

(b) Equivalent model with R’s and C’s

that the input and intrinsic capacitances scale linearly with
the size of the gate. Thus, if x represents the scale factor of a
gate, r represents the drive resistance of that gate of size 1, cin

represents the input capacitance of that gate of size 1, and cp

represents the intrinsic capacitance of that gate of size 1, then
R(x) = r/x, Cin(x) = x ∗ cin, and Cp(x) = x ∗ cp. Besides
being called the scale factor, x is also called the size of the
gate or the drive strength of the gate. With these assumptions
the delay for gate 1 in Figure 1 can rewritten as

d0 = k((r0/x0)(x0cp0) + (r0/x0)CL + (r0/x0)(x1cin1))

Subsequently we simplify and normalize this expression using
the drive resistance rinv and input capacitance cinv of a unit
inverter.

d0 = (krinvcinv)[(r0cp0/rinvcinv) + (r0CL/x0rinvcinv)

+ (r0x1cin1/x0rinvcinv)]

The next simplifying assumption is that the drive resistances
of all gates of unit size are equal. In other words ri = rinv

for any gate i. Let us furthermore define τ = krinvcinv . We
get

d0 = τ [cp0/cinv + (CL/x0cinv) + (x1cin1/x0cinv)]

Define p0 = cp0/cinv , g1 = cin1/cinv and measure delays in
units of τ , then

d′0 = p0 + (C ′
L + g1x1)/x0 (1)

The value p0 represents the parasitic delay of gate 0 expressed
in units of τ . The value p0 is equal to the amount of
intrinsic capacitance of gate 0 of unit size relative to the input
capacitance of an inverter of unit size. The value g1 represents
the logical effort of the input of gate 1. The value g1 is equal to
the amount of input capacitance of gate 1 of unit size relative
to the input capacitance of an inverter of unit size. Both p0

and g1 can be seen as time constants expressed in units of τ .
The traditional Logical Effort [1] method expresses the gate

delay for gate 0 in units of τ as

d′0 = p0 + g0 ∗ h (2)

where d′0 is the normalized delay of gate 0, p0 is the intrinsic
delay of gate 0, g0 is the logical effort of gate 0, and h is the

electrical effort equivalent to the output capacitance divided
by input capacitance of gate 0. In other words,

h = (C ′
L + g1x1)/g0x0

Although expressions 1 and 2 express the same delay, we use
the notation introduced in 1 for the following.

As in Logical Effort, we normalize delay and capacitance
in all our equations to the delay and capacitance of a unit-size
inverter. We measure delays in terms of τ = krinvcinv . We
express capacitance in terms of κ = cinv , which is the input
capacitance of a unit-size inverter.

The advantage of using Logical Effort is that expressions for
delay as in (1) mostly stay the same when changing from one
technology to another. For example, the values for the logical
efforts g and parasitic delays p mostly remain constant for all
gates. The only values that change are τ and κ. This abstrac-
tion from a particular technology allows comparisons between
circuits independent of the implementation technology.

III. THE PROBLEM

Consider the situation in Figure 2, a path consisting of
N + 1 gates with N + 1 side loads. For the moment we
ignore resistive wires; we include those later. Before we can

x0 x1
C1C0

xN
CN

Fig. 2. A single circuit path consisting of N + 1 gates and N + 1
side loads

formulate the constrained minimization problems, we have to
find expressions for the path delay D(x), path area A(x), and
dynamic energy dissipation E(x) of the path.

The gate delay di of gate i depends on the sizes xi as
follows for 0 ≤ i ≤ N

di = pi +
Ci + gi+1xi+1

xi
(3)

where xN+1 = 0 and gN+1 = 0. The path delay D(x) is
simply the sum of all gate delays:

D(x) =
N∑

i=0

(pi + Ci/xi + gi+1 ∗ xi+1/xi) (4)

Again, in this formula xN+1 = 0 and gN+1 = 0.
Finding an expression for the total transistor area of a path

is a bit simpler than finding an expression for path delay. As
a measure for the total transistor area of a path, we add all
transistor widths of the gates and require that all transistors
are of the same (minimum) length. In order to normalize area
measurements, we define the unit for area as the total transistor
width of a minimum-sized inverter. We denote this area by α.

Because the total transistor width of a gate is proportional to
the total input capacitance of a gate, the total transistor width
of a single gate is proportional to

∑
j(gj,i∗xi) = (

∑
j gj,i)∗xi,

where j ranges over all inputs of gate i. Let us denote the sum
of all logical efforts of inputs of gate i, also called the total
logical effort of gate i, by ai, that is,

∑
j gj,i = ai. As an

IEEE TRANSCATIONS ON COMPUTER AIDED DESIGN, VOL. TBD, NO. TBD, JANUARY TBD 3

example, the total logical effort of an inverter is 1. With this
definition, a measure for the total transistor area of all gates
on the path as a function of the vector of sizes x is

A(x) =
N∑

i=0

ai ∗ xi (5)

Finding an expression for the total dynamic energy dissi-
pation of a path is also easy. When gate i drives its output
capacitance, it dissipates in its drive resistance an energy
proportional to the total output capacitance. The constant of
proportionality is ε = 0.5cinvV 2

dd, which is our unit of energy.
In our energy measurements we only look at dynamic energy
dissipation and ignore static energy dissipation due to leakage
currents for example. We also assume that the short-circuit
energy dissipation is small compared to the dynamic energy
dissipation due to charging and discharging capacitances.
Provided that input slews are not too large, this is a valid
assumption [18]. The total energy dissipated by the path as a
function of the vector x of sizes, where each gate drives its
output once, is proportional to the sum of all capacitances on
the path, where the constant of proportionality is ε.

