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Subject Membership Inference Attacks in
Federated Learning
Abstract: Privacy in Federated Learning (FL) is studied
at two different granularities - item-level, which protects
individual data points, and user-level, which protects
each user (participant) in the federation. Nearly all of
the private FL literature is dedicated to the study of
privacy attacks and defenses alike at these two granular-
ities. More recently, subject-level privacy has emerged as
an alternative privacy granularity to protect the privacy
of individuals whose data is spread across multiple (orga-
nizational) users in cross-silo FL settings. However, the
research community lacks a good understanding of the
practicality of this threat, as well as various factors that
may influence subject-level privacy. A systematic study
of these patterns requires complete control over the fed-
eration, which is impossible with real-world datasets.
We design a simulator for generating various synthetic
federation configurations, enabling us to study how prop-
erties of the data, model design and training, and the
federation itself impact subject privacy risk. We pro-
pose three inference attacks for subject-level privacy and
examine the interplay between all factors within a feder-
ation. Our takeaways generalize to real-world datasets
like FEMNIST, giving credence to our findings.

Keywords: Subject level Privacy, Federated Learning,
Distribution Inference, Subject Membership

AS: Add a sentence to the caption of each relevant
figure/table to summarize the findings and any take-
home messages.

1 Introduction
Federated Learning (FL) [1] allows multiple parties to
collaboratively train a Machine Learning model while
keeping the training data decentralized. FL was originally
introduced for mobile devices, with a core motivation
of protecting data privacy. In the cross-device setting,
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Fig. 1. Subject-level Privacy in cross-silo Federated Learning.
Data subjects can appear in multiple federation users, setting the
problem apart from User-level or Item-level Privacy.

privacy is usually defined at two granularities: first, item-
level privacy, which describes the protection of individual
data items [2, 3] and user-level privacy, which describes
the protection of the entire data distribution of the device
user [3, 4].

Federated Learning is now also employed in collab-
orations between large organizations or data centers
across geographies, the so called cross-silo setting [5].
The ‘users’ of the federation in this setting are the or-
ganizations, such as a group of retailers or hospitals,
who in turn might have collected data about individ-
uals. These individuals are often referred to as data
subjects [6]. Interestingly, data about one subject might
be spread across multiple users of the federation. For
example, a consumer shopping at multiple retailers or a
patient going to multiple hospitals. Both item-level and
user-level privacy definitions are insufficient to address
the need to protect an individual’s data in such a setting.
A third privacy granularity, called subject-level privacy
was recently introduced [7], which precisely describes
the protection of the data distribution of a data subject
in cross-silo FL settings (Figure 1).

Note that subject-level privacy may or may not be
distinct from item-level or user-level privacy, depending
on how the data is setup. For example, datasets in which
one row of data corresponds to one person, item-level
privacy is sufficient to protect the individual’s identity,
thus enforcing subject-level privacy. Similarly, in cross-
devise FL setting, the distinction between user-level
and subject-level privacy is somewhat blurred, because
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there is roughly a one-to-one correspondence between a
data subject and a device, which acts as a user in the
federation: each device typically holds the data from just
one individual, and each individual’s data is typically
stored in just one (or few) devices. However, in the
cross-silo setting, in which users are large organizations
collecting data from a large number of individuals, and
a data subject can easily be associated with a number of
different users in the federation, this distinction becomes
much more significant. Subject-level privacy formulation
is important because ultimately, we are interested in
preserving the privacy of an individual, not just that of
a data item or a data silo.

Even though FL offers a certain degree of privacy
by restraining each user’s training data at its local site,
the model trained using this data is prone to a variety
of inference attacks [8, 9] that aim to reveal some part
of the private information in the original training data.
The literature on inference attacks is extensive [10–16]
and continues to grow at a rapid pace. However, the
research has largely focused on attacks such as mem-
bership inference [10, 11], model inversion [12, 13], and
property inference [14–16]. To the best of our knowledge,
no existing work in the FL setting has explored infer-
ence attacks that leak privacy of subjects whose data
is scattered across multiple users in the federation. In
this paper, we introduce subject membership inference
attacks, which aim to infer the presence of an individ-
ual’s data spanning across multiple federation users. By
measuring effectiveness of such an attack, one can assess
the vulnerability of the FL model and estimate the risk
of privacy leakage for data subjects.

We assume an honest-but-curious threat model in
which either one of the federation users or the federation
server could be adversarial (Section 4). We introduce
three different subject membership privacy attacks. Con-
sistent with existing literature on membership inference
attack, our attacks assume that a model tends to perform
better on data similar to its training data compared to
the data it has not seen during training. However, unlike
typical membership inference attacks, which check for
membership of specific data points, we sample from tar-
get subject’s data distribution to ascertain the subject’s
presence in the training data. In this sense, we can also
view these attacks as distribution inference attacks [16].
The first of these attacks checks the loss values on data
points sampled from target subjects’ data distribution
against a threshold (Section 5.1). The second attack
tracks the changes to the loss across training rounds
(Section 5.3).

Success of privacy attacks on ML models depend on
both the nature of the training data as well as the type
of modeling technique. A FL system with multiple users
and data subjects can be quite complex and effectiveness
of privacy attacks can greatly be influenced by a variety
of factors. For a systematic and thorough evaluation of
the proposed attacks, we first build a synthetic data
simulator, capable of simulating different federation con-
figurations (Section 6.1). Each configuration consists of
multiple user datasets, which in turn are composed of
data from multiple data subjects.

