ORACLE

.
=

Runtime Prevention of Deserialization
Attacks

Francois Gauthier and Sora Bae
Oracle Labs Australia

Problem and Proposed Solution

« Untrusted deserialization exploits, where a serialised object graph (i.e. gadget chain) is used to
achieve denial-of-service or arbitrary code execution were introduced in the 2017 OWASP Top 10
and merged in the broader “injection” category in the 2021 version.

« State-of-the-art approaches (e.g. JDK' deserialization filters), ask developers to block or allow
classes individually, without any context, despite the sequential nature of gadget chains.

« We show how Markov chains can help detect sequences of features that are typical of gadget chains
to detect and prevent deserialization attacks.

[1]: IDK is a registered trademark of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

2 Copyright © 2022, Oracle and/or its affiliates

The Javal Serialization Format

TimerTask CommandTask : Runnable
+ task: Runnable » + command: String
+ readObject(ObjectInputStream): void + run(): void
TimerTask L task | Runnable | CommandTask | L command | String |"calc.exe"
L J L J L J
T T T
Class name Field description Field value

[1]: Java is a registered trademark of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

3 Copyright © 2022, Oracle and/or its affiliates

What Makes A Good Gadget Chain?

“A whole is what has a beginning
and middle and end”

Aristotle, Poetics (335 BCE)

4 Copyright © 2022, Oracle and/or its affiliates

What Makes A Good Gadget Chain?

Aristotle got it right. A good gadget chain needs:

» A method that will be called at the beginning of
deserialisation to hand control to...
e Linker classes in the middle that will set the scene for...

» The target method that will be invoked at the end of
deserialisation.

Aristotle, Poetics (335 BCE)

5 Copyright © 2022, Oracle and/or its affiliates

Hypothesis

The sequence of classes and their features
differ significantly between benign and
malicious deserialization chains.

Modelling Java Deserialisation as Markov Chains (1)

Given a class C and a set of Boolean class features F, we can abstract C to a set of Boolean features f:
C > f,fePF)
Similarly, we can abstract any gadget chain G as a sequence of feature sets:

G - (flifZ!”’!fn—l'fn):ﬁ € P(F)

7 Copyright © 2022, Oracle and/or its affiliates

Features - From Manual Review of ysoserial Gadget Chains

Id Feature Description

True if the class calls any of the following from java.lang.reflect:
- Constructor.newlnstance ()

1 Uses reflection _ Field.set()

- Method. invoke ()
2 Overrides readObject True if the class overrides the method Object readObject(ObjectInputStream ois)
3 Overrides hashCode True if the class overrides the int hashCode() method.

True if the class has a field of any of the following type:
- java.lang.0Object
- java.lang.Comparable
- java.util.Comparator

4 Has generic field

5 Implements Map True if the class implements the java.util.VMap interface.

6 Implements Comparator True if the class implements the java.util.Comparator interface.

True if the class calls any of the following methods:
- int java.util.Objects.hash(Object... values)
- int java.util.Objects.hashCode(Object o)
- * . hashCode()

7 Calls hashCode

True if the class calls any of the following methods:

8 Calls compare - %, compare ()
8 Copyright © 2022, Oracle and/or its affiliates . compareTo (...)

Modelling Java Deserialisation as Markov Chains (2)

A Markov chain represents a system that:

Has a finite number of states:

S = {51'52) "')Sn}

Starts in any given state s € S with probability p; € p;,is, 1ts initial state probability vector:

Pinit = (pl' P2, pn)

Transitions between states with some probability p at each step t:

P11 Pin
per =+ -
Pn1 = DPnn

9 Copyright © 2022, Oracle and/or its affiliates

Modelling Java Deserialisation as Markov Chains (3)

Given a Markov chain and an observed sequence of states, one can estimate the probability that the
chain generated the sequence with a simple product of probabilities:

p(f1, f2 s fn) = Pinie (f1) - Hptr(fi—l»fi)
i=2

Graphically:

pinit(fl)/\ptr(flrfz) ptr(fn—lifn)

10 Copyright © 2022, Oracle and/or its affiliates

Estimating Transition Probabilities From Data

Our goal is to build two Markov chains B and M from benign and malicious datasets respectively.

