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Defect predictors, static bug detectors and humans inspecting the code can propose locations in the program

that are more likely to be buggy before they are discovered through testing. Automated test generators such

as search-based software testing (SBST) techniques can use this information to direct their search for test

cases to likely-buggy code, thus speeding up the process of detecting existing bugs in those locations. Often

the predictions given by these tools or humans are imprecise, which can misguide the SBST technique and

may deteriorate its performance. In this paper, we study the impact of imprecision in defect prediction on the

bug detection effectiveness of SBST.

Our study finds that the recall of the defect predictor, i.e., the proportion of correctly identified buggy code,

has a significant impact on bug detection effectiveness of SBST with a large effect size. More precisely, the

SBST technique detects 7.5 fewer bugs on average (out of 420 bugs) for every 5% decrements of the recall. On

the other hand, the effect of precision, a measure for false alarms, is not of meaningful practical significance

as indicated by a very small effect size.

In the context of combining defect prediction and SBST, our recommendation is to increase the recall

of defect predictors as a primary objective and precision as a secondary objective. In our experiments, we

find that 75% precision is as good as 100% precision. To account for the imprecision of defect predictors, in

particular low recall values, SBST techniques should be designed to search for test cases that also cover the

predicted non-buggy parts of the program, while prioritising the parts that have been predicted as buggy.
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1 INTRODUCTION

Defect predictors [22] and static bug detectors [5] can estimate the locations of the bugs e�ectively.
As a result of their e�cacy, both defect predictors and static bug detectors are used in the industry
to assist developers in manual code reviews [1, 32, 33, 50]. Defect predictors have also been used
to inform search-based software testing (SBST) techniques for unit testing; SBST�%� [46] and
BTG [26] are time budget allocation techniques for SBST which allocate a higher time budget to
highly-likely-to-be-defective classes, and PreMOSA [47] is an SBST technique which uses defect
prediction information along with code coverage to decide where to increase the test coverage in
the class under test (CUT).

SBST techniques search for test cases to optimise a given coverage criterion such as branch
coverage, method coverage, or a combination of the two. SBST techniques are known to be e�ective
at achieving high code coverage [42, 43]. But, while it is necessary for a test case to cover the buggy
code to detect a bug, just covering the buggy code may not be su�cient to detect the bug [46, 53].
In fact, SBST techniques guided only by coverage have been shown to struggle in terms of bug
detection [3, 46, 52, 53]. This is because the SBST techniques have no guidance in terms of where
the buggy code is likely to be located, and hence spend most of the search e�ort in non-buggy code
which constitutes a greater portion of the code base. To address this, previous works have proposed
using defect prediction information to direct the search for tests to likely buggy code [26, 46, 47].

Often, the predictions produced by defect predictors are not perfectly accurate. Defect prediction
researchers usually aim at elevating both recall and precision. A lower recall and precision can
signi�cantly hamper the bene�ts of defect predictors for the developers who usually manually
inspect or test the predicted buggy code to �nd bugs. Recall is the proportion of correctly identi�ed
buggy code [6]. Poor recall of the defect predictor means that there is a higher rate of false negatives
(i.e., labelling buggy code as non-buggy). This can lead the developers to completely miss bugs.
Precision measures the proportion of actual buggy code among the code labelled as buggy [6]. Poor
precision means there is a higher rate of false positives (i.e., wrongly labelling non-buggy code as
buggy). This can lead to a waste of developers' time and loss of trust in the defect predictors [32].

Previous work that uses defect predictors to guide SBST techniques reports on improved bug
detection performance of SBST [26, 46, 47]. For instance, PreMOSA [47] can detect more unique
bugs, i.e., bugs that are detected only by one approach, than the state-of-the-art DynaMOSA [42], i.e.,
an SBST technique not guided by defect prediction. The defect predictors used in these approaches
have a relatively high performance, e.g., the defect predictor used by Perera et al. [46] had a recall
of 85%, and Hershkovich et al. [26] employed a defect predictor which had an area under curve
(AUC) of 0.95.

The performance of defect predictors, however can vary, e.g., from as low as 5% to as high as
95% of precision and similarly from 25% to 85% for recall [22]. Given such wavering performance,
the question that we address in this paper is�What is the impact of imprecise predictions on the
bug detection performance of SBST?�. We refer to false negatives and false positives as imprecise
predictions. False negatives may result in SBST techniques not generating tests for buggy areas in
code because they are not labelled as buggy by the predictor. On the other hand, false positives may
not be as important in the context of combining defect prediction and SBST, since searching for
tests in false positives may not be a signi�cant burden to the automated test generation techniques
in contrast to a developer manually inspecting the false positives. The answer to this question is
signi�cant because it helps SBST researchers to understand which types of errors in predictions
have to be handled in SBST techniques to maximise e�ectiveness. In addition, the �ndings of this
paper bene�t defect prediction researchers by identifying the signi�cantly impactful errors to
inform the design of defect predictors when they are used to guide SBST.
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To answer this question, we simulate defect predictors for di�erent value combinations of
recall and precision in the range 75% and 100% (Section 2.1). Defect predictors having recall and
precision above 75% are considered acceptable defect predictors [60]. We employ the state-of-the-
art DynaMOSA [42] as the SBST technique in the EvoSuite [18] tool which is guided by defect
predictions (DP) (see Section 2.2), which we refer to asSBST-guided-by-DPthroughout the paper.
We evaluate how the bug detection e�ectiveness of SBST-guided-by-DP changes with the di�erent
levels of imprecision when applied to 420 bugs from the Defects4J dataset [28] (Section 3.1).