We focus on studying effects of the structure of
the federation, the data distribution, and the model ar-
chitecture on the attack accuracy. We generate several
hundred configurations, changing variables such as num-
ber of users, number of data subjects, number of data
items per user, data dimensionality and data generat-
ing distributions. In addition, we also experiment with
different ML model complexities and training rounds.
After setting up each of these federations, we train FL
models using FedAvg [17] algorithm. Next, we carry out
our subject-level attacks and measure their effectiveness
against known ground truth about subject membership
(Section 6.2).

We find that the proposed attacks are surprisingly
effective in inferring subject membership in a large frac-
tion of the configurations. This grid-based experimental
protocol also helps us uncover some important trends,
which can be used to provide practical guidelines to ML
practitioners about the vulnerability of their FL setup or
model architectures (Section 6.3). We also test the effec-
tiveness of these attacks on the FEMNIST dataset [18]
(Section 6.4) and show attack accuracy of 62%, similar
to membership inference attack accuracy on FEMNIST
by prior work []AS: Need to add this citation- I think
Daniel mentioned he knew which one it was?.

Finally, we assess effectiveness of a popular mitiga-
tion strategy prescribed for ML privacy – Differential
Privacy (DP). We retrain one of the most vulnerable
configurations of our synthetic dataset using DP at the
granularities of data items, federation users, and data
subjects respectively [2, 7, 19], and repeat the attacks
(Section 6.5). We empirically demonstrate that DP is
indeed effective in reducing privacy attack efficacy. We
report results for a similar experiment on the FEMNIST
dataset that also demonstrate that DP based mitigation
strategies make FL models robust from subject member-
ship privacy attacks.
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2 Background
Our work is concerned with what adversaries can learn
about training data given access to machine learning
models, which may constitute a breach of privacy. There
are many attack surfaces for a machine learning model
across its life-cycle, including after deployment [20–22].

We divide relevant works into three broad categories-
studies on membership inference and its utility in sce-
narios like ours (Section 2.1), privacy in the context
of federated learning (Section 2.2), and other relevant
attacks and notions of privacy that can be relevant to
subject level membership inference (Section 2.3).

2.1 Membership Inference

Privacy attacks are a common approach used to assess
privacy risks in machine learning. The key benefit of
this approach is that it grounds the privacy discussion
concretely in terms of the training data whose privacy
can be compromised by the model. Membership infer-
ence [10, 11] is a popular type of privacy attack that is
highly relevant to our work: The membership inference
task is to determine whether a particular data item was
part of the training dataset. A successful membership
inference attack concretely demonstrates privacy risks to
individual data items from the attacked model’s training
dataset.

We particularly follow the line of prior work on
membership inference attacks [23–25], which deliver an
empirical lower bound to the risk of data leakage through
a machine learning model. The adversary’s accuracy in
determining whether a data point is part of the training
set gives a very real picture of whether the data was
leaked.

Several advancements in this line of work improve
this lower bound by making the attack models more ac-
curate, and applicable in more realistic scenarios [26]. In
particular, white-box attacks which rely on the gradients
sent during training show that these gradients reveal a
lot of detail about the training data [27–29], although
the attacks may be defended against with appropriate
strategies [30]. White-box attacks are quite plausible if
the adversary is posing as a legitimate user in federated
learning, and this opens up new avenues of risk [31–33]
that are highly relevant to our work.

While these advanced attacks are worth investigat-
ing to improve subject-level membership inference, they
are overwhelmingly focused on membership inference of

particular data points. User-level privacy leakage [34] is
more closely tied to subject-level privacy leakage that we
study here, and indeed is equivalent under a one-to-one
correspondence between subjects and federation users.

One of the main contributions of our paper is that
we empirically test the success of membership inference
attacks as properties of the data distribution change.
This is related to prior work that examines patterns
of membership inference success as the architecture of
the model changes [35] across an even wider array of
model architectures, but which focuses on item-level
membership inference and a smaller number of datasets.

2.2 Privacy in Federated Learning

On a meta level, federated learning operates on data just
as any other machine learning algorithm: extracting and
learning features from observations that can be helpful
in predictions on unseen data. However, the changes
in the training environment as well as distribution of
training data across clients can significantly influence
properties of the learned model(s). Factors like the num-
ber of federation users and number of training rounds
are known to directly affect convergence performance
and privacy protection [36].

The majority of work on data privacy in machine
learning focuses on item-level privacy [2, 5]: measuring
and protecting the privacy of individual training exam-
ples. However, in federated learning, each user of the
system sends back parameter updates corresponding to
batches of examples. Even if no single data point is leaked
in this process, the evolution of the FL model gives in-
formation about the batches of training data - since a
user has multiple data points, their privacy may be com-
promised beyond what the item-level privacy guarantee
would suggest. Measuring and bounding the privacy loss
to users leads naturally to user-level privacy [3]. However,
in this work, we focus on the even more general subject-
level privacy [7]: there may be multiple data points about
a particular individual in the dataset, but there is not a
1-to-1 mapping between individuals and federation users.
This situation occurs commonly in real-world datasets,
because a federation user may have data about multiple
individuals in its dataset, or the same individual may
have records scattered across several federation users.

