
Revisiting Condition Variables and Transactions

Victor Luchangco

Oracle Labs

victor.luchangco@oracle.com

Virendra J. Marathe

Oracle Labs

virendra.marathe@oracle.com

Abstract
Prior condition synchronization primitives for memory trans-
actions either force waiting transactions to abort (theretry

construct), or force them to commit (also calledpunctua-
tion in the literature). Although these primitives are useful
in some settings, they do not enable programmers to conve-
niently express idioms that require synchronous communi-
cation (e.g.,n-way rendezvous operations) between transac-
tions. We presentxCondition, a new form of condition vari-
able that neither forces transactions to abort, nor to commit.
Instead, anxCondition creates dependencies between the
waiting and the corresponding notifying transactions such
that the waiter can commit only if the corresponding notifier
commits. If waiters and notifiers form dependency cycles
(for instance, in synchronous communication idioms), they
must commit or abort together. ThexCondition construct
builds on our earlier work ontransaction communicators.
We describe how to usexConditions in conjunction with
communicators to enable effective coordination and com-
munication between concurrent transactions. We illustrate
the use ofxConditions, and describe their implementation in
the Maxine VM.

1. Introduction
Locks, used to provide isolation for critical regions of code,
and semaphores, used to order events (such as the execution
of various critical regions), are among the earliest synchro-
nization mechanisms in concurrent programming. Experi-
ence has shown that it is not sufficient to have two indepen-
dent mechanisms. Rather, it is desirable to have a structured
mechanism that integrates them, resulting inmonitors [7],
which replaced semaphores withcondition variables. This
mechanism evolved slightly in Mesa [8] and has been widely
used essentially unchanged since then. As we consider using
transactional memory instead of locking to provide isolation,

Copyright c© 2011 Oracle and/or its affiliates. All rights reserved.

it behooves us to consider also how to providecondition syn-
chronizationwith transactions, that is, a mechanism that in-
tegrates transactions and the ordering of events in a manner
analogous to condition variables.

We are not the first to consider this problem. Existing
proposals include (i)conditional critical region (CCR)style
transactions [4], which allow execution of a transaction only
if a particular condition is satisfied (i.e., the execution of
the transactions is delayed until the condition is true); (ii)
a retry construct [5], which aborts a transaction that calls
retry, and re-executes it only when something in that trans-
action’s read or write set is modified; and (iii) await con-
struct [10] (or condition variable [3]) that “punctuates” (i.e.,
commits) the waiting transaction and begins a new transac-
tion for the waiting thread on receipt of a notification from a
concurrent transaction. However, none of these proposals al-
low synchronous communication between concurrent trans-
actions.

Consider, for example, a system that processes client
jobs that should appear to be handled atomically. Processing
some of these jobs may involve accessing a database, and
these accesses should themselves appear atomic. The system
may be organized as illustrated in Figure 1, with the threads
handling client jobs separate from those with direct access
to the database, so that a thread handling a job that requires
access to the database must place a request to do so into a
queue; the request will be handled by a database thread. In
such a system, a thread handling a job cannot simply execute
the job in a single transaction: if the job requires access to
the database, the thread handling the job must communicate
with the database thread that handles its request. Nor can
the thread simply break the job into two transactions, one to
handle the part before the request and the other to handle
the part after getting the result: if the transaction for the
second part aborts, then the effects of the first transaction,
and of the database thread that satisfied the request, should
be discarded as well.

The above-mentioned proposals do not suffice for this
problem because they either require that waiting transac-
tions do not happen at all (retry and CCRs), or break a sin-
gle isolated transaction into multiple smaller transactions,
via punctuation, thus compromising isolation of the original
bigger transaction. A transaction-based solution requires bi-



Figure 1. An example scenario where transactions may
need to coordinate and communicate with each other.

directional communication between concurrent transactions,
and an effective means of coordinating the execution of the
transactions, that is, in ordering the various parts of the trans-
actions. We addressed the communication aspect in earlier
work [9], from which this example is taken, by proposing
special objects calledtransaction communicators, through
which concurrent transactions can communicate. However,
in that paper, a waiting thread simply spins on a commu-
nicator, which introduces the usual problems that motivate
ordinary condition variables. In addition, this spinning in-
troduces unnecessary dependencies between waiters and no-
tifiers, especially when many transactions wait on the same
condition (like the database threads in the above example).