The results from our experimental evaluation reveal that the recall of the defect predictor has
a signi�cant impact on the bug detection e�ectiveness of SBST with a large e�ect size. More
speci�cally, SBST-guided-by-DP detects 7.5 fewer bugs on average (out of 420 bugs) for every 5%
decrements of recall. On the other hand, the impact of precision is not of practical signi�cance as
indicated by a very small e�ect size, hence we conclude that the precision of defect predictors has
negligible impact on the bug detection e�ectiveness of SBST. Moreover, the impact of precision
on SBST remains the same even when SBST is given very small time budgets like 5, 10, 15 and
30 seconds and also when the test suite size is limited to 10, 20, 40 and 80 test cases per test suite.
Further analysis into the results reveals that the impact of recall is greater for the bugs that are
isolated in one method than for the bugs that are spread across multiple methods.

In summary, the contributions of this work are as follows;

(1) We perform a comprehensive experimental analysis of the impact of imprecision of defect
predictions on bug detection e�ectiveness of SBST. The experimental evaluation involving
420 bugs from 6 open source Java projects took roughly 180,750 CPU-hours in total. The
outcomes of our experimental evaluation reveal the following �ndings;

(a) The recall of the defect predictor has a signi�cant impact on the bug detection performance
of SBST, while the precision of the defect predictor shows no meaningful practical e�ect
on the bug detection performance of SBST.

(b) The impact of recall on the bug detection performance of SBST is greater for the bugs that
are found within one method than for the bugs that are spread across multiple methods.

(c) Precision does not have a meaningful practical e�ect on the bug detection performance of
SBST even when the time budget and the test suite size are constrained to smaller amounts.

(2) We �nd that false negatives, i.e., missed bugs by the defect predictor, have the most signi�cant
impact on the e�ectiveness of SBST. Hence it is important for SBST techniques to handle
such cases. Currently, the search for tests exploits the likely buggy targets, however, we
recommend that SBST techniques also target the likely non-buggy targets at least with a
minimum probability. One possible solution is to prioritise predicted buggy parts of the
program, while guiding the search with a certain probability towards locations that are
predicted as not buggy.

(3) In the context of combining defect prediction and SBST, increasing recall should be the
primary objective and increasing precision above 75% can be the secondary objective. When
the predictions are used by SBST, a reasonable amount of false positives is not a signi�cant
burden to the automated test generation technique. For SBST, it is important to be informed
of most of the buggy targets. We recommend the researchers target higher recall while having
a su�ciently high precision, instead of trying to elevate both recall and precision at the
same time. In our experimental evaluation, we �nd that the amount of false positives at 75%
precision is not a signi�cant overhead for SBST.

The source code of SBST-guided-by-DP, defect predictor simulator, post processing scripts and data
are publicly available in the following link: https://doi.org/10.6084/m9.�gshare.16564146
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2 METHODOLOGY

Our aim is to understand how the defect prediction imprecision impacts the bug detection perfor-
mance of SBST. To this end, we design a study that addresses the following research question:

RQ: What is the impact of imprecise defect predictions on the bug detection performance of SBST?

To address this research question, we measure the e�ectiveness of SBST in terms of detecting
bugs when using defect predictors with di�erent levels of imprecision. We use the state-of-the-art
DynaMOSA [42] as the SBST technique and EvoSuite as the tool. We incorporate predictions
about buggy methods in order to guide the search for test cases towards likely buggy methods
(see Section 2.2), which we refer asSBST-guided-by-DPthroughout the paper. Fine-grained defect
prediction at a method level is chosen so that the location of the bug is narrowed down better than
coarse-grained defect predictions such as class level. The defect predictors at method level provide
additional information to the SBST technique such that it can further narrow down the search for
test cases to likely buggy methods. SBST-guided-by-DP fully trusts the defect predictor and focuses
the search only in parts that are predicted to be buggy. We explain this in more detail in Section 2.2.

We measure defect predictor imprecision using recall and precision. Recall and precision have
been widely used in previous work to report the performance of defect predictors [22, 27]. A defect
predictor with either recall or precision less than 75% is considered inadequate, as recommended by
Zimmermann et al. [60]. We simulate defect predictors for varying levels of recall and precision in
the range 75% to 100% (see Section 2.1) and measure the impact on the bug detection performance
of SBST by the prediction imprecision.

In addition, we answer the following two sub-research questions to further analyse the impact of
the recall and the precision on the bug detection performance of SBST in di�erent testing situations
such as limited time budgets, restricted test suite sizes and distribution of buggy methods in a bug.

RQ1: What is the impact of the recall of the defect predictor when the bugs are spread across multiple
methods compared to bugs located in a single method?

False negatives in the predictions could mean that the SBST technique misses generating tests
for some buggy areas in code because they are not labelled as buggy. This may lead to poorer bug
detection performance. In our study, the unit of prediction is a method. If a bug is found only in
one method, then it is more likely to be missed by a defect predictor with imperfect recall (i.e.,
recall < 100%) than a bug spread across multiple methods. This research question analyses the bug
detection performance of SBST-guided-by-DP by dividing the bug dataset into two subsets; bugs
located in one method and bugs spread across multiple methods.

RQ2: What is the impact of the precision of the defect predictor when the time budget and the test suite
size are restricted?

False positives add an additional overhead to the test generation since the SBST technique gives
them the same importance as to true positives. The e�ects of this overhead can be more prominent
when the time budget allocated for test generation is limited (e.g., 5, 10, 15 and 30 seconds) and
the test suite size, i.e., number of test cases is restricted (e.g., 10, 20, 40 and 80 test cases). In this
research question, we analyse how the impact of the precision changes when time budget and test
suite size are constrained to smaller amounts.

2.1 Defect Prediction Simulation

To measure the bug detection performance of SBST against the imprecision of defect predictions,
we simulate defect predictor outcomes at various levels of performance in the range 75% and
100% for both precision and recall. We do not use real defect predictors in our study because their
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performance cannot be controlled to systematically investigate the impact of imprecision of defect
prediction. Recall is the proportion of the buggy methods identi�ed by the defect predictor [6]. It
is calculated as in Equation.(1), whereC?is the number of true positives, i.e., number of buggy
methods that are correctly classi�ed, and5 =is the number of false negatives, i.e., number of buggy
methods that are incorrectly classi�ed.

recall=
C?