To illustrate the differences using a real-world anal-
ogy, consider a dataset of grocery store market baskets,
collected over time, and with each basket having a corre-
sponding member ID. If each grocery location aggregates
its purchases to train a model, we will certainly find the
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majority of individuals shop multiple times over the
year, and that any individual may sometimes shop at
different stores. Item-level privacy tries to protect in-
formation about individual market baskets, so that no
single checkout can be identified definitively. User-level
privacy will guarantee the privacy of individual stores,
ensuring that no single neighborhood can be identified
within the dataset. Subject-level privacy will make sure
that no individual’s data is compromised, despite mak-
ing multiple purchases across multiple stores. Figure
1 depicts how subject-level privacy manifests itself in
cross-silo FL.

2.3 Other Attacks

This paper is focused on evaluating the efficacy of sub-
ject membership inference attacks in FL, but there are
taxonomies of other attacks against ML models [21] that
are worth describing in order to put our work in context.

Attacks may be grouped by whether or not the
adversary has knowledge (or perhaps partial knowledge)
of the model, into black-box, white-box, and grey-box
attacks [9, 35]. During the training of a FL model, the
model structure and parameters are shared across all
participants, so if the adversary is part of the federation
they are free to launch white-box attacks. In general,
though, we do not assume the attacker is part of the
federation, and our attacks use only knowledge of the
data points, the labels assigned by the model, and the
loss function the model is optimizing; this is essentially
a black-box attack.

From the data perspective, inferring properties about
a particular subject in FL can be reduced to inferring
the presence of the subject’s sub-distribution within the
FL’s full data distribution. This corresponds to the task
of distribution inference [16] (also known as property
inference). The general case consists of an adversary that
wishes to distinguish between two possible distributions
from which a given model’s training data was sampled.
The go-to approach uses meta-classifiers, with the Per-
mutation Invariant Network [15] for most neural network
architectures. Although there have been some attempts
to extend and evaluate these attacks in multi-party set-
tings [37], it is unclear if they can extend to more than
two clients, especially in a volatile FL environment. In
our attack model, the adversary has access to the data
distribution for the subject of interest, and is simply
trying to ascertain whether or not the subject was part
of the training set.

3 Subject Membership Inference
AS: Too short a section- perhaps we can consider merging
it with some other Section, or shift/add content to this
one?

Let S0 and S1 be two sets of subjects, and sinterest the
subject whose membership the adversary wants to infer,
such that sinterest ̸∈ S0, S1. Let Ds be the distribution
corresponding to a subject s. Then, using the definitions
of distribution inference in [16] we can formulate our
subject membership inference task as differentiating be-
tween models trained on datasets sampled from either
of the distributions D0 and D1, defined as:

D0 s.t. D ∼ D0 ⇐⇒ D =
⋃

s∈S0

d ∼ Ds (1)

D1 s.t. D ∼ D1 ⇐⇒ D =
⋃

s∈Ŝ1

d ∼ Ds (2)

where Ŝ1 = S1 ∪ {sinterest}. This is equivalent to stating
that a data sample from either of D{0.1} is equivalent to
taking a union of samples from the individual subjects’
distributions. The first distribution D0 corresponds to
the absence of subject of interest in the federation, while
D1 includes it.

Note that subject membership inference is orthog-
onal to the FL setting, and is indeed more broadly ap-
plicable to machine learning models beyond FL. For
subject membership inference in FL, it is important to
note that it does not matter how a subject’s data is
divided across different users of the federation. Even if
only one user has the subject’s data, or if an individual
subject’s data is divided across all users, the subject’s
data is ultimately used in the overall training process
and thus the subject should be inferred as being present.
The adversary only cares about the subject’s presence
in the overall federation and using a formulation like
the one above is apt for the given threat model. This, of
course, is barring scenarios where a subject’s data never
gets sampled during any federated training rounds by
any of the participating users. In such a case the sub-
ject’s data has technically not been used in the training,
and thus should not be inferred as being present.

4 Attacks Setting

4.1 Threat Model

We assume a passive adversary that wants to infer mem-
bership of a particular subject in the federation. This
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attacker can exist as a honest-but-curious federation
server or user in the federation. In either case, by design
the attacker has access to the global model’s weights af-
ter each training round. For all of our attacks, we assume
the adversary has access to the following:

Samples (finite) from the distribution of subjects.
If the adversary wishes to launch an attack against a
particular subject, it must have the capability to quan-
tify and differentiate subjects and identify the one it is
interested in. This can be done by either knowing (or
estimating) a subject’s distribution or possessing sam-
ples to estimate it. Having access to finite samples is
the weaker assumption of these two. Note that in theory,
it is not necessary to have estimates for distributions
for all of the subjects – just the subject of interest and
some samples from subjects that are not relevant to the
adversary’s inference task.

API access to the global model after each federa-
tion round. We assume access to prediction probabili-
ties from the global model Mi after each training round i.
Both the central server and individual participants have
access to the global model after each training round,
making it easy to satisfy this requirement. This may be
further weakened to limit access to just the last round-
the final global model that may be released to the world.
For two out of our three attack methods (Section 5), we
assume API access to only the final global model.