E(x) =
N∑

i=0

(pi ∗ xi + gi+1 ∗ xi+1 + Ci) (6)

=
N∑

i=0

((pi + gi) ∗ xi + Ci)− g0x0 (7)

where gn+1 = 0 and xn+1 = 0.
With expressions for path delay, path area, and path en-

ergy dissipation, we can formulate our problems formally.
The problem statement for area minimization under a delay
constraint becomes

Find the vector of sizes x that minimizes A(x)
subject to the constraint that D(x) ≤ D0.

The problem statement for delay minimization under an area
constraint becomes

Find the vector of sizes x that minimizes D(x)
subject to the constraint that A(x) ≤ A0.

Similarly, the problem statement for energy minimization
under a delay constraint becomes

Find the vector of sizes x that minimizes E(x)
subject to the constraint that D(x) ≤ D0.

The problem statement for delay minimization under a energy
constraint becomes

Find the vector of sizes x that minimizes D(x)
subject to the constraint that E(x) ≤ E0.

IV. CONVEX OPTIMIZATION

Because each of the functions D(x), A(x), and E(x)
are convex functions, each of the constrained minimization
problems is a well-known convex optimization problem [19].
There are many general techniques to solve these optimization
problems. We use the technique called Lagrangian relaxation.
The problem for area minimization

Find x that minimizes A(x) subject to D(x) ≤ D0.

is equivalent to the Lagrangian relaxation problem
Find x, λ > 0 that minimize

A(x) + λ(D(x)−D0) (8)

The parameter λ is the Lagrange multiplier [19].
To construct the area-delay trade-off curve, we have to find,

for a series of delay constraints D0, the minimum area A.
Because this minimum area is a function of constraint D0, we
denote this area as Amin(D0). For each value of D0 we can
apply Lagrangian relaxation and find the values of x0, λ0 > 0
that minimize A(x) + λ(D(x) − D0). The value of A(x0)
is then the value Amin(D0) we are looking for. Of course,
when choosing D0, we have to be careful to choose a value
D0 that is at least the minimum path delay Dmin, otherwise
the problem becomes infeasible.

Instead of minimizing A(x)+λ(D(x)−D0) over all x and
λ for each choice of D0, we apply a slightly different method.
For each λ, we compute the value xλ that satisfies

∇A(x) = −λ∇D(x) (9)

where ∇ denotes the gradient in x, the vector of first-order
derivatives to x. Equation (9) expresses the condition that the
first order derivative to x of A(x) + λ(D(x) − D0) is 0.
The value xλ minimizes the function A(x)+λD(x), for each
choice of λ. Because the function A(x)+λD(x) is convex, any
local minimum is the global minimum, and as a consequence
the value of xλ is unique.

In order to also satisfy that the first-order derivative to λ of
A(x) + λ(D(x)−D0) is 0, we need to satisfy

D(x) = D0 (10)

Thus, if for each λ, we choose D0 such that D0 = D(xλ),
then for x = xλ, equation (10) is also satisfied. In other
words, for each choice of λ, xλ minimizes A(x) subject to
D(x) ≤ D(xλ). Consequently, the points (A(xλ), D(xλ)) are
the points on the area-delay trade-off curve for all choices of
λ > 0.

Let us contrast the two methods for solving the constrained
minimization problem. The traditional method minimizes
A(x) + λ(D(x) − D0) over all x and λ for each choice of
D0 ∈ [Dmin,∞), where Dmin is the minimum path delay.
Our proposed method consists of calculating xλ satisfying (9)
for each choice of λ ∈ [0,∞). There are two reasons why we
prefer our method. First, the range for λ is [0,∞) for every
problem, whereas the range for D0 depends on the minimum
path delay Dmin, which may be different for every problem.
In order to obtain a feasible solution, we must choose a value
for D0 that is larger than the minimum path delay. The second
reason is that solving (9) for a given λ turns out to be very
easy, as explained in a next section.

To solve our constrained optimization problems, we must
find the gradients in x for the delay, area, and energy function
D, A, and E respectively. Fortunately, this is easy. The only
variables for an acyclic path are sizes x1 through xn. Recall
that for an acyclic path, size x0 is fixed. Taking the gradient
of (5), we obtain for 0 < i ≤ N

(∇A)i =
∂A

∂xi
= ai (11)

IEEE TRANSCATIONS ON COMPUTER AIDED DESIGN, VOL. TBD, NO. TBD, JANUARY TBD 4

Similarly, for the total energy, by taking the gradient of (7),
we find 0 < i ≤ N

(∇E)i =
∂E

∂xi
= pi + gi (12)

These gradients are constant vectors represented by logical
effort values. For the gradient of D we find from (4)

(∇D)i =
∂D

∂xi
= (gi/xi−1 − (Ci + gi+1 ∗ xi+1)/x2

i) (13)

where gN+1 = 0 and xN+1 = 0. Substituting (13) and (11)
into (9), we find that the following equations for 0 < i ≤ N

ai = −λ ∗ (gi/xi−1 − (Ci + gi+1 ∗ xi+1)/x2
i) (14)

where x0 is a fixed value, gN+1 = 0, and xN+1 = 0. In a
later section we shall describe how to solve these equations
efficiently for x.