In this paper, we proposexCondition, a new kind of trans-
action condition variable that does not abort or punctuate a
transaction that waits on it. Anactivewaiting transaction can
receive a notification from an active notifying transaction,
which compromises the isolation of the waiting transaction
(i.e., it “knows” it did not execute in isolation because it re-
ceives the notification). As with our work on communica-
tors, we restrict this compromise by enforcing a dependency
between the waiter and the notifier such that the waiter can
commit only if the notifier commits. In particular, if the no-
tifier aborts, the waiter must also abort. Unlike simple or-
dering constraints, however, a pair of mutually dependent
transactions (e.g., if each waits, at different times, for some-
thing the other produces, as in the example above) may both
commit together. Unlike ordinary transaction communica-
tors, however, anxCondition maintains a queue of transac-

tions waiting to be notified, and if a transaction so notified
aborts, then the signal it received must be propagated to an-
other thread on the queue (if any).

As with ordinary condition variables we expect that
xConditions will be used to protect and communicate data,
and so will be used with transaction communicators. There-
fore, we propose an extension to the communicators abstrac-
tions for better interoperability withxConditions.

2. Transaction communicators
In this section, we describe briefly our earlier work on trans-
action communicators [9].

A transaction communicatoris a special object that en-
ables desirable communication between concurrent transac-
tions, but limits the impact of the resulting compromise of
isolation: Updates to a communicator by a transaction are
visible to other transactions accessing the communicator,
even before the updating transaction commits, but a trans-
action that sees the effects of another transaction must not
commit unless that other transaction commits, nor precede
the other transaction in the transaction order. Thus, com-
municators induce dependencies among concurrent transac-
tions. In contrast to ordinary transactional memory, mutually
dependent transactions induced by cyclic dependencies on
communicators may commit, provided that they all commit.
In this case, they all occupy the same position in the transac-
tion order.

Note that inter-transaction communication is allowed
only through communicators: a transaction that sees the
effects of another transaction on anon-communicatorob-
ject must be ordered strictly after the other transaction.
Also, no committed transaction may see the effects of an
aborted transaction. If we think of a set of mutually depen-
dent committed transactions as a “super-transaction”, with
each committed transaction in exactly one super-transaction,
then these super-transactions appear to execute one at time,
but the operations of transactions within the same super-
transaction may appear to be interleaved in any way consis-
tent with the sequential semantics of each transaction.

Because operations on communicators within transac-
tions are visible to other transactions, transactions must
synchronize their access to communicators. To encourage
the transactional style, we providecommunicator-isolating
transactions(CITs), which isolate accesses to communica-
tors (as well as ordinary objects). All operations within a
CIT, including accesses to communicators, appear to exe-
cute together without interleaving with operations of other
threads.

Because CITs isolate communicator accesses and ordi-
nary transactions do not, we cannot simply flatten a CIT
nested within an ordinary transaction into its parent: when
the nested CIT commits, its effects on communicators—but
not its effects on non-communicator objects—must be made
visible. (A CIT within a CIT, and an ordinary transaction



class xCondition {
public void txwait();
public void txnotify();
public void txnotifyAll();

}

Figure 2. ThexCondition class

within an ordinary transaction, can be flattened because no
effects are made visible to other threads when the nested
transaction commits.)

Assuming a Java-like language with support foratomic

blocks [4], we proposed two language-level constructs for
communicators: thetxcomm modifier to designate fields as
read-write communicators, and thetxcommatomic block to
designate blocks of code to executed as CITs.