In one way or another, all of our attacks are based on
a common underlying assumption: Given the objective of
training machine learning models, it is natural to expect
that the model’s performance on data similar to that
seen during training would be better than that not seen
during training. This can be quantified in many ways:
from raw loss values, to robustness in predictions. The
flow of information for the proposed subject membership
inference attack is described in Figure 2. As described
above, the adversary has a belief over subjects present
and absent in a federation, and wishes to infer the mem-
bership of some subject sinterest using some algorithm H,
given access to models Mi per round i, for all r training
rounds.

4.2 Attack Setup

For any attack, it is common for the adversary to have
some form of hyper-parameters that are specific to a
target subject (Since we are stating this as something
commonly known, don’t we need a reference for it?).
These hyper-parameters are usually computed using ad-

ditional information that may be available through side-
channel attacks or just by the adversary participating
in the federation’s training process.

All of our attacks involve computing some form of
tunable thresholds that are used to execute the attacks.
This threshold computation be done using this additional
information; however, this forms a cyclic problem since
inferring a subject’s membership is itself the adversary’s
objective. One of the primary motives of this research is
to study the impact of different configuration parameters
on this inference risk. Thus, we choose an extremely
strong adversary that already knows which subjects did
and did not participate in the federation (Scenario
A). Our results then help us study this empirical upper
bound on how much the adversary could learn from
the given model(s), even if it somehow computed its
threshold(s) using actual ground truth. We consider
two possible scenarios with respect to the knowledge
possessed by the adversary before it launches its attack(s)

Scenario A: Membership known for many sub-
jects. For the scenario where the adversary is the fed-
eration server (which is what we assume for the rest of
the paper, unless specified otherwise), subjects used in
the federation are already known. If the adversary is
not the federation server, it can make an educated guess
for a prior of the target subject’s participation in the
federation, and then launch its attack to then confirm
the guess.

Scenario B: Membership known for few subjects.
For the scenario where the adversary is a participant in
the federation, it can use its split of data to know for
sure which subjects were used in the federation. (AS:
Just one sentence- any more information we want to/can
add to make this more clear?)

The adversary can then guess subjects not used in
the federation by randomly sampling/generating other
subjects and their data. Once data for both subjects used
and (probably) not used during training is available, the
adversary can launch an appropriate attack to generate
some score/loss values and find appropriate thresholds
on top of these scores in order to maximize its metric
of choice to identify subjects used in training effectively.
Then, using the derived threshold and data sampled
from a query subject’s distribution, the adversary can
predict or confirm whether a subject’s data was used in
the federation or not.
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Fig. 2. Information flow for the subject membership inference attack in Federated Learning.

5 Method

Preliminaries. Let m be the total number of users
participating in the federation. Let r be the number
of rounds for which the global model is trained in the
federation, with Mi denote the state of the model after
training round i has completed. M0 thus represents the
state of the model before training starts. Let li(x, y) be
the loss value between the label y and Mi(x), with Mi(x)
denoting the model Mi’s prediction on point x.

All three of our attacks are based on hypotheses,
implied by prior works on the behavior of loss functions
on training data [11, 26, 26, 38].

5.1 Loss-Threshold Attack

Hypothesis 1. If data from a particular subject is
present in the federation and is used in training, the
global model would be expected to have a lower loss than
data from a subject who was not present in any of the
users’ local datasets. [11]

Based on this hypothesis, we propose the following
attack: record loss values for samples from the subject’s
distribution and check if any of them have a value less
than a particular threshold. If the loss is below the
threshold VJM: how do we find this threshold in the
algorithm? I see the description of threshold calculation
appear later in section 7. Perhaps another way, it would

indicate the model has seen that particular data, and
thus other data from that subject’s distribution, during
training.

c =
∑

(dx,dy)∼Ds

I[lr(dx, dy) ≤ λ] (3)

The adversary can either check if c is non-zero or derive
an additional threshold on this value based on the metric
it wishes to maximize, like precision or recall.

5.2 Loss-Across-Rounds Attack

Hypothesis 2. Loss on training data, and thus data
from the training distribution, decreases (and eventu-
ally converges, based on the level of overfitting) across
iterations by virtue of how learning algorithms (gradient
descent, in particular) work. However, data from dis-
tributions not seen in the training would probably not
exhibit the same trends. It may decrease initially owing
to some similarities in the underlying distribution but
would likely not decrease consistently or converge to val-
ues as low as those for distributions of subjects whose
data was present in the federation [39].

Based on this hypothesis, we propose the following
attack: record loss values for samples from the subject’s
distribution and take note of how the loss values change
as training rounds progress. The attack first computes
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the loss across each training round i:

ci =
∑

(dx,dy)∼Ds

li(dx, dy) (4)

Then, the adversary takes note of the number of training
rounds where the loss decreases after each round:

c =
r∑

i=1
I[ci < ci−1] (5)

The adversary can then compute these values for both
subjects seen and not seen in the federation VJM: (this
appears to imply that the adversary always knows which
subjects are in the federation’s dataset, can we make this
more general to apply the attacks to subjects that are not
know to be in the federation’s dataset, but can be found
to be a part of it by the adversary using the attacks –
that will be a purely subject membership inference), and
consequently derive a threshold on this value for subject
membership VJM: Even if we base the thresholds on
subjects known to be a part of the federation’s training
data, we could still use them to discover membership of
subjects that were previously not known to be a part
of the training data, right? If so, this point needs to
come across from early on. We perhaps need to crisply
state what we mean by subject membership inference. It
perhaps includes (i) discovery of a subject in the model’s
training data, and (ii) discovery of additional data on a
subject already known to be a part of the training data..