V. A GRAPHICAL ILLUSTRATION

Let us briefly explain our method and equation (9) by means
of a figure. We illustrate graphically the point that minimizes
the area A(x) under the constraint D(x) ≤ D0. Figure 3 gives
a contour plot of a delay function D(x) of two variables x1 and
x2 for some simple circuit. For the particulars of the circuit we
refer to section IX, although those specifics may be ignored
for this illustration. The delay contours are a series of nested
deformed circles. Each delay contour indicates all points with
the same path delay. The increments of the contour values are
10% of the minimum value. Notice that the path delay around
the minimum 12.6 is very flat. The gradient ∇D in a point
on a delay contour is a vector that points in the direction of
steepest increase, and the length of the vector indicates the size
of the increase. The gradient in a point is always perpendicular
to the tangent of the delay contour.

The area function is a linear function of vector x and its
contours are straight lines. We have shown one area contour
in Figure 3 by a bold black line. Area contours with a higher
value are further from the origin and area contours with a
smaller value are closer to the origin. The gradient of the area
function is a constant vector for all points (x1, x2).

Let us say that the delay constraint is D(x) ≤ 13.9. We want
to find the minimum area A(x) satisfying this delay constraint.
We can find this point graphically by finding the contour for
the area function that is closest to the origin and intersects
the contour D(x) = 13.9. In other words, we have to find the
area contour that is closest to the origin and that touches the
contour D(x) = 13.9. In the point where both contours touch,
their gradients are colinear, but point in opposite direction, as
illustrated in Figure 3. This point is uniquely defined by the
equation

∇A(x) = −λ∇D(x) for some λ > 0 and D(x) = 13.9

Alternatively, if you fix λ instead of D0, there is a unique
value xλ that satisfies ∇A(x) = −λ∇D(x). The point
A(xλ), D(xλ)) defines a point on the area-delay trade-off
curve.

A similar reasoning applies for minimizing the total energy
dissipation E(x) of a path under a delay constraint for the

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

13.9

16.5 17.7

19

22.8

x
1

x 2

Path Delay vs x(1) and x(2)

+12.6

∇ A

∇ D

Fig. 3. Illustration of gradients of A(x) and of D(x) and
∇A(x) = −λ∇D(x)

path. Like ∇A(x), ∇E(x) is a constant vector consisting of
logical effort values for all values of x. We find for each λ,
the value xλ that satisfies

∇E(x) = −λ∇D(x) (15)

VI. PLOTTING THE AREA VS. DELAY CURVE

We can plot the area A(xλ) versus delay D(xλ) for all
values of λ. An example plot appears in Figure 4 for a finite
range of values for λ. This plot shows the trade off between

Area vs Path Delay

Ar
ea

 [α
]

Path Delay [τ]

λ >> 1

λ = 1

λ << 1

m
inim

um
 path delay

A(xλ)

D(xλ)

Fig. 4. An example plot of area A(xλ) versus delay D(xλ) for
a finite range of values for λ. The value of −λ is the tangent of
the point (D(xλ), A(xλ) on the area-versus-delay function. For
each λ, A(xλ) is the minimum area for delay constraint D(xλ)
for the path. D(xλ) is the minimum path delay for area constraint
A(xλ) for the path.

the path delay and the total area. The designer can find the
minimum area for each path delay or the minimum delay for
each area constraint. For the chosen combination of path delay

IEEE TRANSCATIONS ON COMPUTER AIDED DESIGN, VOL. TBD, NO. TBD, JANUARY TBD 5

D(xλ) and area A(xλ), the vector xλ gives the sizes of the
gates on the path.

The tangent of the area-versus-delay function in the point
(D(xλ), A(xλ)) is −λ. In each point on the area-versus-delay
curve, the value of λ indicates the trade off between area and
delay. A small change δ in D(xλ) creates a change −λ ∗ δ
in A(xλ). Conversely, a small change δ in A(xλ) creates
a change −δ/λ in D(xλ). For example, in the point that
corresponds to λ = 1, we can trade one unit τ of extra delay
for one unit α of less area.

Note that for λ approaching infinity, xλ approaches the
value that minimizes the path delay D(x) without any con-
straint. For acyclic paths, the value for xλ that achieves the
minimum path delay is finite, and thus the area for minimum
path delay is finite. For cyclic paths, the minimum cycle time is
unattainable for finite values of xλ. For cyclic paths, the area
goes to infinity as the cycle time approaches the minimum
cycle time. The minimum cycle time is an asymptote for the
area-versus-delay function.

Because the delay function around the minimum path delay
is always very flat, the area-versus-delay curve always has a
long steep part close to the minimum path delay, as illustrated
in Figure 4. This part indicates that for a small change in path
delay there can be a large change in area. In other words, a
small decrease in path delay close to the minimum comes with
a high cost in terms of increase in area.