C?̧ 5 =
(1)

Precision is the proportion of the correctly labelled buggy methods by the defect predictor [6].
It can be calculated as in Equation(2), where5 ?is the number of false positives, i.e., number of
non-buggy methods that are incorrectly classi�ed as buggy methods.

precision=
C?

C?̧ 5 ?
(2)

We simulate defect predictions from 75% to 100% recall in 5% steps, with 75% and 100% precision.
Thus, there are altogether 12 defect predictor con�gurations, with the following values of (precision,
recall): (75%, 75%), (75%, 80%), (75%, 85%), (75%, 90%), (75%, 95%), (75, 100%), (100%, 75%), (100%, 80%),
(100%, 85%), (100%, 90%), (100%, 95%), (100, 100%). Our preliminary experiments suggest that the
bug detection performance of SBST-guided-by-DP changes by a small margin when the precision
is changed from 100% to 75%, while keeping the recall unchanged at 100% and 75%. On the other
hand, the bug detection performance of SBST-guided-by-DP changes by a large margin when only
the recall is changed from 100% to 75%, while keeping the precision unchanged at 100% and 75%.
Hence, we decide to consider only the values of 75% and 100% for precision, while recall is sampled
at 5% steps.

The output of the simulated defect predictor is binary, i.e., method is buggy or not buggy, similar
to most of the existing defect predictors. Some of the existing defect predictors output the likelihood
of the components being buggy or the ranking of the components according to their likelihood of
being buggy. Since we employ a theoretical defect predictor and not a speci�c one, we resort to the
generic defect predictor, which is the one that gives a binary classi�cation.

Algorithm 1 Defect Predictor Simulation
Input: A, ? • recall and precision
" = f< 1• ” ” ” •<: g • ground truth

1: procedure SimulateDefectPredictor
2: 3  Count (< 8) for < 8 2 " s.t.< 8 = 1
3: " 1  f 8j 882 »1• : ¼ <̂ 8 = 1g
4: " =  f 8j 882 »1• : ¼ <̂ 8 = 0g
5: C? 3 � A
6: 5 ? C?� ¹ 1 � ?º•?
7: � 1  RandomChoice(" 1• C?) [ RandomChoice(" =• 5 ?)
8: �  f 28 = 1j 882 »1• : ¼ 8̂2 � 1, 28 = 0j 882 »1• : ¼ 8̂8 � 1g
9: Return (� )

Algorithm 1 illustrates the steps of simulating the defect predictor outputs for a given recall and
precision combination. The procedureSimulateDefectPredictor receives the set of methods in

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: March 2024.



6 Perera et al.

the project with the ground truth labels for their defectiveness," = f< 1• ” ” ” •<: g, where

< 8 =

(
1 if method with index8is buggy
0 otherwise

and outputs a set of labels for each method in the project,� = f21• ” ” ” •2: g, to the required level of
recall and precision where

28 =

(
1 if method with index8is predicted buggy
0 otherwise

In the ground truth labels, a method is considered buggy (< 8 = 1) if there is a known bug in that
method. While other methods may have bugs that are not found yet, we consider those methods as
non-buggy (< 8 = 0) in the ground truth label set for defect prediction simulation. The experimental
results and the conclusions are also based on these known bugs.

First, the procedureSimulateDefectPredictor calculates the number of buggy methods (3)
in the project (line 2 in Algorithm 1). Next, it �nds the set of indices of all the buggy (" 1) and
non-buggy methods (" =) in the project (lines 3-4). The desired number of true positives (C?) and
false positives (5 ?) are then calculated for the given recall (A) and precision (?) (lines 5-6). The
RandomChoice(" G•=) procedure returns= number of randomly selected methods from the set
" G, whereG2 f1•=g. � 1 is assigned a set of randomly pickedC?number of buggy and5 ?number
of non-buggy method indices (line 7).� 1 is the set of buggy method indices as classi�ed by the
simulated defect predictor. The indices (2 »1• : ¼) that are not in� 1 form the non-buggy method
indices as classi�ed by the simulated defect predictor. The number of indices classi�ed as non-buggy
methods is equal to the sum of required number of false negatives, i.e.,¹3 � C?º, and true negatives,
i.e.,¹j" j � 3 � 5 ?º. The output is the set� = f21• ” ” ” •2: g, where28 = 1 if the method with index8
is labelled as buggy and28 = 0 if the method with index8is labelled as not buggy (line 8).

2.2 Search-Based So�ware Testing Guided By Defect Prediction

We incorporate buggy method predictions in DynaMOSA [42], the state-of-the-art SBST technique,
to guide the search for test cases towards likely buggy methods. DynaMOSA tackles the test
generation problem as a many-objective optimisation problem, where each coverage target in the
program, e.g., branch and statement, is an objective to optimise. It aims at �nding a set of non-
dominated test cases that minimise the �tness functions for all the coverage targets. DynaMOSA is
more e�ective at achieving high branch, statement and strong mutation (i.e., variants of the original
program that mimic real faults [42]) coverage than the previously proposed SBST techniques using
single objective [19, 48] and many objective [41] optimisation [42]. For a test case, covering (i.e.,
reaching) the buggy code is necessary to detect a bug according to the reachability condition in
reachability, infection and propagation (RIP) principle [13, 38� 40]. Previous work indicates that
mutation coverage signi�cantly correlates with the bug detection of the test suites [30]. Therefore,
DynaMOSA is a good candidate for our task given its good performance in terms of code and
mutation coverage.

The DynaMOSA approach guided by the defect predictor is referred asSBST-guided-by-DPand
presented in Algorithm 2. It shares similar search steps and genetic operators as DynaMOSA, except
for the updated steps shown in blue colour in Algorithm 2. In this paper, we describe the updated
steps in Algorithm 2 in detail.