5.3 Neighborhood-Loss Attack

Hypothesis 3. If the model sees data from a particular
subject’s distribution, it would be expected to generalize
well to data from that distribution. One would expect the
model to be robust to small amounts of noise added to
data, as opposed to data from distributions of subjects
that it has not seen during training. [26]

Based on this hypothesis, we sample multiple points
within Lp-norm balls around each of the datapoints in a
sample, and note the fluctuation in loss values:

c =
√ ∑

(dx,dy)∼Ds

(lr(dx, dy) − lr(dx + ϵ, dy))2 (6)

Then, similar to the attack described in Section 5.1,
we can derive a threshold on c and apply it across all
samples, counting how many of them fall under the given
threshold. Note that the core idea for sampling points
from a neighborhood is similar to the Merlin attack [26].
However, instead of simply counting instances where

the loss increases, we track the actual difference in loss
values which is additional information that the adversary
can utilize.

6 Experiments
As mentioned in Section 4, the subject membership
inference threshold (λ) is a tunable parameter. For all of
the above attacks, the adversary splits its data into two
parts. The first split is used for deriving the thresholds(s)
λ, while the second split is used for actual evaluation
and reporting results.

Our evaluation largely focuses on a synthetic dataset
since it is non-trivial to obtain datasets with a clear no-
tion of "subjects", and even more difficult to control the
federation and data attributes that can significantly in-
fluence subject membership inference risks. Even though
we use the setting of the strongest adversary for all of our
configurations, we also test a weaker and more realistic
variant for some of the configurations: one where the
adversary (federation user) has knowledge of only the
subjects in its own data split, and randomly samples
subjects not in its set (to be considered as unseen sub-
jects) for computing threshold(s) VJM: The second half
of this sentence suggests that unseen subjects’ data is
also used to compute the thresholds. I think thats not
true.. Our results across a variety of different configura-
tions (spanning different levels of inference risk) indicate
that weakening an adversary and using user-wise data
to compute threshold(s) does not perform much worse
than the stronger adversary that is aware of subjects
that are used for training across the entire federation.
We observe an average drop of .0178 in the attack F-1
scores.

We augment our synthetic data study with evalu-
ation of a variant of the FeMNIST dataset [18] as a
representative of the real world setting, where we have
little room to tune configuration parameters.

6.1 Synthetic Dataset

Since one of the primary objectives of this research is to
study how environmental variables of a federation impact
subject membership inference risk VJM: I think I’ve seen
this "primary objective" mentioned a couple times now.
Perhaps we need to add an "our contributions" part at
the end of introduction that explicitly spells out the
contributions we make in the paper, including this one.,
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Fig. 3. Dataset creation process for our Synthetic Dataset. Each
user is assigned subjects at random, and data from each subject’s
distribution is sampled to generate a user’s dataset.

the ideal setup should allow control over all parameters,
even the ones that are usually fixed for a given dataset
(e.g. number of subjects per user, items per subject, items
per user). For a fully controlled federation environment,
we design a synthetic dataset with multiple controllable
parameters, quantifying certain aspects of interest in
a federation and their impact on subject membership
inference risk.

We start with a certain controllable dimensionality
for the feature space of data. The ground truth label
for each data point is deterministic and computed as
the XOR of the features across all dimensions. For a
particular data point x with n dimensions:

y =
⊕

i

I[xi ≥ 0] (7)

The data generation process is outlined in Figure 3
and described below:
(1) We model each subject as a parameterized distri-

bution, for which we use a multi-variate Gaussian.
We generate random (and valid) mean and covari-
ance matrices for each subject, such that no two
subjects have the same parameters to their distribu-
tions. Additionally, we enforce a minimum pair-wise
separation between all of the subject distributions’

means to avoid overlap. This separation is set such
that it is not too high to make the subjects too dis-
tinct and the inference task trivial, yet low enough
to be able to tell any two distributions apart.

(2) Each user in the federation is then assigned a random
sample of subjects. These subjects are sampled from
the pool of all subjects with replacement, and thus
users can have an overlap in the subjects assigned
to them.

(3) To construct the user’s dataset, data is randomly
sampled from distributions of each of the subjects as-
signed to that particular user. There are two possible
extremes when modeling distributions for subjects:
each sample being virtually unique and the other
with scope for multiple repetitions. The former is
more like a patient’s blood report readings, while
the latter is closer to a customer’s shopping cart.
We allow for two sampling schemes to capture these
two extremes: standard sampling for a multivariate
Gaussian and Dirichlet sampling.

(4) The data sampled from each of the user’s assigned
subjects is then concatenated to form the user’s
dataset. This process is repeated for all users in the
federation.

The number of users, total available subjects, number
of subjects per user, and data samples per user, are all
controllable parameters of our environment.

6.2 Results

The success of our inference attacks can depend on sev-
eral factors:
– Data Properties, such as the dimensionality and

sampling distribution
– Model Design and Training, such as the model

architecture and number of training rounds.
– Federation Properties, such as the number of

users, subjects, and datapoints.
For a comprehensive evaluation of how these factors in-
fluence subject membership inference risk, we generate
a total of 720 configurations by varying all of the above
parameters simultaneously on the synthetic dataset. The
exact configuration values are given in Table 1. This
extensive grid search is a one-of-its-kind study for Feder-
ated Learning systems and meant to expand our under-
standing of how certain factors, both in and out of the
model trainer’s control, can influence privacy leakage.