VII. FINDING xλ BY COORDINATE-WISE DESCENT

For a given λ, we can find the vector xλ that satisfies equa-
tion (9) by coordinate-wise descent with exact line search [19].
Although there are many other methods to find xλ, we have
found that the method of coordinate-wise descent is simple
and converges very rapidly to the solution. Coordinate-wise
descent has been applied in many other papers on circuit
optimization by means of gate or wire sizing ([15], [17], [20],
[21], [11]).

Initially the algorithm can start at any vector x. In absence
of any good choice of start vector, you can use the vector
xi = 1 for all 0 < i ≤ N .

For each i from N to 1, the algorithm updates coordinate
xi using equation (9), where we assume that all variables
except xi are fixed. After each update of a variable in xN

through x1, the function A(x) + λD(x) decreases or remains
the same. After several rounds of updates, the variables xN

through x1 rapidly approach the minimum of the function.
When the relative change in each xi is less than a prescribed
tolerance, the algorithm terminates.

The algorithm calculates each update to variable xi, 0 <
i ≤ N , as follows. Solving (14) for xi, we find

xi =

√
Ci + gi+1 ∗ xi+1

(ai/λ) + gi/xi−1
(16)

We call the right-hand side of this equation the update
function for variable xi.

updatei(xi+1, xi−1, λ) =

√
Ci + gi+1 ∗ xi+1

(ai/λ) + gi/xi−1

The algorithm is as follows. Here x(k) is the k-th approxi-
mation of xλ.

x(0) := 1;
k := 0;
repeat k := k + 1;

for i = N to 1 do
x

(k+1)
i := updatei(x

(k+1)
i+1 , x

(k)
i−1, λ)

end
until ||x(k+1) − x(k)|| < tol ∗ ||x(k+1)||

Note that if you want to start the algorithm with xi = 0,
for all 0 < i ≤ N , the above formulas must be rewritten to
avoid division by 0.

When the path is cyclic, some updates are slightly different.
First, size x0 of gate 0 is no longer fixed, but variable.
Consequently, the indices are from 0 through N . Second,
because each of the gates 0 through N is part of a cycle,
the addition in indices is modulo N + 1.

When we want to find the minimum energy dissipation of
a path under a delay constraint, we find for each λ the value
xλ that satisfies

∇E(x) = −λ∇D(x)

where (∇E)i = pi + gi for 0 < i ≤ N . This condition is
similar to that for area minimization. In other words, to find
xλ for energy minimization, we only need to substitute pi +gi

for ai in the algorithm for area minimization.

VIII. CONSTRAINTS FOR SIZES

So far we have not put any constraints on the gate sizes.
Gate sizes often have two types of constraints. First, gate sizes
can assume only values between a lower bound Li and upper
bound Ui, which may be specific to each gate i.

Li ≤ xi ≤ Ui

Second, gate sizes often assume only discrete values, rather
than continuous values. How can we incorporate these two
constraints? This section discusses several ways to deal with
these constraints following ideas proposed in [20], [22].

Before we deal with the two constraints, we observe a
property of the update function. The update function updatei

for variable xi, is a monotonic function in xi+1, xi−1, and λ.
This means that for two points p0 = (x0i+1, x0i−1, λ0) and
p1 = (x1i+1, x1i−1, λ1)

if p0 ≤ p1 then updatei(p0) ≤ updatei(p1)

The monotonicity property still holds if we change the update
function to

update ′i(xi+1, xi−1, λ) =

min

(
Ui,max

(
Li,

√
Ci + gi+1 ∗ xi+1

(ai/λ) + gi/xi−1

))
for each 0 < i ≤ N . The modified update function makes
sure that the value after each update stays within the interval
[Li, Ui].

IEEE TRANSCATIONS ON COMPUTER AIDED DESIGN, VOL. TBD, NO. TBD, JANUARY TBD 6

The consequence of the monotonicity property for the
modified update function is that for each value of λ and start
vector x

(0)
i = Li, for each 0 < i ≤ N , the approxima-

tion algorithm produces a monotonically increasing sequence
x(0) ≤ x(1) ≤ x(2) ≤ ... This sequence converges to xλ,i,
unless for some i, x

(k)
i remains stuck at its lower bound Li

or its upper bound Ui.
Similarly, we can start the approximation algorithm at

the upper bounds, in which case the algorithm produces a
monotonically decreasing sequence of sizes. In either case,
each size xi remains within its interval [Li, Ui]. This handles
the constraints for the upper and lower bounds.

We can exploit the monotonicity property even further, as
proposed [21]. If we want to construct the trade off curve
between area and delay, for example, we must compute the
values xλ for a sequence of values λ0, λ1, λ2, ... If this
sequence of λ’s is a monotonic sequence, then you can use
the vector xλ0 as the start vector for approximating xλ1, and
xλ1 as the start vector for approximating xλ2, and so on.
Depending on whether the sequence of λ’s is an increasing
or decreasing sequence, we must choose the lower bounds
Li or the upper bounds Ui, respectively, as the initial start
vector. This choice of start vectors of each λ speeds up the
computation of the trade-off curve even further.

In this paper we consider all gate sizes to be continous.
To deal with discrete values for the sizes, we can round the
gate sizes in xλ to discrete values. Because of the rounding,
we may choose sub-optimal gate sizes. How much we loose
in optimality depends on the resolution of the discrete gate
sizes in the neighborhood of the optimal values and the
gradients of the delay, area, and energy functions in the same
neighborhood.