Empirical approach:
Use the observed transition probabilities directly. Works well with large dataset.

Bayesian approach:

Model each row of p.,- as the output of a known probability distribution (i.e. Dirichlet) and explore the
space of Dirichlet parameters a = (a4, @5, -, ag) to find the distributions Dir(a;) that best characterize
the data.

11 Copyright © 2022, Oracle and/or its affiliates

Black magic involving probabilistic programming
(Bayesian inference), Dirichlet distributions, and
Markov Chain Monte Carlo sampling...

Output: Two sets of benign (B) and malicious (M)
Markov chains

Creating A Deserialization Dataset (1)

il

. | .

.j.'{ L
L.ections.. p
‘collections, “w ¢

Ysoserial is a public repository of deserialization i1+ tors. ChatnedTs Jn
gadget chains. s el oy
- v.lections. functors tTro- forr ariv. .4
1. Create an ASM agent to dynamically extract features arlang/CbSec s S
from loaded classes. . -cimbori el Ainctors. Inve
2. Build a harness to (de)serialise ysoserial payloads, 3 ") b
and extract features. e ._
v .q
vote jave
calc.en-. sevilim, i
L. .voluexr..java.1 "

13 Copyright © 2022, Oracle and/or its affiliates

Creating A Deserialization Dataset (2)

WebLogic Server (WLS)! heavily relies on

ORA‘ l E deserialisation for common operations.

1. Instrument WebLogic Server with the ASM agent

WEbLOg]C Se rver mentioned above.

2. Load WLS and exercise its console to extract
features from “benign” deserialization chains.

[1]: Oracle®WebLogic Server is a registered trademark of Oracle and/or its
affiliates. Other names may be trademarks of their respective owners.

14 Copyright © 2022, Oracle and/or its affiliates

Dataset Description

— Average length e

Benign (WLYS) 38.96
Malicious (ysoserial) 37 16.68 6

15 Copyright © 2022, Oracle and/or its affiliates

Detecting Deserialization Attacks

Input: B, M, t, |

Output: status € {accepted, rejected, undecided}
1 seq < new List()
2 Function MarkovFilter(class, end):

3 features < EXTRACTFEATURES(class)

4 seq.append(features)

5 Pg <+ mean(P(seq | B))

6 | Py mean(P(seq | M))

7 | disjoint + ((Ps*to) N (Py=*to) = 0)

8 if end and disjoint then

9 return Py, > P ? rejected : accepted
10 else if end and —disjoint then

11 return rejected

12 else if disjoint and |seq| > | and Py > Pg then
13 return rejected

14 else

15 return undecided

16 end

16 Copyright @)]'Z()29,Hrgle and/or its affiliates

Bayesian vs. Empirical, 5-Fold Cross-Validation

|t | Precision | Recall | Flscore | Time(sec) _

o) 91.67%£6.97 96.67%6.67 0.94+0.03
1 91.67%£6.97 96.67%6.67 0.94+0.03
2 89.7218.94 100.0%£0.00 0.94%0.05
3 88.17%111.26 100.0%£0.00 0.93+0.07
Empirical — 72.95%14.277 100.0+0.00 0.84%0.09 0.7

Bayesian 7163

17 Copyright © 2022, Oracle and/or its affiliates

Impact of Aborting Deserialization Early

1.0 A
0.9 A
()]
(@)]
©
<z 0.8
[0
2
&
0.7 1
06 - —&— Precision
—0— Recall
0 10 20 30 40 50

18 Copyright © 2022, Oracle and/or its affiliates

Digging Into False Positives

After manual review, all the false positives fall into one of these categories:

« Java Transaction API

* Networking

* Instrumentation

* Remote Method Invocation (RMI)
 Managed Bean

which indeed look like attractive targets for deserialization attacks.

19 Copyright © 2022, Oracle and/or its affiliates

Thank you

francois.gauthier@oracle.com
sora.bae@oracle.com

https://labs.oracle.com/

20 Copyright © 2022, Oracle and/or its affiliates

https://labs.oracle.com/