3. The xCondition

We now describe thexCondition abstraction in more detail in
the context of the Java-like language with support for atomic
blocks and communicators described in the previous section.
We definexCondition as a class with a public interface
as shown in Figure 2. Thetxwait, txnotify and txnotifyAll

methods correspond respectively to thewait, notify, and
notifyAll methods of theObject class in Java.1 As discussed
below, we only support calling these methods from within
(the dynamic extent of) atxcommatomic block.

Like an ordinary condition variable, anxCondition main-
tains an abstractwait list of transactions waiting for a no-
tification on thexCondition. However, an ordinary condi-
tion variable does not work within a transaction because a
transaction is supposed to appear to run in isolation: a thread
that waits within a transaction would never be notified. With
xConditions, as with transaction communicators, we relax
the isolation of transactions to enable communication be-
tween concurrent transactions.

Abstractly, a transaction callingtxwait on anxCondition

is added to thexCondition’s wait list, and suspended un-
til it is notified. When a transaction invokestxnotify on an
xCondition, the runtime determines if there is a transaction
on thexCondition’s wait list, and if so, notifies such a trans-
action, removing it from the wait list and scheduling it for
execution. It also makes the waiter dependent on the notifier,
so that the waiter cannot commit unless the notifier does. If
a transaction invokestxnotifyAll, then all transactions on the
wait list are notified.

Note that the dependency between a waiter and a notifier
is one-way: notification doesnotmake the notifier depend on
the waiter; the notifier can commit even if the waiter it noti-
fies aborts. Nonetheless, cyclic dependencies may be intro-
duced if, for example, a notifier subsequently waits on a con-
dition that is satisfied by the the transaction it notified, asin

1 Alternatively, we could makexConditions like Java monitors, where
there is no explicitxCondition class and the above methods are added to
the Object class. Such considerations are orthogonal to thexCondition

functionality.

the case of our job processing example: a client transaction
waits for a response from the database thread that processes
its request. As with transaction communicators, transactions
in dependency cycles must either all commit or all abort,
and if they commit, they occupy the same position in the
transaction order, appearing to other transactions as a “super-
transaction”. Dependencies introduced byxConditions are
treated exactly the same as dependencies introduced by or-
dinary communicators, and a cycle may consist of both kinds
of dependencies. Enforcing these dependencies can be done
as described in our paper on communicators [9].

However, enforcing the dependencies between waiters
and notifiers is not enough. If a waiter is notified and is sub-
sequently aborted, the notification must not be lost: it must
be “forwarded” to some other transaction, if any, that was
waiting on thexCondition. (This is not true if the notification
occurred due to atxnotifyAll, because in that case, all wait-
ing transactions were already notified.) We describe how we
implement notification forwarding in Section 5.

3.1 xCondition and ordinary communicators

Although xConditions share many characteristics with our
earlier transaction communicators [9], there are also some
significant differences, and it is not possible to implement
xCondition directly with communicators.

First, implementing the wait list of axCondition using
ordinary communicators would introduce many more de-
pendencies than the simple one-way dependence of a waiter
on the transaction that notified it. Such an implementation
would almost always result in many transactions being mu-
tually dependent because of reading and writing communi-
cators used to implement the wait list.

More fundamentally, whereas a communicator encapsu-
lates shared data, which transactions can use to communi-
cate, a condition variable captures a communicationevent,
that is, the notification. Thus, when a transaction aborts, any
notification it received must be restored and forwarded to
another waiter (if any) that may have received it instead.
There is no equivalent read, write, or dependency forwarding
mechanism in communicators.

Also, thetxwait method of axCondition is blocking: it
does not return until some other transaction callstxnotify.
Thus, although atxwait is necessarily invokedbefore the
notification it receives, it is dependent on, and semantically
orderedafter that notification, and so cannot be conceived
as a single atomic operation. In contrast, operations on com-
municators always return, even if only to indicate that there
is no valid value to be read, and can be thought as atomic
operations on encapsulated data. This makes the semantics
of communicators easier to describe, but does not allow the
flexibility of txwait, which allows it to avoid introducing the
unnecessary dependencies described above.