Alternatively we can compute lower and upper bounds for
the discrete gate sizes that achieve the optimum. We compute
the lower bounds for the optimum by always rounding down-
wards the update value for each xi to nearest discrete gate
size in a monotonically increasing sequence. We compute the
upper bounds for the optimum by always rounding upwards
the update value for each xi in a monotonically decreasing
sequence. Often the gap between lower and upper bound for
each gate size is very small.

IX. A SMALL EXAMPLE

Figure 5 shows a string of three inverters with one side
load. The side load is 10(κ), the final load is 10(κ) as well,
and x0 = 1.

10

1 x1 x2

10

1 1 1 1 1

Fig. 5. A string of three inverters with one side load and one final
load

The functions D(x) and A(x) are as follows:

D(x) = (1 + x1/1) + (1 + 10/x1 + x2/x1) + (1 + 10/x2)

A(x) = 1 + x1 + x2

Let us compute the area-vs-delay function for this example.
For each λ we have to find xλ satisfying

∇A(x) = −λ∇D(x)

where ∇A(x) = [1, 1]. Because all gates are inverters, we
have gi = 1 and ai = 1 for i = 1, 2. The update functions for
x1 and x2 are

x1 =

√
10 + x2

(1/λ) + 1

x2 =

√
10

(1/λ) + 1/x1

Let us first calculate the minimum path delay. For this
purpose we choose λ = ∞. The update functions now simplify
to

x1 =
√

10 + x2

x2 =
√

10 ∗ x1

Table I gives the successive values for (x1, x2) during the
execution of the coordinate-wise descent algorithm. After only

current value next value x(0) x(1) x(2) x(3)

x2
√

x1 ∗ 10 1 3.16 6.02 6.35
x1

√
1 ∗ (10 + x2) 1 3.63 4.00 4.04

TABLE I
SUCCESSIVE VALUES FOR (x1, x2) OF THE COORDINATE-WISE DESCENT

ALGORITHM WHEN λ =∞.

six steps, or three vector values, the algorithm yields values for
(x1, x2) that are less than 1% from the actual minimum. The
path delay is minimal for (x1, x2) = (4.05, 6.36) with a path
delay of approximately 12.66τ . The area at the minimum is
approximately (1+4.05+6.36) = 11.4α. The energy dissipation
by the path at the minimum is approximately (1 + 2*4.05
+10 + 2*6.36 + 10) = 41.8ε. Figure 6 graphically illustrates
the coordinate-wise descent algorithm for λ = ∞ for this
example.

Let us see how fast the algorithm converges to the final
values of x1 and x2 when we choose λ = 1. Table II gives
the simplified update functions and the successive values for
(x1, x2) during the execution of the coordinate-wise descent
algorithm. The result after each step, viz., each update, appears

current value next value x(0) x(1) x(2) x(3)

x1

√
(10 + x2)/2 1 2.47 2.52 2.52

x2

√
10/(1 + 1/x1) 1 2.24 2.67 2.68

TABLE II
SUCCESSIVE VALUES FOR (x1, x2) OF THE COORDINATE-WISE DESCENT

ALGORITHM WHEN λ = 1.

in the next column. After only four steps, or two vector values,
the algorithm yields values for (x1, x2) that are less than 1%
from the actual solution. For λ = 1, xλ = (2.52, 2.68) and

IEEE TRANSCATIONS ON COMPUTER AIDED DESIGN, VOL. TBD, NO. TBD, JANUARY TBD 7

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

13.9

16.5 17.7

19

22.8

x
1

x 2

Path Delay vs x(1) and x(2)

+x(3)

x(0)

x(1)

x(2)

Fig. 6. A graphical illustration of the coordinate-wise descent
algorithm with λ = ∞ and a contour plot of the path delay as a
function of the gate sizes x1 and x2.

D(xλ) ≈ 14τ , A(xλ) ≈ 6.2α, and E(xλ) ≈ 31.4ε. We can
calculate that by paying about 13% in extra path delay, the
area of the path goes down by more than 45%. The energy
goes down by almost 25%.

The area-vs-delay function appears in Figure 7. The se-
quence of values for λ is λi = ai ∗ 0.1 for i = 0, 1, .., 15
where a5 = 10.

0 5 10 15 20 25 30
0

2

4

6

8

10

12

Path Delay [τ]

A
re

a
[α

]

Area vs Path Delay

λ=0.1

λ=100

λ=1

Fig. 7. The area-vs-delay function for the example circuit

X. AN EXAMPLE INCLUDING LOOPS

In this example we consider a network with cycles. The
network is a chain of C-elements connected in a ring as shown
in Figure 8. Such chains of C-elements are often used in
asynchronous circuits [23]. We are asked to find the energy-
versus-delay function for one segment of this chain of C-
elements.

If we need to consider every gate in this chain of C-
elements, the task can become quite large. For our analysis
purposes, however, it is sufficient to consider the segment of
Figure 9, where terminals labeled A connect to each other and
terminals labeled B connect to each other. We have labeled

C

CL

C

CL

C

CL

Fig. 8. A chain of C-elements connected in a ring

each input and output of a gate with the logical effort or
parasitic delay of that terminal.