In addition to the inputs DynaMOSA already receives, SBST-guided-by-DP receives as input a
class with methods labelled as buggy or non-buggy, which are labels that can be obtained using
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existing defect predictors [21, 23]. In our study, SBST-guided-by-DP receives these labels from
defect predictor simulations for given recall and precision (Section 2.1).

SBST-guided-by-DP is designed not to handle the potential errors in the predictions to allow
us to assess the impact of imprecise predictions on the bug detection performance of SBST. It
devotes all the search resources to �nd tests that cover likely buggy methods, thereby increasing
the chances of detecting bugs. Initially, SBST-guided-by-DP �lters out the coverage targets that are
deemed to not contain buggy methods as indicated by the defect prediction information, and keeps
only targets that contain likely buggy methods (as shown in line 2 of Algorithm 2 and described in
Section 2.2.1).

SBST-guided-by-DP generates more than one test case for all the selected buggy targets, hence, fur-
ther increases the chances of detecting bugs (lines 6, 7, 10 and 11 and described in Section 2.2.2) [46].

To generate more than one test case for all the likely buggy targets, SBST-guided-by-DP does
not remove a target once it is covered during the search. Such a behaviour would be likely to cause
SBST-guided-by-DP to miss nontrivial targets in the search and keep on generating tests to cover
more trivial targets [48]. To address this, we use a method called balanced test coverage proposed
by Perera et al. [47] to dynamically disable targets from the search based on their current test
coverage and number of independent paths (lines 3 and 13). At the start of the search, the procedure
IndependentPaths �nds the number of independent paths starting from each edge4 2 � in the
control dependency graph� of the program (line 3) [47]. In each iteration in the genetic algorithm,
the procedureSwitchOffTargets checks the test coverage for each targetD 2 * � (i.e., number of
tests in the archive� that coverD) and temporarily removesDfrom * � , if the test coverage per an
independent path fromDis higher than the other targets (line 13) [47]. The number of independent
paths from a targetDis computed using the partial map between edges and targetsq and the vector
of the number of independent paths for each edge! . The balanced test coverage method paves
way for the search to �nd more tests for targets that have low test coverage in the next iteration.
This ensures that the nontrivial targets have an equal chance of being covered compared to the
targets that are easier to cover.

Like DynaMOSA, SBST-guided-by-DP randomly generates a set of test cases that forms the
initial population %0 (line 5). Then, it evolves this initial population through creating new test cases
via crossover and mutation (line 9), and selecting test cases to the next generation%A̧ 1 (line 14),
until a termination criterion, such as maximum time budget, is met (line 8). To select test cases to
the next generation, theSelectPopulation procedure uses the preference sorting algorithm used
in DynaMOSA. For each targetD 2 * � , the preference sorting algorithm selects the test case from
' A that is closest to coverDaccording to its �tness function to the next generation.

2.2.1 Filtering Targets with Defect Prediction.A defect predictor classi�es the methods of the
class under test (CUT) as buggy or non-buggy. The procedureFilterTargets �lters out the likely
non-buggy targets from the set of all targets* using the classi�cations� given by the defect
predictor (line 2). Spending the limited search resources on covering non-buggy targets is likely to
be ine�ective when it comes to detecting bugs. Filtering out targets that are unlikely to be buggy
allows the search to focus on test cases that cover the likely buggy targets (i.e.,8D 2 * � ), hence,
generating more e�ective test cases faster than other approaches which search for tests in all the
targets in the CUT.

2.2.2 Dynamic Selection of Targets and Archiving Tests.There are structural dependencies of targets
that should be considered when selecting objectives, i.e., targets, to optimise. For instance, some of
the targets can be covered only if their control dependent targets are covered. To better understand
this, let us consider the following example in Figure 1. Assume the test generation scenario is to
optimise branch coverage and11, 12, 13, 14, 15 and16 are the branches to be covered. Branch11
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8 Perera et al.

Algorithm 2 SBST Guided By Defect Prediction
Input: •
* = fD1• ” ” ” •D: g • the set of coverage targets of CUT
� = h#• � i • control dependency graph of the CUT
q : � ! * • partial map between edges and targets
� = {21• ” ” ” •2< } • the set of defectiveness classi�cations for methods in the CUT

1: procedure SBST
2: * �  FilterTargets (* • � )
3: !  IndependentPaths (� ) • ! is a vector of the number of independent paths for each

edge
4: * �  targets in* � with no control dependencies
5: %0  RandomPopulation (" ) • " is the population size
6: * �  UpdateTargets (* � • �• q•* � )
7: �  UpdateArchive (%0•; • * � ) • � is the archive
8: for A 0 ; !terminationCriteria; A++ do
9: &A  GenerateOffspring (%A)

10: * �  UpdateTargets (* � • �• q•* � )
11: �  UpdateArchive (&A• �• * � )
12: ' A  %A [ &A
13: * �  SwitchOffTargets (* � • �• !• q )
14: %A̧ 1  SelectPopulation (' A• * � • " )
15: )  � • Update the �nal test suite)
16: Return () )

holds a control dependency link to13 and14, which means that they can be covered only if11 is
covered by a test case. If an SBST technique optimises test cases to cover13 and14, while 11 is
uncovered, this will unnecessarily increase the computational complexity of the algorithm because
of the added objectives, i.e.,13 and14, to the search without any added bene�t. To address this,
DynaMOSA dynamically selects targets to the search only when their control dependent targets
are covered [42]. In our example,13 and14 are added to the search only when11 is covered.

�

�

�

�

�

�

�

11

12

13

14

15

16

Fig. 1. Control Dependency Graph

At the start of the search, SBST-guided-by-DP selects the set of targets* � � * � that do not
have control dependencies (line 4). These are the targets SBST-guided-by-DP can cover without

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: March 2024.



On the Impact of Lower Recall and Precision in Defect Prediction for Guiding Search-Based So�ware Testing 9

requiring to cover any other targets in the program. At any given time in the search, it searches for
test cases to cover only the targets in* � .