Becausetxwait is blocking, the naive semantics do not
make sense within atxcommatomic block: a thread that



appears to run in isolation cannot receive a notification from
another thread. We discuss this issue further in Section 3.3.

3.2 Combining xConditions with communicators

When a thread is notified after waiting on a condition vari-
able, it typically reads some data to determine whether the
condition it was waiting for is indeed satisfied. Because
xConditions, like condition variables in general, do not en-
capsulate data, this data must be in other objects. And be-
cause transactions cannot see the effects of other threads on
ordinary objects, such data flow must occur through transac-
tion communicators. For example, consider the simple con-
dition synchronization idiom, in whichX is a xCondition,
one thread executes the following transaction:

atomic {
...
while (!canProceed) {

X.txwait();
}
// access data protected by X
...

}

and another thread executes the following code:

atomic {
...
// initialize data protected by X
canProceed = true;
X.txnotify();
...

}

That is, the notifier wakes up the waiter after modifying the
shared state that the waiter accessed before waiting (i.e.,can-

Proceed), and will access after waking up (data protected by
X). UnlesscanProceed is a communicator, this will lead to
a conflict that must result in at least the waiter aborting.

The code above can suffer fromlost notifications, a well
known problem with condition synchronization: the noti-
fier’s update ofcanProceed and notification onX may occur
between the waiter’s access ofcanProceed and its subse-
quenttxwait call. With ordinary condition variables, losing
notifications is avoided by protecting the data with a lock
that is held by the thread before callingwait. This lock is
released only after the thread is added to the wait list, and
it is acquired again when the thread is notified. We wish to
avoid locking and instead use communicator-isolating trans-
actions, which introduces some subtleties discussed in the
next section.

3.3 xCondition and communicator-isolating
transactions

To avoid lost notifications in the example in the previous
section, we must synchronize thexCondition operations
with the checking and establishing of the desired condition.
To retain a transactional style of programming, we want
to accomplish this synchronization using a communicator-
isolating transaction (CIT) rather than a lock. Thus, for the
example in the previous section, the waiter should be written
as follows:

atomic {
...
txcommatomic {

if (!canProceed) {
X.txwait();

}
// access data protected by X

}
...

}

Similarly, a notifier should execute the following code:

atomic {
...
txcommatomic {

// initialize data protected by X
canProceed = true;
X.txnotify();

}
...

}

However, as mentioned before, the naive interpretation of
txwait does not make sense within a CIT. We must, there-
fore, define the semantics in this case. In choosing a seman-
tics, we consider how condition variables are used. In partic-
ular, ordinary condition variables are typically usedonly in
patterns like the one described in the previous section (some-
times enforced by the language), to avoid the lost notification
problem. So our semantics must support this pattern. Indeed,
in analogy with the restriction on the use of ordinary condi-
tion variables, we only support the use ofxCondition opera-
tions within the dynamic extent of atxcommatomic block.

There are several desiderata we have for the pattern
above: First, in keeping with the spirit of condition synchro-
nization, we want to admit an implementation that allows
the waiting thread to be descheduled until it is notified. Sec-
ond, we want to retain the appearance of isolation for the
txcommatomic block. Third, we want to avoid establish-
ing unnecessary dependencies among the transactions that
access thexCondition. Fourth, we want to ensure that notifi-
cations are not lost.

We achieve these goals by adopting a “retry-on-txwait”
semantics, with a twist: When a thread invokestxwait within
a CIT, it behaves as though it invokedretry as proposed
by Harris et al. [5], aborting and re-executing the nested
transaction (i.e., the CIT). However, rather than retryingthe
transaction when any data that it read changes, it retries
upon being notified. If the desired condition is satisfied, the
waiting thread will not invoketxwait when it re-executes the
nested transaction. In a sense, it is like thetxwait occurs at
the beginning of the CIT: the notification is the first event
of the CIT, and all the subsequent accesses appear to take
place atomically upon receiving it, without the interleaving
of operations of any other thread.

