
Runtime Prevention of Deserialization
Attacks

François Gauthier and Sora Bae

Oracle Labs Australia

• Untrusted deserialization exploits, where a serialised object graph (i.e. gadget chain) is used to
achieve denial-of-service or arbitrary code execution were introduced in the 2017 OWASP Top 10
and merged in the broader “injection” category in the 2021 version.

• State-of-the-art approaches (e.g. JDK1 deserialization filters), ask developers to block or allow
classes individually, without any context, despite the sequential nature of gadget chains.

• We show how Markov chains can help detect sequences of features that are typical of gadget chains
to detect and prevent deserialization attacks.

Problem and Proposed Solution

Copyright © 2022, Oracle and/or its affiliates2

[1]: JDK is a registered trademark of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

The Java1 Serialization Format

Copyright © 2022, Oracle and/or its affiliates3

[1]: Java is a registered trademark of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Click to add image

“A whole is what has a beginning
and middle and end”

Aristotle, Poetics (335 BCE)

Copyright © 2022, Oracle and/or its affiliates4

What Makes A Good Gadget Chain?

Click to add image

Copyright © 2022, Oracle and/or its affiliates5

Aristotle got it right. A good gadget chain needs:

• A method that will be called at the beginning of
deserialisation to hand control to...

• Linker classes in the middle that will set the scene for...
• The target method that will be invoked at the end of

deserialisation.

What Makes A Good Gadget Chain?

Aristotle, Poetics (335 BCE)

Hypothesis

Copyright © 2022, Oracle and/or its affiliates6

The sequence of classes and their features
differ significantly between benign and
malicious deserialization chains.

Given a class C and a set of Boolean class features F, we can abstract C to a set of Boolean features f:

𝐶 → 𝑓, 𝑓 ∈ 𝑃(𝐹)

Similarly, we can abstract any gadget chain G as a sequence of feature sets:

𝐺 → 𝑓1, 𝑓2, ⋯ , 𝑓𝑛−1, 𝑓𝑛 , 𝑓𝑖 ∈ 𝑃(𝐹)

Graphically:

Modelling Java Deserialisation as Markov Chains (1)

Copyright © 2022, Oracle and/or its affiliates7

𝑓1 𝑓2 𝑓𝑛−1 𝑓𝑛

Features - From Manual Review of ysoserial Gadget Chains

8 Copyright © 2022, Oracle and/or its affiliates

A Markov chain represents a system that:

• Has a finite number of states:

𝑆 = 𝑠1, 𝑠2, ⋯ , 𝑠𝑛

• Starts in any given state s ∈ 𝑆 with probability 𝑝𝑖 ∈ 𝑝𝑖𝑛𝑖𝑡, its initial state probability vector:

𝑝𝑖𝑛𝑖𝑡 = 𝑝1, 𝑝2, ⋯ , 𝑝𝑛

• Transitions between states with some probability 𝑝 at each step 𝑡:

𝑝𝑡𝑟 =

𝑝11 ⋯ 𝑝1𝑛
⋮ ⋱ ⋮
𝑝𝑛1 ⋯ 𝑝𝑛𝑛

Modelling Java Deserialisation as Markov Chains (2)

Copyright © 2022, Oracle and/or its affiliates9

Given a Markov chain and an observed sequence of states, one can estimate the probability that the
chain generated the sequence with a simple product of probabilities:

𝑝 𝑓1, 𝑓2, ⋯ , 𝑓𝑛 = 𝑝𝑖𝑛𝑖𝑡(𝑓1) ∙ෑ

𝑖=2

𝑛

𝑝𝑡𝑟 𝑓𝑖−1, 𝑓𝑖

Graphically: 𝑝𝑖𝑛𝑖𝑡 𝑓1 𝑝𝑡𝑟 𝑓1, 𝑓2 𝑝𝑡𝑟(𝑓𝑛−1, 𝑓𝑛)

Modelling Java Deserialisation as Markov Chains (3)

Copyright © 2022, Oracle and/or its affiliates10

𝑓1 𝑓2 𝑓𝑛−1 𝑓𝑛

Our goal is to build two Markov chains 𝐵 and 𝑀 from benign and malicious datasets respectively.

Empirical approach:

Use the observed transition probabilities directly. Works well with large dataset.

Bayesian approach:

Model each row of 𝑝𝑡𝑟 as the output of a known probability distribution (i.e. Dirichlet) and explore the
space of Dirichlet parameters 𝛼 = 𝛼1, 𝛼2, ⋯ , 𝛼𝐾 to find the distributions 𝐷𝑖𝑟(𝛼𝑖) that best characterize
the data.

Estimating Transition Probabilities From Data

Copyright © 2022, Oracle and/or its affiliates11

Copyright © 2022, Oracle and/or its affiliates12

Black magic involving probabilistic programming
(Bayesian inference), Dirichlet distributions, and
Markov Chain Monte Carlo sampling...

Output: Two sets of benign (𝐵) and malicious (𝑀)
Markov chains

Ysoserial is a public repository of deserialization
gadget chains.

1. Create an ASM agent to dynamically extract features
from loaded classes.

2. Build a harness to (de)serialise ysoserial payloads,
and extract features.

Creating A Deserialization Dataset (1)

Copyright © 2022, Oracle and/or its affiliates13

WebLogic Server (WLS)1 heavily relies on
deserialisation for common operations.

1. Instrument WebLogic Server with the ASM agent
mentioned above.

2. Load WLS and exercise its console to extract
features from “benign” deserialization chains .

[1]: Oracle®WebLogic Server is a registered trademark of Oracle and/or its
affiliates. Other names may be trademarks of their respective owners.

Creating A Deserialization Dataset (2)

Copyright © 2022, Oracle and/or its affiliates14

Unique chains Average length Median length

Benign (WLS) 227 38.96 13

Malicious (ysoserial) 37 16.68 6

Dataset Description

Copyright © 2022, Oracle and/or its affiliates15

Detecting Deserialization Attacks

16 Copyright © 2022, Oracle and/or its affiliates

t Precision Recall F1-score Time (sec)

Bayesian

0 91.67±6.97 96.67±6.67 0.94±0.03

7163
1 91.67±6.97 96.67±6.67 0.94±0.03

2 89.72±8.94 100.0±0.00 0.94±0.05

3 88.17±11.26 100.0±0.00 0.93±0.07

Empirical ― 72.95±14.27 100.0±0.00 0.84±0.09 0.7

Bayesian vs. Empirical, 5-Fold Cross-Validation

Copyright © 2022, Oracle and/or its affiliates17

Impact of Aborting Deserialization Early

Copyright © 2022, Oracle and/or its affiliates18

After manual review, all the false positives fall into one of these categories:

• Java Transaction API

• Networking

• Instrumentation

• Remote Method Invocation (RMI)

• Managed Bean

which indeed look like attractive targets for deserialization attacks.

Digging Into False Positives

Copyright © 2022, Oracle and/or its affiliates19

Thank you

https://labs.oracle.com/

francois.gauthier@oracle.com

sora.bae@oracle.com

Copyright © 2022, Oracle and/or its affiliates20

https://labs.oracle.com/