22

2

1 1
x1

x2

CL

A A

BB

C

Fig. 9. A segment from a chain of C-elements connected in a
ring

The delay function D(x) for this circuit is the cycle time
of the cycle containing one inverter and two C-elements. The
delay function is

D(x) = (1 + 2 ∗ x2/x1) + 2 ∗ (2 + (CL + x1 + 2 ∗ x2)/x2)

Rather than computing the energy function of a complete
chain of C-elements, we calculate the energy function of a
single segment only. The energy spent during one cycle in a
single segment consisting of one inverter and one C-element
is

Esegment(x) = 2 ∗ x1 + 6 ∗ x2 + CL

The gradients for these functions are

∇D =
[

2/x2 − 2 ∗ x2/x2
1

2/x1 − 2 ∗ (CL + x1)/x2
2

]
∇E =

[
2
6

]
The update functions obtained from ∇E = −λ∇D are

x1 =

√
2 ∗ x2

2/λ + 2/x2

x2 =

√
2 ∗ (CL + x1)
(6/λ + 2/x2)

If we want to know the minimum cycle time of this circuit,
∇D = 0 must hold. This condition implies that x2

1 = x2
2 and

x2
2 = x1∗(CL+x1). For fixed CL > 0, this condition can only

be satisfied for x1, x2 → ∞ and x1/x2 → 1. The minimum
cycle time in that case is 1 + 2 + 2 ∗ (2 + 1 + 2) = 13τ . This
minimum cycle time is independent of the value of CL.

The minimum cycle time of 13.0τ is unattainable: the
energy dissipation becomes prohibitive as the cycle time

IEEE TRANSCATIONS ON COMPUTER AIDED DESIGN, VOL. TBD, NO. TBD, JANUARY TBD 8

approaches the minimum cycle time. Suppose we want to
minimize the cycle time of the chain of C-elements and the
energy dissipation of each segment. We choose to give equal
weight to cycle time and energy dissipation. That is, we want
to find the gate sizes x such that the gradients in the energy
function and cycle time are the same, but of opposite sign.
In other words, any small change in gate sizes x1 and x2

that causes an increase or decrease in cycle time is counter
balanced by the same decrease or increase, respectively, in
energy. For our example we take CL = 10.

Because we give equal weight to cycle time and energy,
we choose λ = 1. We must solve ∇D = −∇E. Solving this
equation by coordinate-wise descent, we find the values in
Table III. We find that for (x1, x2) = (1.06, 1.76), the value

current next x(0) x(1) x(2) x(3)

value value
x1

√
(2 ∗ x2)/(2 + 2/x2) 1 1.01 1.06 1.06

x2

√
2 ∗ (10 + x1)/(6 + 2/x2) 1 1.65 1.75 1.76

TABLE III
SUCCESSIVE VALUES FOR (x1, x2) OF THE COORDINATE-WISE DESCENT

ALGORITHM.

for energy E is 24.3ε and the value for cycle time D is 24.88τ .
The gate delay for the inverter is 4.32τ and the delay for the
C-element is 10.28τ .

The complete energy-vs-delay function appears in Fig-
ure 10. The sequence of values for λ is λi = ai ∗ 0.1 for
i = 0, 1, .., 10 where a5 = 10.

0 5 10 15 20 25 30 35 40 45 50 55
0

5

10

15

20

25

30

35

40

45

50

55

Cycle Time [τ]

E
ne

rg
y

[ε
]

Energy vs Path Delay

λ=1

λ=10

λ=0.1

Fig. 10. The energy-vs-delay function for the example circuit

XI. INCLUDING RESISTIVE WIRES

We can generalize our model by including resistive wires
between gates. Figure 11 illustrates a path with side loads
and resistive wires. We represent wires between gates by
means of π models, and we have merged any side loads
to the wire load before and after the resistor. The variables
xi−1, xi, xi+1 represent gate sizes, Ci−1,0, Ci−1,1, Ci,0, Ci,1

represent fixed capacitances, and Ri−1, Ri represent fixed
resistances. We define Ci as the total side load of stage i,

Ri
xi-1 xi xi+1

Ci-1,0 Ci-1,1 Ci,0 Ci,1

Ri-1

Fig. 11. A path with side loads and resistive wires between gates.

i.e., Ci = Ci,0 +Ci,1. When the wire load Cw is the only side
load, then Ci,0 = Ci,1 = Cw/2.

Recall that the units for time and capacitance are τ and κ
respectively. Thus the units for resistance are τ/κ.

Because of the addition of resistive wires, we must add the
delays due to the resistance of the wire to the path delay. Using
the Elmore delay model, we obtain (for stage i)

di = pi +(gi+1 ∗xi+1 +Ci)/xi +Ri ∗Ci,1 +Ri ∗ gi+1 ∗xi+1

The term Ri ∗ Ci,1 + Ri ∗ gi+1 ∗ xi+1 is the extra delay due
to the resistance of the wire. The total path delay becomes

D(x) =
N∑

i=0

((pi + Ri ∗ Ci,1) +

(Ci + gi+1 ∗ xi+1)/xi + Ri ∗ gi+1 ∗ xi+1)

where gN+1 = 0 and xN+1 = 0.
For the area function we consider the contributions of

the fixed wires to be fixed. So the wires contribute only
a fixed constant to A(x). The modified delay function and
area functions are still convex functions in x, and thus our
optimization approach still applies.