If, upon re-executing the nested transaction, the thread
again invokestxwait (possibly on a differentxCondition),
then the nested transaction is again aborted, and the thread
again waits to be notified. Because the nested transaction
is aborted, the notification it received is then forwarded to
some other waiting transaction (if there is any).



When a thread commits a nested CIT after having waited
on anxCondition, its enclosing transaction depends on the
transaction whose notification it receives, as well as any
transaction whose effects it observes (e.g., that wrote a com-
municator that it read) within the CIT. However, it isnot
dependent on transactions whose effects it observed in pre-
vious aborted attempts to execute thetxcommatomic block,
including those whose notifications it received but forwarded
because the subsequent CIT aborted.2 Note that because
some notifier may not change the program state to enable
any of the existing waiters to make forward progress, all the
waiters may end up waiting after they received the (possibly
forwarded) notification. The runtime system should be able
to ignore (drop) such notifications.

This semantics allows us to improve the usual pattern for
condition synchronization by eliminating the explicit loop
(see the above example): In our semantics, a waiter con-
sumes at most one notification for each committed CIT,
whereas with ordinary condition synchronization, a waiter
may consume multiple notifications (the notifier might not
make the condition true, or some other thread might inter-
vene and falsify the condition) before it finds its desired con-
dition satisfied.

Note that because a transaction (including a nested CIT)
may always be aborted, we could have adopted a semantics
in which notifications arenever received: the nested CIT
is simply aborted upontxwait, and just happens to be re-
executed at some time when it can commit without invoking
txwait. Thus,txwait would be exactly equivalent toretry.
Indeed, an implementation that does this is correct according
to our semantics. We believe that our semantics is truer to
the spirit of condition synchronization, but, in any case, the
only difference between the two semantics is whether the
notification is “consumed” and a dependency is established,
and even the latter is unlikely to be an actual difference
because the waiter will likely read some data written by the
notifier, and so be dependent on it in any case.

4. Illustrations
We now illustrate the use ofxCondition, in conjunction with
communicators, in two different applications: the client-
server application from Figure 1, and a scenario where er-
ror conditions encountered in a transaction need to be “for-
warded” to an error logger thread (in our case, a transaction).
Both examples show the effectiveness of expressing idioms
that were difficult or impossible to express with previous
condition synchronization constructs. We first present a way
of coding a producer-consumer queue usingxConditions and
communicators. This queue is later used in our client-server
application example.

2 We are grateful to the anonymous reviewer who pointed out that an earlier
description of our semantics made the waiting transaction dependent on all
transactions whose notifications it received, and that thiswas undesirable.

class ProducerConsumerQueue {
txcomm Node head = null;
txcomm Node tail = null;
xCondition xc = new xCondition();
public void produce(Object data) {

Node myNode = new Node(data);
txcommatomic {

if (tail == null) {
head = tail = myNode;

} else {
tail.next = myNode;
tail = myNode;

}
xc.txnotify();

}
}
public Object consume() {

Node node;
txcommatomic {

if (head != null) {
// queue is not empty, do the dequeue
node = head;
if (head.next == null) {

// dequeuing last node
head = tail = null

} else {
head = head.next;

}
return node.data;

} else {
xc.txwait();

}
}

}
}
class Node {

txcomm Object data;
txcomm Node next;
public Node(Object data) {

this.data = data;
}

}

Figure 3. xCondition-based producer-consumer queue

A producer-consumer queue Producer-consumer queues
are used widely in concurrent applications. In our earlier
work on communicators [9], we showed how to implement
a producer-consumer queue communicator using read-write
communicators (i.e., thetxcomm fields). However, in that
implementation, a consumer waiting for an item to be pro-
duced simply “spun” until the queue was nonempty, so the
consumer could claim the item. A transactional producer-
consumer queue can be implemented with theretry con-
struct. However, that would preclude communication idioms
such as the one illustrated in Figure 1.