Once the proceduresRandomPopulation (line 5) andGenerateOffspring (line 9) generate new
populations of test cases, the procedureUpdateTargets is executed to update* � by adding new
targets to the search. The procedureUpdateTargets adds a targetD 2 * � to * � only if the control
dependent targets ofDare covered, as explained with the example above. TheUpdateTargets
procedure obtains the control dependent targets of a targetDusing the control dependency graph
� of the program and the partial map between edges and targetsq.

Control dependency graph is calculated at method level. Since we label all the targets in a likely
buggy method as likely buggy, all the nodes in the corresponding control dependency graph of a
likely buggy method are considered likely buggy. If the actual buggy targets are deeply nested in a
method, SBST-guided-by-DP still has guidance to cover them because all the control dependent
targets of that method (including control dependent targets of the buggy targets) are considered
likely buggy and they are added to U* and kept throughout the search as described above.

SBST-guided-by-DP maintains an archive of test cases found during the search which cover
the selected targets. Once the search �nishes, this archive forms the �nal test suite. Unlike in
DynaMOSA, we con�gure theUpdateTargets procedure to not remove a covered target from
* � and theUpdateArchive procedure (lines 7 and 11) to archive all the test cases that cover the
selected targetsD 2 * � . This way, SBST-guided-by-DP can generate more than one test case for
each targetD 2 * � , hence increasing the bug detection capability of the generated test suites [46].
Perera et al. [46] showed that DynaMOSA detects up to 79% more bugs when it was con�gured to
not remove covered targets from the search and retain all the generated tests.

3 DESIGN OF EXPERIMENTS

We design a set of experiments to evaluate the e�ectiveness of SBST-guided-by-DP in terms of
detecting bugs when using defect predictors with 12 di�erent levels of imprecision as described in
Section 2.1 (RQ). We use the bugs from the Defects4J dataset as the experimental objects [28] (see
Section 3.1).

To account for the randomness of the defect prediction simulation algorithm (Algorithm 1), we
repeat the simulation runs 5 times for each defect predictor con�guration (i.e., recall and precision
pair). For each of these simulation runs, we repeat the test generation runs 5 times, to account for
the randomness in SBST-guided-by-DP. Altogether, we run test generation 25 times for each defect
predictor con�guration.

Once tests are generated and evaluated for bug detection, we conduct two-way ANOVA test to
statistically analyse the e�ects of recall and precision of the defect predictor on the bug detection
e�ectiveness of SBST-guided-by-DP.

3.1 Experimental Objects

We use the Defects4J dataset (version 1.5.0) [28, 29] as our benchmark. It contains 438 bugs that are
from manually validated bug �xes from 6 real-world open source Java projects. In our experiments,
we remove 18 bugs altogether from the dataset; 4 deprecated bugs (i.e., not reproducible under Java
8, which is required by EvoSuite), 12 bugs that do not have buggy methods, and 2 bugs for which
SBST-guided-by-DP generated uncompilable tests (e.g., method signature is changed in the bug
�x). For the 12 bugs that do not have buggy methods, their bug �xes (patches) did not modify or
remove existing methods in the code, instead the patches only added new methods (e.g., Lang-23),
modi�ed only static blocks (e.g., Time-11) or added/modi�ed class and instance variables (e.g.,
Math-12 and Closure-111). Thus, we evaluate SBST-guided-by-DP on a total of 420 bugs. The bugs
are drawn from the following projects; JFreeChart (25 bugs), Closure Compiler (170 bugs), Apache
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commons-lang (59 bugs), Apache commons-math (104 bugs), Mockito (37 bugs), and Joda-Time (25
bugs).

We calculate the adequate sample size [15] for two-way ANOVA test with power=0.80, alpha=0.05
and medium e�ect size (f=0.25). The required sample size with these parameters is 212, which is
well below our sample size of 420 bugs.

The Defects4J benchmark gives a buggy version and a �xed version of the program for each bug
in the dataset. The �xed version is di�erent to the buggy version by the applied patch to �x the
bug, which indicates the location of the bug. We label all the methods that are either modi�ed or
removed in the bug �x as buggy methods [54]. Figure 2a shows the distribution of the number of
methods in the buggy classes in the chosen set of bugs. There are 42.4 methods in a buggy class on
average. Figure 2b shows the distribution of the number of buggy methods in the bugs. There are
1.6 buggy methods in a bug on average.

Defects4J is widely used for research on automated unit test generation [20, 46, 53], automated
program repair [2], fault localisation [45], test case prioritisation [44], etc. This makes Defects4J a
suitable benchmark for evaluating SBST-guided-by-DP, as it allows us to compare our results to
existing work.

(a) Distribution of the number of methods
in the buggy classes. Total buggy classes = 482.

(b) Distribution of the number of buggy methods
in the bugs. Total bugs = 420.

Fig. 2. Distribution of the number of methods and buggy methods in the chosen set of bugs in the Defects4J
benchmark.

3.2 Prototype

DynaMOSA is implemented in the state-of-the-art SBST tool, EvoSuite [18]. EvoSuite is an au-
tomated test generation framework that generates JUnit test suites for java programs [14, 17].
EvoSuite is actively maintained and evaluated for its e�ectiveness in terms of bug detecting on
both industrial and open source projects [3, 20, 46, 53]. For the experimental evaluation, we imple-
ment the changes described in Section 2.2 for SBST-guided-by-DP. The changes are implemented
within EvoSuite version 1.0.7, forked from the GitHub repository [14] on June 18C�, 2019. We also
implement the defect predictor simulator as described in Section 2.1. The prototypes are available
to download from here: https://doi.org/10.6084/m9.�gshare.16564146
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3.3 Parameter Se�ings

We use the default parameter settings of EvoSuite [19] and DynaMOSA [42] except for the pa-
rameters mentioned in the next paragraphs. Parameter tuning of SBST techniques is a long and
expensive process [4]. According to Arcuri and Fraser [4], EvoSuite with default parameter values
performs on par compared to EvoSuite with tuned parameters.