For the gradient ∇D we obtain for 0 < i ≤ N

(∇D)i =
∂D

∂xi

= (gi/xi−1 − (Ci + gi+1 ∗ xi+1)/x2
i) + Ri−1 ∗ gi

Because the modified area function has changed only by a
fixed constant, the gradient ∇A remains the same.

We need to solve ∇A = −λ∇D, where the delay function
is modified. For 0 < i ≤ N this equation boils down to

ai = −λ ∗ ((gi/xi−1 − (Ci + gi+1 ∗ xi+1)/x2
i) + Ri−1 ∗ gi)

where gN+1 = 0 and xN+1 = 0. Solving for xi yields

xi =

√
Ci + gi+1 ∗ xi+1

(ai/λ) + gi/xi−1 + Ri−1 ∗ gi

This equation gives the update to coordinate xi in each
iteration. This update function is very similar to the one
without resistive wires: the only extra term is Ri−1 ∗ gi.

XII. SIMULATION RESULTS

To test this algorithm and determine the level of accuracy
provided by logical-effort models, we created a testcase of a
chain of five inverters in 65 nm technology. The first gate was
fixed as 8x (being 8 times the gate size of a 1x minimum
inverter). The remaining gates were sized using the logical
effort algorithm described. See Figure 12.

IEEE TRANSCATIONS ON COMPUTER AIDED DESIGN, VOL. TBD, NO. TBD, JANUARY TBD 9

inv
(8x)

inv

inv inv inv

300um 400um

600um500um

263fF

Fig. 12. Simulated testcase with long wires in 65nm technology.

We first solved for the set of gate sizes that would produce
the absolute minimum delay (i.e. λ = ∞). These sizes were
then put into the schematic and a SPICE simulation performed.
We found the logical effort model was about 5% off from the
SPICE results.

Then, we constrained the path delay to a value (larger
than the previously found minimum, of course) and solved
for the best set of sizes corresponding to the minimal area.
These sizes were then SPICE’d and the result compared to
the original constrained value. We again found that the logical-
effort method gave a fair estimate of the delay, this time to
about 9% of the SPICE value. Table IV summarizes these
results. In general, the delays are within 10% of SPICE and
can be used to provide a good starting point for additional
optimizations.

Test LE Delay SPICE Difference Area
(ps) (ps) (α)

Minimum Delay 274 260 5.4% 320.5
Delay Constrained 344 315 9.2% 113.0

TABLE IV
SUMMARY OF SPICE SIMULATIONS.

We also applied our algorithms to a number of long circuit
paths in an upcoming microprocessor design from SUN Mi-
crosystems Inc. For each path we calculated the delay D0 and
area A0 for the path for the gate sizes chosen by the designer.
We then calculated with our algorithm the delay and area for
the sizes that achieve minimum path delay and for the sizes
that achieve minimum area subject to the constraint that the
path delay is at most the path delay of the designer’s choice
of sizes, i.e, D(x) ≤ D0. Table V summarizes our results for
four paths. The results confirm that the minimum path delay

Min path delay Designer’s choice Constrained Min
D [ps] A [α] D [ps] A [α] D [ps] A [α]

path 1 89 851 102 216 107 186
path 2 177 670 259 170 262 126
path 3 171 923 230 269 221 192
path 4 97 1485 110 165 113 128

TABLE V
SUMMARY OF RESULTS FOR FOUR CIRCUIT PATHS

can come at a high cost in terms of gate area and that we may
improve significantly in area while achieving approximately
the same delay as for the designer’s choice of gate sizes.

XIII. CONCLUSION

We have described an efficient algorithm that can be used
for area-delay and energy-delay optimizations. This algorithm
takes advantage of the simplicity of the logical effort model
to allow one to quickly compute the trade-offs between delay
and area or energy. As a result, designers can experiment with
sizing trade-offs without resorting to time-consuming SPICE
simulations.

ACKNOWLEDGMENT

The authors would like to thank Ilyas Elkin for providing
support and examples for our algorithms.

REFERENCES

[1] I. Sutherland et al., Logical Effort: Designing Fast CMOS Circuits. San
Francisco, CA: Morgan Kaufmann Publishers, Inc., 1999.

[2] N. Burgess, “Logical effort analysis of a media-enhanced adder,” in Con-
ference Record of the Thirty-Seventh Asilomar Conference on Circuits
and Systems, 2003, vol. 1, Nov. 2003, pp. 344–348.

[3] D. Harris, “Logical effort of higher valency adders,” in Conference
Record of the Thirty-Eight Asilomar Conference on Circuits and Systems,
2004, vol. 2, Nov. 2004, pp. 1358–1362.

[4] P. Celinski, S. Al-Sarawi, D. Abbot, S. Cotofana, and S. Vassiliadis,
“Logical effort based design exploration of 64-bit adders using a mixed
dynamic-cmos/threshold-logic approach,” in Proc. IEEE Computer So-
ciety Annual symposium on VLSI, 2004, Feb. 2004, pp. 127–132.

[5] I. Sutherland and J. Lexau, “Designing fast asynchronous circuits,”
in Seventh International Symposium on Asynchronous Circuits and
Systems, 2001, Mar. 2001, pp. 184–193.

[6] S. Laberge and R. Negulescu, “An asynchronous fifo with fights: case
sstudy in speed optimization,” in The 7th IEEE International Conference
on Electronics, Circuits, and Systems, 2000, Dec. 2000, pp. 755–758.