Figure 3 depicts the newxCondition-based producer-
consumer queue. Note that the queue fieldshead and tail,
and the queue node fieldsdata andnext are all designated
as communicators because all the producer and consumer
transactions read and write these fields. Both the produc-
ers and consumers access these fields in atxcommatomic

block. A consumer callstxwait when it finds the queue to
be empty. As per our semantics, callingtxwait essentially
aborts the the consumer’stxcommatomic block, and forces
it to wait for a notification. A producer always sends a noti-
fication (to some waiter, if there is any) whenever it adds a
new node to the queue.



// a producer-consumer queue used by the client and database
// transactions to communicate with each other
ProducerConsumerQueue pc;

// client side transaction
//
atomic {

// some computation
...
// post a request
pc.produce(myRequest);

txcommatomic {
// myRequest.response is a txcomm field
if (myRequest.response == null) {

// wait for the response to show up
myRequest.condvar.txwait();

}
}

// more computation based on the response
...

}

// database side transaction
//
atomic {

// wait for a client request
clntRequest = pc.consume();
// process the request
localResponse = process(clntRequest);
txcommatomic {

clntRequest.response = localResponse;
clntRequest.condvar.txnotify();

}
}

Figure 4. UsingxConditions and communicators to enable
interaction between the client and database transactions.
Revisiting the client-database transaction application Build-
ing on the producer-consumer data structure just presented,
we now present a solution to the example application from
Figure 1. Recall that the application consists of a client trans-
action that collaborates with a concurrent database trans-
action to process a request atomically. A client transac-
tion creates a request and posts it in a producer-consumer
queue. A database transaction gets a client’s request from
the producer-consumer queue, processes it, and posts a re-
sponse for the client transaction’s consumption. The client
transaction gets the response and may process it further. All
this computation must happen atomically. Figure 4 depicts
the high level pseudo code of the client and database transac-
tions. The client (first half of Figure 4) posts its request ina
shared producer-consumer queue, and uses atxcommatomic

block, along with aTxCondVar, to wait for a response from
the database transaction. The database transaction (second
half of Figure 4) gets a request from the producer-consumer
queue, and waits for one, using the queue’sTxCondVar, if it
needs to. It then processes the request, and posts a response,
which includes sending a notification on the request’sTx-

CondVar. The mutual dependencies generated between the
two transactions force them to commit or abort together as a
super-transaction.

Logging error conditions Error logging is a very useful
tool for postmortem analysis of program execution. By “er-
ror” we do not mean a program error that must be avoided at
run time. Instead, the errors we refer to here are legitimate

// transaction performing real work
atomic {

// do some work
if (error) {

sendError(errorDescription);
waitForResponse();
// undo some work

}
}

// transaction doing the error logging
atomic {

errorDescription = waitForLoggingRequest();
logErrorInLocalBuffer(errorDescription);
notifyRequester();

}

Figure 5. Error condition reporting example. The upper half
shows a transaction performing real work that reaches an
error condition, which needs to be logged for postmortem
analysis.sendError uses a CIT and communicators (em-
bedded inerrorDescription) to send the error description to
the logger transaction. The communication from the worker
transaction to the logger transaction can happen either us-
ing a producer-consumer queue as in the previous example,
or using a dedicated channel between the worker transaction
and the logger transaction.waitForResponse uses a CIT to
wait on axCondition that is used by the logger transaction
to notify the waiter once it completes the logging (lower half
of the pseudo code). We omit details because of space re-
strictions.

program states that need to be recorded by the application
in a special way. For example, compilation errors generated
when a compiler compiles a program, or logging of bank
account overdrafts in a banking transaction (which might re-
quire rolling back of some program state in case overdrafts
are prohibited for the bank account).

Programs that support error logging are sometimes con-
figured in such a way that errors are logged by specialised
logger threads, which need to be informed about error con-
ditions by threads that perform real work [2]. Figure 5 il-
lustrates an example transaction that does some work, then
reaches an error condition, reports the error to a logger
thread, waits for the logger thread to finish its logging, and
then may need to “undo” some (not all) of the changes it
made that may have lead to the error. Note that simply abort-
ing the transaction is not desirable here because we would
like to preserve some of its effects in spite of the error con-
dition. Furthermore, the “partial undo” of the transactionis
required to happen in the same transaction in order to pre-
serve program invariants.