Time Budget:We set 2 minutes as time budget per CUT for test generation. In practice, the time
budget allocated for SBST tools depends on the size of the project, frequency of test generation
runs and availability of computational resources in the organisation.

Real world projects are usually very large and can have thousands of classes [7]. If an SBST tool
runs test generation for 2 minutes per class, then it will take at least 33 hours to �nish the task for
the whole project.

To address this issue, practitioners can adapt the SBST tools in their continuous integration (CI)
systems [16]. However, the introduction of new SBST tools to the CI system should not make the
existing processes in the system idle [46].

Thus, given the limited computational resources available in practice [8] and the expectation
of faster feedback cycles from testing in agile development prompt the necessity of frequent test
generation runs with limited testing budget. Therefore, we decide that 2 minutes per class is a
reasonable time budget in a usual resource constrained environment.

Coverage criteria:We use branch coverage as coverage criterion in line with the prior studies
which investigated bug detection e�ectiveness of EvoSuite [3, 46, 47, 53]. EvoSuite with branch
coverage was shown to be the most e�ective coverage criterion in terms of detecting bugs when
compared with other criteria like line, output and weak mutation coverage [20, 52].

Termination criteria:We use only the maximum time budget as the termination criterion. Stopping
the search after it covers all the targets is detrimental to bug detection [46]. The search needs to
utilise the full time budget to generate as many tests for each target in the CUT in order to increase
the chances of detecting bugs. Therefore, we terminate the search for test cases only when the
allocated time budget runs out.

Test suite minimisation:We disable test suite minimisation since all the test cases in the archive
form the �nal test suite (see Section 2.2.2).

Assertion strategy:We choose all possible assertions as the assertion strategy because the mutation-
based assertion �ltering can be computationally expensive and can lead to timeouts [46, 53].

3.4 Experimental Protocol

As shown in Figure 3, the experimental setup is divided into 4 steps. Step 1 is ground truth label
collection. For each bug in the Defects4J dataset, we check out the buggy versions of the respective
Defects4J project (e.g., Lang, Math, Chart, Time, Closure or Mockito). Next, we collect the ground
truth labels for the buggy and non-buggy methods. If a method is either modi�ed or removed in
the bug �x, we label that method as a buggy method, and non-buggy otherwise [54]. We simulate
defect predictions per Defects4J project. Therefore, we combine the ground truth labels from all
the bugs from the respective Defects4J project. For example, Figure 3 shows combining the labels
from all the 59 bugs from Apache commons-lang project. These ground truth labels are then sent
to the defect prediction simulator in step 2.

In step 2, we simulate defect prediction outcomes for each project using the defect prediction algo-
rithm described in Section 2.1. We run experiments with SBST-guided-by-DP using defect predictors
with 12 di�erent levels of imprecision (recall and precision pairs) as described in Section 2.1.

We assume an application scenario of generating tests to detect bugs not only limited to regres-
sions, but also the bugs introduced to the code in various times in development. Therefore, we run

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: March 2024.



12 Perera et al.

Fig. 3. Experimental Design. Actual buggy methods and classes (corresponding to Defects4J bugs) are shown
in red and actual non-buggy methods are shown in green. Figure shows ground truth label collection (step
1), defect prediction simulation (step 2), test generation (step 3), and bug detection evaluation (step 4) for
Lang project in Defects4J. Experiments are conducted for 6 Defects4J projects, i.e., Lang, Math, Chart, Time,
Closure and Mockito. Recall can take any value from {75%, 80%, 85%, 90%, 95%, 100%} and precision is either
75% or 100%.

test generation on the buggy versions of the projects for each bug in step 3. We measure the bug
detecting e�ectiveness of SBST-guided-by-DP only on the Defects4J bugs. Thus, we only run test
generation for buggy classes, i.e., classes that are modi�ed in the bug �xes, in the projects.

For each level of defect predictor imprecision, we run test generation with SBST-guided-by-DP
25 times for each bug in the dataset. Consequently, we have to run a total of 12 (levels of defect
prediction imprecision)� 25 (repetitions)� 482 (buggy classes)= 144,600 test generations.

Defects4J [28] allows us to evaluate if the 144,600 generated test suites in the experiments
detect the bugs (step 4). First, we remove the �aky test cases in test suites using the `�x test suite'
interface [28] in Defects4J as described in [53]. We use the `run bug detection' interface [28], which
executes a test suite against the buggy and �xed versions of a program and determines if the test
suite detects the bug by checking if the test execution results are di�erent between the two versions.
We use the �xed versions of the programs as the test oracles [10]. EvoSuite generates assertions
assuming the program under test is correct, therefore, the generated tests should always pass when
they are run against the buggy version. A test suite is considered broken if it is not compilable
or fails when run against the buggy version of the program. The test suite is considered to have
failed to detect the bug if it produces the same execution results when run against the buggy and
�xed versions of the program, and it is considered to have detected the bug if the test results are
di�erent.

4 RESULTS

We present the results for our research question following the method described in Section 3. Our
aim is to evaluate the e�ectiveness of bug detecting performance of SBST-guided-by-DP when
using imprecise defect predictors.
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RQ. What is the impact of the imprecision of defect prediction on bug detection
performance of SBST?

Figure 4 shows the distributions of the number of bugs detected by SBST-guided-by-DP as violin
plots and the pro�le plot of the mean number of bugs detected by SBST-guided-by-DP for each
combination of the factors of six recalls and two precisions. The two lines in the pro�le plot do not
cross each other at any point. This means that there is no observable interaction e�ect between
recall and precision.

The two lines descent steeply from recall 100% to 75%. This shows that recall has an e�ect on
number of bugs detected by SBST-guided-by-DP. In particular, bug detection e�ectiveness decreases
as recall decreases.