For each experiment, we take a sample of subjects
present in the federation along with an equally sized
sample of subjects not present in the federation, to use
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(a) Config A. Final model test accuracy: 99.71%
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(b) Config B. Final model test accuracy: 50.36%
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(c) Config C. Final model test accuracy: 65.40%

Fig. 4. Attack F-1 Scores for configurations with varying final test accuracies. Attacks are observed to leak a lot of information, when
the models themselves perform exceptionally well on the task (a) or even when they perform marginally better than random (b).
However, there are also cases where there is close to little or no leakage when models are neither too accurate nor too inaccurate (c).
Parameters for these configurations are given in Table 2.

Configurable Values Experimented

Sampling Mechanism {Normal, Dirichlet}
Data Dimensionality {2, 50, 250, 1000}

Model: Number of Layers {1, 2, 3}
Model: Number of Epochs [1, 50]

Users {10, 100}
Subjects per User {10, 100, 500}

Items per User {500, 2000, 10000}

Table 1. Variables for the Synthetic Dataset that we experiment
with. Each of these are tried simultaneously, thus yielding all
possible configurations with these values.

as our test set. This process is repeated multiple times,
randomly sampling subjects not present in the federation.
For computing thresholds across all the attacks, the
adversary divides its data into two splits. The first split
is used to derive threshold(s), while the second one is
used for actually launching the attack.

For computing the F-1 score, we count correctly pre-
dicting the presence/absence of a subject’s data in the
federation as a hit (1) and incorrect as a miss (0). We
report mean F-1 scores within 95% confidence intervals
for our graphs and tables. Our initial experiments with
a few randomly selected configurations show how the
Neighborhood Loss Attack has the capacity to outper-
form the other two attacks in some cases, as visible in
Figure 4a. However, the Neighborhood-Loss Attack is
computationally much more expensive than the other
attacks, and its performance is close to the others for
most of the other cases. Thus, we report F-1 scores
with the Loss-Threshold attack (Section 5.1) for all our
experimental configurations.

Parameter Config A Config B Config C

Data Dimensionality 1000 1000 2
Sampling Mechanism Dirichlet Normal Normal

Model Hidden [256, 16, [8] [2]Dimensions 16, 4]

Table 2. Experiment parameters for the configurations given in
Figure 4. All of these configurations correspond to 10000 items
per user, 10 subjects per user, and 10 users.

AS: Talk about the three configurations for which
we have plots and Tables, and why we picked these three
(and what kind of cases they correspond to.

6.2.1 Data Properties

Sampling Mechanism. We plot Attack F-1 scores
across training rounds, for data distributions with stan-
dard and Dirichlet sampling (Figure 5). We observe
Dirichlet sampling to exhibit a significantly higher in-
ference risk than the case of regular sampling. This is
expected since repeated samples would make inferring a
subject’s membership easier, almost reducing it to data-
point membership inference. These sampling mechanisms
represent two extreme cases possible in real-world feder-
ation systems: each datum being sampled uniquely (like
blood cell counts) versus high density around specific
data points (like grocery store purchases). Real-world
datasets would be somewhere between these two, and
having results for them both gives a good sense of the
expected range of inference risk for real-world datasets.
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Fig. 5. Attack F-1 Score across training rounds for datasets
generation with Standard and Dirichlet Sampling.
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Fig. 6. Attack F-1 Score across training rounds for datasets with
different feature dimensionality.

Dimensionality. Inference risk seems to correlate posi-
tively with the dimensionality of the feature space (Fig-
ure 6), with stagnation in the F-1 scores for inference
as the dimensionality increases beyond a certain point.
Subject distributions in lower dimensions are likely to
be closer to each other. On the other hand, the same
number of distributions in a higher-dimensional space
would be distributed much more sparsely, owing to the
curse of dimensionality. Thus, the latter would be under-
standably easier to distinguish than the former. Model
trainers thus need to be cautious when working with
high dimensional data since that makes them highly
susceptible to such inference attacks.
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Fig. 7. Attack F-1 Score across training rounds for datasets with
different model architectures. Hidden dimensions refers to the
number and sizes of intermediate layers for the neural networks
used.

6.2.2 Model Design and Training

Model Complexity. We vary model complexity by
adjusting both the number of layers and neurons per
layer, going from a single hidden layer neural network up
to one with four hidden layers (Figure 7). Inference risk
seems to increase model complexity but seems to plateau
beyond model complexity required for the task. The
risk increases as we increase the number of neurons for
the same one-hidden-layer architecture and then again
on adding an additional hidden layer. However, more
complex models seem to exhibit almost similar inference
risk beyond that. Interestingly, inference risk for the
under-parameterized models is only slightly better than
random guessing, suggesting it may be in the model
trainers’ interest to use models that are not too complex
for a given task. This suggestion is in the model trainer’s
own interest, since using a smaller model also makes the
model less likely to overfit.