[7] B. Hu, Y. Watanabe, and M. Marek-Sadowska, “Gain-based technology
mapping for discrete-size cell libraries,” in Proceedings Design Automa-
tion Conference, 2003, June 2003, pp. 574–579.

[8] S. Karandikar and S. Sapatnekar, “Logical effort based technology
mapping,” in IEEE/ACM International Conference on Computer Aided
Design, Nov. 2004, pp. 419–422.

[9] P. Rezvani, A. Ajami, M. Pedram, and H. Savoj, “Leopard: a logical
effort-based fanout optimizer for area and delay,” in IEEE/ACM Interna-
tional Conference on Computer-Aided Design, Nov. 1999, pp. 516–519.

[10] J.-M. Shyu, A. Sangiovanni-Vincentelli, J. Fishburn, and A. Dunlop,
“Optimization-based transistor sizing,” IEEE Journal of Solid-State
Circuits, vol. 23, no. 2, pp. 400–409, Apr. 1988.

[11] H. Tennakoon and C. Sechen, “Gate sizing using lagrangian relaxation
combined with a fast gradient-based pre-processing step,” in Proc.
IEEE/ACM International Conf. Computer-Aided Design (ICCAD), Nov.
2002, pp. 395–402.

[12] J. Fishburn and A. Dunlop, “TILOS: A posynomial approach to tran-
sistor sizing,” in Proc. IEEE/ACM International Conf. Computer-Aided
Design (ICCAD), Nov. 1985, pp. 326–328.

[13] S. Sapatnekar, V. Rao, P. Vaidya, and S.-M. Kang, “An exact solution
to the transistor sizing problem for cmos circuits using convex opti-
mization,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 12, no. 11, pp. 1621–1634, Nov. 1993.

[14] A. Wächter, C. Visweswariah, and A. R. Conn, “Large-scale nonlinear
optimization in circuit tuning.” Future Generation Comp. Syst., vol. 21,
no. 8, pp. 1251–1262, 2005.

[15] C.-P. Chen, C. Chu, and D. Wong, “Fast and exact simultaneous gate and
wire sizing by lagrangian relaxation,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, vol. 18, no. 7, pp.
1014–1025, July 1999.

[16] C.-P. Chen, H. Zhou, and D. Wong, “Optimal non-uniform wire-sizing
under the elmore delay model,” in Proc. IEEE/ACM International Conf.
Computer-Aided Design (ICCAD), Nov. 1996, pp. 38–43.

[17] C. Chu and D. Wong, “Greedy wire-sizing is linear time,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 18, no. 4, pp. 398–405, Apr. 1999.

[18] H. J. Veendrick, “Short-circuit energy dissipation and its impact on the
design of buffer circuits,” IEEE Journal of Solid-State Circuits, vol. SC-
17, no. 1, pp. 468–473, Feb. 1984.

IEEE TRANSCATIONS ON COMPUTER AIDED DESIGN, VOL. TBD, NO. TBD, JANUARY TBD 10

[19] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge
University Press, 2004.

[20] J. Cong and L. He, “Theory and algorithm of local-refinement-based
optimization with application to device and interconnect sizing,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 18, no. 4, pp. 406–420, Apr. 1999.

[21] J. Cong and K.-S. Leung, “Optimal wire sizing under the distributed
elmore delay model,” in Proc. IEEE/ACM International Conf. Computer-
Aided Design (ICCAD), Nov. 1993, pp. 634–639.

[22] J. Cong and C.-K. Koh, “Simultaneous driver and wire sizing for
performance and power optimization,” IEEE Transactions on VLSI
Systems, vol. 2, no. 4, pp. 408–425, Dec. 1994.

[23] I. E. Sutherland, “Micropipelines,” Communications of the ACM, vol. 32,
no. 6, pp. 720–738, June 1989.

George Chen received the B.S. degree in elec-
trical engineering from the California Institute of
Technology , Pasadena, CA, in 1987, the M.S. and
PhD. degrees in electrical engineering from Stanford
University in 1988 and 1993, respectively. Since
2000, he has been a member of Sun’s Processor
CAD group managing and developing analysis tools
and flows for processor designs.

Jo Ebergen Jo Ebergen received his PhD in Math-
ematics and Computing Science from Eindhoven
University of Technology in 1987. From 1988 to
1996 he taught at the Computer Science Department
at Waterloo University in Canada. Since 1996 he
works for Sun Microsystems Laboratories, where he
is a distinguished engineer working on experimental
architectures, clockless circuits, formal verification,
and circuit optimizations. Jo is a member of IEEE
and a distinguished engineer of ACM.

Jiyang Cheng Jiyang Cheng received the B.S. de-
gree in Electrical Engineering from University of
Arizona in 1999 and the M.S. degree in Electrical
Engineering from Stanford University.

From 1999 to 2001, He was a telecommunica-
tion analyst in NASA’s Jet Propulsion Laboratory.
He was involved in several Mars missions includ-
ing Mars Reconnaissance Orbiter, Mars Exploration
Rovers mission.

From 2003, He was a member of technical staff
at Sun Microsystems. His current research interests

include signal integrity based static timing analysis and timing based noise
analysis. His experience includes SRAM design, ASIC design, noise and static
timing tool design.