Both the described applications are impossible to code us-
ing theretry construct because it has the effect of the retry-
ing transaction not executing at all (hence no request gen-
erated by the client or worker transaction in the first place).
Furthermore, the punctuated transactions approach is prob-
lematic because waiting commits the part of the enclosing
transaction completed so far, thus breaking the transaction
into “transaction fragments”, the collection of which are no
longer guaranteed to execute as a single atomic unit (as was



orignally intended by the programmer). This may break pro-
gram invariants in arbitrary ways, and re-enforcing them
may be a non-trivial endeavour.xConditions and communi-
cators provide a very convenient solution to both problems.

5. Implementation
We added support forxCondition in our transaction com-
municators framework that was implemented in the Max-
ine VM [9]. Briefly, transaction communicators were inte-
grated in an STM that follows earlier STM implementations
for managed-code environments [1, 6]. The STM does ob-
ject level locking and conflict detection, and field level log-
ging. Reads are invisible. Writes happen in place. Transac-
tions maintain read, write and undo sets. The STM is imple-
mented as a library, and not integrated with Maxine’s com-
piler, and hence users must manually add instrumentation for
transactional operations. For simplicity, we only supportflat
nesting of transactions, except for communicator-isolating
transactions nested within ordinary transactions.

Communicators are implemented as wrapper classes
around primitive types. Thus, the programmer can use com-
municators as individual fields in Java classes. CITs are
implemented as closed nested transactions inside ordinary
transactions. In addition to the typical locking/logging/valid-
ation/etc. operations on ordinary memory accesses, CITs
also perform similar operations on communicators, via spe-
cial getter and setter methods. Although implemented in a
closed nested fashion, when they commit, CITs release own-
ership of all the communicators they accessed. This enables
them to expose their effects on communicators even when
the enclosing transaction is still active. The enclosing trans-
action however inherits the read and write “communicator-
sets” of a committed CIT so as to be able to perform vali-
dation and roll back in case the enclosing transaction aborts.
As CITs access communicators they build the dependency
list of active transactions’ whose effects on communicators
were observed. This dependency list is transitively used by
the outermost transaction in its 2-phase commit protocol to
ensure that transactions respect all the dependencies, includ-
ing the cyclic ones. For more details see [9].

We implemented thexCondition as a Java class with
the aforementioned methods. We also leveraged the existing
Java monitors API in the implementation oftxwait, txnotify,
and txnotifyAll. A call to txwait aborts the enclosing CIT
(recall thatxConditions can be accessed only within CITs)
and forces the caller thread to wait on the targetxCondition

(done by callingObject.wait). Before waiting, the waiter
also adds itself to a wait list inside thexCondition. The
notifier uses this wait list to pick a waiter to notify. But
before sending the notification, the notifier adds itself to
the waiter’s dependency list3. If the waiter happens to call

3 This is the same dependency list that is used to enforce dependencies be-
tween communicator accessing transactions. Hence no more additions were
required in the implementation to enforce the waiter-notifier dependencies.

txwait again, the last notification it received is forwarded to
another concurrent waiter (see below). The corresponding
dependency is also discarded. Note thattxnotifyAll simply
appliestxnotify on all the waiters.

While it is still waiting, if the waiter becomes doomed
to abort because a concurrent transaction conflicts with the
waiter, it is woken up by the transaction (using a Java mon-
itor notification). On waking up, the waiter revalidates itself
to check if it must abort. If so, it aborts. If not, it goes back
to wait on the samexCondition it was originally waiting on.
Here the waiter has to be able distinguish between a notifi-
cation received by a notifier and a notification received by a
conflicting writer. This distinction is made by using a flag,
called thewaitFlag, in the waiter’s descriptor. This flag is
set by the waiter just before it waits on anxCondition, and is
reset by the notifier during the notification. Thus, the waiter,
when it is woken up, simply needs to check itswaitFlag in
order to determine if it was notified by a notifier.