The precision=75% line closely follows the precision=100% line while staying slightly above the
latter, except at recall=85%, where there is a considerable gap between the two. We check if this
di�erence is signi�cant using the two-way ANOVA test results.

Fig. 4. Distributions of the number of bugs detected by SBST-guided-by-DP in 25 runs as violin plots together
with the profile plot of mean number of bugs detected by SBST-guided-by-DP for each combination of the
groups of recall and precision. The x-axis represents the recall of the defect predictor configuration. Green
violins correspond to defect predictors with 100% precision and gold violins correspond to 75% precision. In the
profile plot, bullets (� ) and triangles (N) represent the mean number of bugs detected by SBST-guided-by-DP.
Green line and triangles correspond to 100% precision and gold line and bullets correspond to 75% precision.

To statistically test the e�ect of each of the metrics, recall and precision, and their interaction
on the number of bugs detected by SBST-guided-by-DP, we conduct the two-way ANOVA test.
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Prior to conducting the two-way ANOVA test, we make sure that our data holds the following
assumptions of the test.

(1) The dependent variable should approximately follow a normal distribution for all the combi-
nations of groups of the two independent variables.

(2) Homogeneity of variances exists for all the combinations of groups of the two independent
variables.

To check the �rst assumption, we conduct the Kolmogorov-Smirnov test [36] for normality of
the distributions (U = 0”05) of the number of bugs detected for each combination of the groups of
recall and precision. Based on the results of the tests, we cannot reject our null hypothesis (p-values
� 0”131), i.e., H0 = the number of bugs detected is normally distributed, hence we assume all the
samples come from a normal distribution (i.e., H0 is true).

To check the second assumption, we conduct the Bartlett's test for homogeneity of variances
(U = 0”05) in each combination of the groups of recall and precision. Based on the results of the
test, we cannot reject our null hypothesis (p-value= 0”305), i.e., H0 = variances of the number of
bugs detected are equal across all combinations of the groups, hence we assume the variances are
equal across all samples (i.e., H0 is true).

Df Sum Sq Mean Sq F value p-value
Recall 5 51341 10268 497.42 <0.001
Precision 1 273 273 13.21 <0.001
Recall:Precision 5 190 38 1.84 0.105
Residuals 288 5945 21

Table 1. Summary of the two-way ANOVA test results. Df = degrees of freedom, Sum Sq = sum of squares
and Mean sq = mean sum of squares.

Table 1 shows the summary of the two-way ANOVA test results. According to the two-way
ANOVA test, recall and precision in the defect predictor explain a signi�cant amount of variation
in number of bugs detected by SBST-guided-by-DP (p-valuesŸ 0”001). The test also indicates that
we cannot reject the null hypothesis that there is no interaction e�ect between recall and precision
on number of bugs detected (p-value= 0”105). That means we can assume the e�ect of recall on
number of bugs detected does not depend on the e�ect of precision, and vice versa.

To check if the observed di�erences among the groups are of practical signi�cance, we measure
the epsilon squared e�ect size (bn2) [58] of the variations in number of bugs detected with respect to
recall and precision. We �nd that the e�ect of recall on bug detection e�ectiveness is large with an
e�ect size of 0.89, while the e�ect of precision is very small (bn2 = 0”004) [11], which can be seen
from the overlapping distributions in the violin plots in Figure 4 as well.

To further analyse which groups are signi�cantly di�erent from each other, we conduct the
Tukey's Honestly-Signi�cant-Di�erence test [55]. The Tukey post-hoc test shows that the number
bugs detected by SBST-guided-by-DP is signi�cantly di�erent between each of the six levels of
recall (p-valuesŸ 0”002). The Cohen's3 e�ect sizes of the di�erences between the groups of recall
range from medium (3 = 0”77for recall 95% and 100%) to large (3 � 1”33for all other pairs of
groups).

Figure 5b shows the mean number of bugs for which tests are generated by SBST-guided-by-DP
at each recall. SBST-guided-by-DP detects 7.5 fewer bugs and misses test generation for 15 bugs
on average (out of 420) when the recall decreases by 5% in the experiments. SBST-guided-by-DP
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(a) Mean number of buggy classes for which
tests are generated by SBST-guided-by-DP.
Total buggy classes = 482.

(b) Mean number of bugs for which tests
are generated by SBST-guided-by-DP. Total
bugs = 420.

Fig. 5. Means plots of number of buggy classes and bugs for which tests are generated by SBST-guided-by-DP
for the groups of recall.

completely trusts the defect predictor and only generates tests for classes having at least one
method predicted as buggy (e.g., true positive). The number of true positives by the defect predictor
decreases when the recall decreases. This results in SBST-guided-by-DP generating tests for a fewer
number of classes as the recall decreases (as shown in Figure 5a), hence detecting less number of
bugs when recall drops from 100% to 75%.

Change of precision from 100% to 75% means that there are false positives in the defect prediction
results. In the experiments, when recall is 100% and precision is 75%, there are altogether 224 false
positives while the number of true positives is 678, i.e., there are 0.5 non-buggy methods predicted
as buggy on average for every bug in the dataset while the number of correctly labelled buggy
methods is 1.6 on average per bug. Usually SBST techniques such as DynaMOSA generate tests for
classes with higher number of methods than this. For example, there are altogether 46.9 methods on
average per bug in the dataset we used. The experimental results indicate that the amount of false
positives at 75% precision is not a signi�cant burden to the search for tests of the SBST technique
to cause a meaningful practical di�erence in the number of bugs detected.

Summary: False negatives of the defect predictor have a signi�cant impact on the bug detection
performance of SBST. When the recall of the defect predictor decreases, the bug detection
e�ectiveness signi�cantly decreases with a large e�ect size. On the other hand, we conclude
that there is no meaningful practical e�ect of precision on the bug detection performance of
SBST, as indicated by a very small e�ect size.

RQ1: What is the impact of the recall of the defect predictor when the bugs are spread
across multiple methods compared to bugs located in a single method?