Model Training. Similar to trends with model com-
plexity, we observe that inference risk increases as the
model continue to train and then plateaus towards the
latter half of training rounds, which is a few rounds
after the model’s loss has converged on both train and
test data. These observations are clearly visible in all of
the previous figures, and especially in Figure 7. Based
on these observations, it would make sense not to train
the model for too many rounds- only enough to achieve
satisfactory performance. Such a decision may hurt the
model trainer, since some studies in the literature [40]
demonstrate how training beyond convergence can con-
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fer benefits like better robustness, generalization, and
interpretability.

6.2.3 Federation Properties

For a given number of data points corresponding to a sub-
ject, the underlying federation can have several different
configurations: different number of users, subjects per
user, as well as items per user. Although none of these
are in control of an adversary, understanding how they
impact subject membership inference risk can be advanta-
geous in both designing and understanding such attacks.
We study these trends across varying parameters of the
configuration setup and observe very peculiar trends. We
split our analyses into two categories: Few Subjects per
User (10) and Many Subjects per User (100/500). We
further calculate the total number of items per subject
in each configuration, and bin them into three categories:
(4, 100] (low), (100, 800] (medium), and (800, 2000] (high).

Few Subjects per User. For the case with only a
few subjects per user (Figure 8a), the attack F-1 scores
(Y-axis) are higher for the cases with fewer total subjects
(blue), compared to settings with more total subjects
in the federation (orange). This trend is expected, as
having more (subject) distributions in the same feature
co-domain would make overlap between distributions
more likely, making it harder for an adversary to distin-
guish between any two distributions. Attack F-1 scores
change as the number of items per subject (X-axis) in-
crease, but the trends ore somewhat conflicting for the
low and medium cases of items per subject. For the for-
mer, the F-1 scores increase with increase in items. This
is expected, since having more items per subject would
make it more likely for the model to generalize well to a
given subject’s distribution (as opposed to overfitting to
a few points), making it easier for an adversary to infer
membership. Although the attack scores decrease for the
medium case of items per subject, the decrease is sub-
stantial and within error of margin, effectively staying
unaffected.

Many Subjects per User. When we have a sufficiently
high number of subjects per user, we observe an increase
in risk as we increase the number of items per subject
(Figure 8b). The gains in attack performance too taper
off once there are sufficiently large number of items per
subject (medium v/s high) Since the total number of
subjects in the system is high enough, the effects of
potential overlap between subject distributions (men-
tioned earlier) start to converge; the two cases (orange

and green) are thus not affected much by an increase
in the total number of subjects and are close in their
performance.

Our analyses show how configurations with a lot of
subjects in the federation increase in susceptibility to
subject membership inference as the data available per
subject increases. At the same time, configurations with
few subjects in the federation are highly likely to leak
subject membership.

6.3 High Risk Configurations

To better understand what combinations of the various
parameters may make the overall federation more sus-
ceptible to these inference attacks, we choose to look at
highly successful attacks: ones with both precision and
F-1 scores > 0.9. Close analysis of the filtered configura-
tions yields some common configuration attributes:
– High data dimensionality: 1000
– Dirichlet sampling while generating data
– Large model architectures: ≥ 3 hidden layers, and
– Models trained for many rounds: ≥ 20.
Looking out for these attributes can help machine learn-
ing practitioners identify cases that may be highly sus-
ceptible to subject-level membership inference attacks.
In addition to these analyses, we also looked at the
generalization gap (which we define as the difference
between the train and test accuracies) for models and
the attacks’ F-1 scores. We noted a negative correlation
score (∼ −0.6), which is exactly opposite to what the
literature says [11] about inference attacks, and needs
further investigation.

6.4 Real-data case study: FeMNIST

Our findings on synthetic data show that certain dataset
properties make the inference attacks more difficult -
high dimensionality, larger overlap across users, and less
exact repetition of data items for the same subject. To
test whether these findings are transferable to real-world
datasets, we use FeMNIST [18], the federated extended
MNIST [41] dataset, which is an image classification task
for handwritten digits and letters.

Dataset Description. FeMNIST’s digits and letters
themselves have been written by 3, 500 distinct individu-
als, and FeMNIST partitions these images by individual
authors. Each author has contributed hundreds of sam-
ple images. Ordinarily, FL research experiments [18]
map each author to a federation user, resulting in a
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Fig. 8. Attack F-1 Scores while varying number of total subjects and items per subject, for 10 subjects per user (a) and 100 subjects
per user (b) in the Federation.

3, 500-user federation. In our experiments, we instead
map authors to subjects, resulting in a federation with
3, 500 subjects whose data is randomly scattered among
a handful of federation users (16 in our experiments) to
emulate a cross-silo FL setting. Multiple federation users
may host images from the same subject, though we do
not distribute any individual image to more than one
federation user. This reconfigured dataset is especially
suitable for cross-silo FL and our subject membership
attacks study. The data points themselves are 28x28
pixel, black-and-white pictures of a single handwritten
character.

Setup. We use the CNN model on FeMNIST appear-
ing in the LEAF data suite [18] as our target model
to train. More specifically, the model consists of two
Convolution layers interleaved with ReLU activations
and Max-pooling layers, followed by two Linear layers.
We train the CNN model on the dataset with 3, 500 data
subjects. Each subject has ∼ 140 data points on average,
with its data more-or-less equally spread across 16 feder-
ation users. Subject membership inference attacks aim
to determine, given some samples from a set of subjects,
whether a target subject’s data was part of the training
set.