As suggested in Section 3, in the event of aborting wait-
ers, we need to be able to forward notifications (and estab-
lish corresponding dependencies) correctly. To do just that,
we added a version number,version, to eachxCondition,
which is incremented during atxwait call. Each waiter logs
all thexConditions (and their correspondingversions) it has
waited on in itsxCondition-list. In addition, each node in
the xCondition-list also contains another version called the
notifyVersion which indicates theversion of the correspond-
ing xCondition at the time the waiter received its notifica-
tion. The idea here to to snapshot the “notification time”,
which is used in the notification forwarding process to de-
termine if there exists a waiter that was waiting when the
notification was originally delivered to the aborted waiter. If
there were such waiters, the notification is forwarded to one
of them. If there are no such waiters, the notification is (cor-
rectly) dropped. Notification forwarding comprises making
the new waiter dependent on the original notifier, and explic-
itly notifying (via Java’snotify call) the waiter.

6. Conclusion
In this paper we have presented a new way of doing condi-
tion synchronization between concurrent transactions that,
instead of aborting or committing the waiting transaction
as in prior proposals, enforces dependencies between waiter
and notifier transactions – waiters always end up depending
on notifiers. The dependency relation being transitive, circu-
lar dependencies can form, and force the participant transac-
tions to commit or abort together. Our illustrative examples
demonstrate that our condition variable, thexCondition, can
be used very effectively, in conjunction with communica-
tors, to help programmers easily express programming id-
ioms that require synchronous communication between con-
current transactions, a feature that prior proposals did not
provide.



References
[1] A.-R. Adl-Tabatabai, B. T. Lewis, V. Menon, B. R. Murphy,

B. Saha, and T. Shpeisman. Compiler and runtime support for
efficient software transactional memory. InProceedings of
the ACM SIGPLAN Conference on Programming Language
Design and Implementation, pages 26–37, 2006.

[2] H.-J. Boehm. Transactional memory should be an implemen-
tation technique, not a programming interface. InProceedings
of the 1st USENIX Workshop on Hot Topics in Parallelism,
2009.

[3] P. Dudnik and M. M. Swift. Condition variables and trans-
actional memory: Problem or opportunity? InProceedings of
the 4th ACM SIGPLAN Workshop on Transactional Comput-
ing, 2009.

[4] T. Harris and K. Fraser. Language support for lightweight
transactions. InProceedings of the 18th Annual ACM SIG-
PLAN Conference on Object-Oriented Programing, Systems,
Languages, and Applications, pages 388–402, 2003.

[5] T. Harris, S. Marlow, S. Peyton-Jones, and M. Herlihy. Com-
posable memory transactions. InProceedings of the 10th
ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming, pages 48–60, 2005.

[6] T. Harris, M. Plesko, A. Shinnar, and D. Tarditi. Optimizing
memory transactions. InACM SIGPLAN 2006 Conference on
Programming Language Design and Implementation, pages
14–25, June 2006.

[7] C. A. R. Hoare. Monitors: an operating system structuring
concept.Communications of the ACM, 17:549–557, October
1974.

[8] B. W. Lampson and D. D. Redell. Experience with pro-
cesses and monitors in Mesa.Communications of the ACM,
23(2):105–117, Feb. 1980.

[9] V. Luchangco and V. J. Marathe. Transaction communica-
tors: Enabling cooperation among concurrent transactions. In
Proceedings of the 16th ACM Symposium on Principles and
Practice of Parallel Programming, pages 169–178, 2011.

[10] Y. Smaragdakis, A. Kay, R. Behrends, and M. Young. Trans-
actions with isolation and cooperation. InProceedings of
the 22nd Annual ACM SIGPLAN Conference on Object Ori-
ented Programming Systems and Applications, pages 191–
210, 2007.