Further analysis of the results indicates that SBST-guided-by-DP only misses test generation for
4.5% of the bugs that are spread across multiple methods on average, while it misses 24.7% of the
bugs that are located in a single method on average, when recall decreases from 100% to 75%. This
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suggests that the bugs that are found within only one method are more prone to the impact of
recall compared to bugs that are spread across multiple methods.

To characterise the e�ects of recall on detecting bugs which are found within a single method and
spread across multiple methods, we conduct Welch ANOVA test [34] separately for the two subsets
of our dataset, i.e., bugs having only one buggy method and bugs having more than one buggy
method. The reason for carrying out Welch ANOVA test is because our data fails the assumption of
homogeneity of variances for each combination of the groups of recall for bugs having only one
buggy method.

Num Df Denom Df F value p-value
# buggy methods¡ 1 5.00 137.06 67.24 <0.001
# buggy methods= 1 5.00 136.68 395.91 <0.001

Table 2. Summary of the Welch ANOVA test results. Num Df = degrees of freedom of the numerator and
Denom Df = degrees of freedom of the denominator.

The results of the Welch ANOVA test are shown in Table 2. There are 135 bugs which have
more than one buggy method. The results for these bugs show that overall recall has a signi�cant
e�ect on the number of bugs detected by SBST-guided-by-DP (p-value <0.001) with a large e�ect
size (bn2 = 0”53) [9]. However, the Games-Howell post-hoc test reveals that the bug detection
e�ectiveness is not signi�cantly di�erent between recall 80%-85%, 80%-90%, 85%-90%, and 95%-100%.
This can be seen in the violin plots in Figure 6a as well.

(a) Bugs that have more than one buggy method.
Total number of bugs = 135.

(b) Bugs that have one buggy method.
Total number of bugs = 285.

Fig. 6. Distributions of the number of bugs detected by SBST-guided-by-DP as violin plots together with the
means plot of number of bugs detected by SBST-guided-by-DP for the groups of recall.

There are 285 bugs which have only one buggy method. The results of Welch ANOVA test for
these bugs show that recall has a signi�cant e�ect on number of bugs detected by SBST-guided-by-
DP (p-value <0.001) with a large e�ect size (bn2 = 0”87). The Games-Howell post-hoc test con�rms
that the number of bugs detected by SBST-guided-by-DP is signi�cantly di�erent between each
group of recall (p-values <0.001) with large e�ect sizes (3 � 0”98) as can be seen in Figure 6b.
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Summary: Recall has a signi�cant e�ect on bug detection e�ectiveness of SBST-guided-by-DP
regardless of whether the bugs are found within one method or spread across multiple methods.
However, for the bugs that are spread across multiple methods, the e�ect size of recall e�ect
is smaller when compared to bugs that are found within one method (0”53Ÿ 0”87). In contrast
to bugs that are found within one method, the e�ect of recall is not signi�cant between the
groups of recall 80%, 85% and 90%, and 95% and 100% for the bugs that are spread across multiple
methods.

RQ2: What is the impact of the precision of the defect predictor when the time budget
and the test suite size are restricted?

4.1 Impact of Precision at Small Time Budgets

The impact of precision on SBST may be di�erent when SBST-guided-by-DP is given a smaller
time budget. In particular, SBST-guided-by-DP with a su�cient time budget like 120 seconds may
have enough time to search for tests in actual buggy methods (i.e., true positives) despite searching
for tests in false positives. Whereas the search for tests in actual buggy methods may be greatly
impacted by false positives when SBST-guided-by-DP is given smaller time budgets like 15 or 30
seconds. Hence, we further investigate the impact of the time budget on the conclusion about
sensitivity to the defect prediction precision. To do that, we conduct two-way ANOVA test at time
budgets 5, 10, 15, 30 and 60 seconds.

We �nd that there is no meaningful practical e�ect on the bug detection performance of SBST
when precision is changed from 100% to 75% at all the time budgets we considered. This is evident
from the overlapping distributions in the violin plots at each time budget in Figure 7 as well. In
particular, according to the two-way ANOVA tests, we cannot reject the null hypothesis that there
is no e�ect of precision on the number of bugs detected by SBST-guided-by-DP at 5 and 10 seconds
time budgets (p-values� 0”104). At 15, 30 and 60 seconds time budgets, the tests indicate that
precision has a signi�cant e�ect on number of bugs detected by SBST-guided-by-DP (p-values
� 0”010), however the e�ects are not of practical signi�cance as indicated by very small e�ect sizes
(bn2 � 0”005). This shows that the additional overhead caused by the false positives at 75% precision
is not a signi�cant burden to the search process of the SBST technique even at smaller time budgets.

4.2 Impact of Precision When Test Suite Size is Limited

The impact of precision on SBST may be di�erent when the �nal test suite size, i.e., number of test
cases, is restricted. SBST-guided-by-DP generates multiple test cases for each target in the search
(Section 2.2.2) and retains all these tests in the �nal test suite. When the number of test cases in the
�nal test suite is not controlled, the false positives in the predictions are not likely to diminish the
bug detection performance of the test suite. Instead, they are likely to create redundant test cases
in the test suite in terms of detecting bugs and increase the test suite size. When the number of test
cases is controlled, bug detection is likely to be impacted by the presence of redundant test cases
created because of the false positives.

We further investigate the impact of test suite size on the conclusions about the sensitivity to the
defect prediction precision. We apply the additional branch coverage prioritisation technique [49]
to prioritise the test cases in the �nal test suite produced by SBST-guided-by-DP at 120 seconds
time budget and conduct two-way ANOVA test after controlling the test suite size for 10, 20, 40,
80 and 160 test cases. The top= test cases of a prioritised test suite are used to create a test suite
with size=. The controlled test suite sizes are chosen to be in line with the sizes of the test suites
generated by the original implementation of DynaMOSA, which produces minimised test suites.
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