Results. We expect this to be a difficult attack for
several reasons. The data is high dimensional (784 in-
puts), does not repeat, and has considerable overlap
between users. While differentiating handwriting styles
of different individuals is possible to some degree, is
not easy (or necessarily reliable) for trained experts to
provide forensic matches of handwriting [42]. Some prior
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Fig. 9. FEMNIST Model. Final model test accuracy: 86.42%.

work on membership inference for individual data points
on MNIST corroborates these prior beliefs [35]. Attack
results are plotted in Figure 9, showing how the F-1
Scores are no better than random-guessing for the Loss-
Threshold Attack for most rounds but do start rising as
the model nears completion, which is what is usually
released in production.

6.5 Mitigation

One of the most commonly prescribed method for de-
fending against membership inference attack is training
ML models with Differential Privacy(DP) [2]. In partic-
ular, Federated Learning models can be trained with
Local Differential Privacy[43] at various granularities as
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Metric FL Item User Subject

Model Accuracy .8642 .7818 .3738 .7493
Accuracy .61 ± .05 .54 ± .04 .50 ± .00 .50 ± .00
Precision .57 ± .03 .52 ± .02 .50 ± .00 .50 ± .00

Recall .96 ± .00 1.0 ± .00 1.0 ± .00 1.0 ± .00
F1 Score .71 ± .03 .69 ± .02 .67 ± .00 .67 ± .00

Table 3. Model and attack metrics under different DP granularities
while using the Loss-Threshold Attack, using CNNs on the

FEMNIST [18] Dataset.

described before (AS: Add back-reference). From the
720 configurations described earlier, we select the most
vulnerable one, and train models on them with DP at
ϵ = 2.0 and δ = 10−5 (AS: Same parameters for all three
levels of DP? Might want to mention them here again
explicitly, along with references to whichever versions we
use while training DP models). We train these models
for 20 rounds (AS: Is it 40 for FEMNIST?), and use
σ = 1.8346 (AS: May wanna add these parameters for
FEMNIST as well). Table 3 shows that DP does help
significantly reduce the attack accuracy. Indeed, as has
been reported in the literature, this comes at the cost of
reduction in model accuracy.

Metric FL Item User Subject

Synthetic Dataset Config A

Model Accuracy .9919 .7945 .7290 .6368
Accuracy .93 ± .01 .66 ± .04 .59 ± .02 .58 ± .05
Precision .89 ± .02 .61 ± .04 .55 ± .02 .55 ± .03

Recall .98 ± .02 .93 ± .06 .98 ± .02 .89 ± .05
F1 Score .93 ± .01 .74 ± .01 .71 ± .01 .68 ± .02

Synthetic Dataset Config B

Model Accuracy .5035 .5085 .5018 .5075
Accuracy .78 ± .02 .52 ± .04 .50 ± .01 .52 ± .03
Precision .73 ± .04 .51 ± .02 .50 ± .00 .51 ± .02

Recall .91 ± .05 .97 ± .06 1.0 ± .00 .98 ± .03
F1 Score .81 ± .02 .67 ± .00 .67 ± .00 .67 ± .01

Synthetic Dataset Config C

Model Accuracy .6545 .6291 .8358 .6383
Accuracy .53 ± .04 .53 ± .04 .52 ± .03 .50 ± .01
Precision .51 ± .01 .52 ± .02 .51 ± .02 .50 ± .01

Recall .98 ± .03 .97 ± .04 .98 ± .03 1.0 ± .01
F1 Score .67 ± .00 .68 ± .01 .67 ± .01 .67 ± .00

Table 4. Model accuracies and attack metrics (accuracy, precision,
recall, F1 score) under different DP granularities while using the

Loss-Threshold Attack, using MLPs on the Synthetic Dataset
(Section 6.1). Parameters for these configurations are given in

Table 2.

7 Conclusion
Privacy in Federated Learning is typically only studied
for individual data items or users participating in the
federation. However, in complex cross-silo FL settings,
we ultimately care about protecting the privacy of indi-
vidual data subjects. This is the first paper to propose
subject-level membership inference attacks, which can
aid in the empirical measurement of data subject’s pri-
vacy leakage. We show that the three proposed attack
variants are successful in retrieving subject membership
information from a wide variety of Federated Learning
models. We present a first-of-its-kind, synthetic data gen-
erator based study, in which we simulate several hundred
FL configurations and measure the accuracy of inference
attacks for them. For these simulations, we vary three
main aspects of the system - data, model, and FL struc-
ture, and find that factors like data distribution, data
dimensionality, model complexity, and training protocols,
and the size and composition of the federation in terms
of the number of users, data subjects and data items,
all have a substantial impact on the attack accuracy.
By systematically varying some of the variables that
can affect attack success, this study provides invaluable
practical guidance to model designers and ML practi-
tioners on what makes their models more vulnerable. On
the mitigation front, we retrain some of these configura-
tions with Differential Privacy and verify that it indeed
helps reduce the attack accuracy significantly, albeit at
the cost of model accuracy. Finally, we illustrate the
entire process of using subject-level inference attacks to
measure privacy leakage and assess the effectiveness of
mitigation using a real-world dataset, FEMNIST. We
hope that this study will help ML practitioners focus
on and protect the most important asset in the FL data
ecosystem - the people.
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