
Oracle Labs

ACM OOPSLA Conference
October 22, 2021

Guy L. Steele Jr.

LXM: Better Splittable Pseudorandom 
Number Generators (and Almost as Fast)

Università degli Studi di Milano
Sebastiano Vigna



Copyright © 2021, Oracle and/or its affiliates2

Copyright © 2021 Oracle and/or its affiliates (“Oracle”). All rights are reserved by Oracle except
as expressly stated as follows. Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted, provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this notice and the full citation on the first
page. To copy otherwise, or republish, to post on servers, or to redistribute to lists, requires prior
specific written permission of Oracle.



Copyright © 2021, Oracle and/or its affiliates3

What Do We Want From a Pseudorandom Number Generator (PRNG)?

Many decades ago:
• A stream of floating-point values drawn uniformly from [0.0, 1.0),

approximated by drawing uniformly from the set { k/p | 0 ≤ k < p }
• It was considered okay if the low-order bits were “not very random”

Now:
• A stream of floating-point values drawn uniformly from [0.0, 1.0)

(as above, but we expect p to be much, much larger)
or a stream of w-bit integers drawn uniformly from [0, 2w)

(we expect all bits of each integer to be “equally random”)



Copyright © 2021, Oracle and/or its affiliates4

What Do We Want From a Pseudorandom Number Generator (PRNG)?

What else has changed?
• Moore’s Law: computers are much faster now
• Applications can draw many more numbers
• A PRNG that repeats its sequence after 232 values is not okay
• In fact, repeating after 264 values is not that great

• PRNG test suites are much more discriminating
• We now routinely test trillions of generated values,

rather than millions, looking for subtle statistical anomalies
• Parallelism (either SIMD or multithreading)
• Not just one generator: dozens, or millions



Copyright © 2021, Oracle and/or its affiliates5

Basic Structure of a Pseudorandom Number Generator (PRNG)

state
transition
function

state

output
function



Copyright © 2021, Oracle and/or its affiliates6

Mathematical Description

f

s

g

s1, s2, s3, …

t1, t2, t3, …

tk = g(sk)sk = f (sk−1)initial state s0

• The sequence of states is a cycle.
• Smallest k for which sk = s0 is 

called the period of the generator.• We assume f is bijective.



s1, s2, s3, …

Copyright © 2021, Oracle and/or its affiliates7

Slight Adjustment (Engineering Hack)

f

s

g t0, t1, t2, …

• This way f and g can be 
computed in parallel.

tk = g(sk)sk = f (sk−1)initial state s0



Copyright © 2021, Oracle and/or its affiliates8

Linear Congruential PRNG with Prime Modulus

(m×s) mod p

s
divide
by p

t0, t1, t2, …

• That’s a floating-point divide, 
producing a value in [0.0, 1.0).

• Division is expensive.

Given integer state s, modulus p, and multiplier m:

• Must choose s0, p, and m carefully.
• Typically p is prime.



Copyright © 2021, Oracle and/or its affiliates9

Linear Congruential PRNG with Power-of-Two Modulus

(m×s) mod 2k
s

k

k

Use k bits of state, modulus 2k, and odd multiplier m:

• Pretty good when k ≥ 2w.
• When k = w, low bits have small period.
• Overall period cannot be larger than 2k−2.

keep
high
bits

t0, t1, t2, …
w

• “keep high bits” is fast.
• Converting a bit string 

to floating-point is fast.



Copyright © 2021, Oracle and/or its affiliates10

Fiull-Period Linear Congruential PRNG with Power-of-Two Modulus

(m×s + a) mod 2k
s

keep
high
bits

t0, t1, t2, …a

k

k

w

Introduce odd additive parameter a; require (m mod 8) = 5:

• Generates all 2w values, even when k = w.
• Exactly equidistributed.
• But low-order bits still have low period.

• Now period is 2k.



Copyright © 2021, Oracle and/or its affiliates11

Parallel Streams?

(m×s + a) mod 2k
s

keep
high
bits

t0, t1, t2, …a

k

k

w

Idea: use a to provide independent parallel streams:

• Create many instances, each with a 
different value for a.

• Each parallel thread uses its own instance.



Copyright © 2021, Oracle and/or its affiliates12

One Big State Cycle versus Many Smaller State Cycles

T1 T2

T3 T4

T1

T2

T3

T4



Copyright © 2021, Oracle and/or its affiliates13

Parallel Streams?

(m×s + a) mod 2k
s

keep
high
bits

t0, t1, t2, …a

k

k

w

FAIL!

• Theorem: for any a and aʹ there exist constants i and r such that 
for all j, tʹj = (tj+i + r) mod 2k.

• In visual terms: changing a doesn’t change the shape of the 
graph that plots of tj versus j; it only translates it.



Copyright © 2021, Oracle and/or its affiliates14

Different Structures Produce Equivalent Streams

(m×s + a) mod 2k
s

keep
high
bits

t0, t1, t2, …a

k

k

w

(m×s + 1) mod 2k
s

keep
high
bits

t0, t1, t2, …

rk

w
+



w

Copyright © 2021, Oracle and/or its affiliates15

Improving the Output Function

(m×s + a) mod 2k
s

keep
high
bits

a

k

k

w

• Works great for parallel threads!
• Solves problem of low-period bits.
• But period is still only 2k.

Add a nonlinear hashing function:

hash

• The hash function 
(“bit mixer”)
should have good 
avalanche statistics.



Copyright © 2021, Oracle and/or its affiliates16

Getting a Large Period without Quadratic Cost

Ux

x
n

n

Alternate approach: F2-linear (“XOR-based”) generators.

• State vector is n bits; multiply 
by fixed n×n bit matrix U.

• Overall period can be as large 
as 2n−1 (x is never all-zeroes).

keep
high
bits

y0, y1, y2, …
w

• Output is (n/w)-equidistributed.
• Choosing U carefully allows 

constant-time execution using 
w-bit SHIFT/ROTATE/XOR instructions.



Copyright © 2021, Oracle and/or its affiliates17

Once Again, a Hash Function Helps

Ux

x
n

n

Alternate approach: F2-linear generators.

• These also have weaknesses,
but adding a hash function works.

keep
high
bits

ww
hash



Copyright © 2021, Oracle and/or its affiliates18

Compound PRNG Algorithm

(m×s + a) mod 2k
s

keep
high
bits

a

k

k

w

• “if the numbers are not random, they are at least higgledy piggledy”

Ux

x
n

n

keep
high
bits

w • Period is 2k(2n−1).
• Equidistributed.
• Slightly weak. 

+



Copyright © 2021, Oracle and/or its affiliates19

The LXM Algorithm (Ta-da!)

(m×s + a) mod 2k
s

keep
high
bits

a

k

k

w

Ux

x
n

n

keep
high
bits

w

+ w
hash

• Success! (?)

Linear Congruential Generator

XOR-Based Generator

Mixer



Copyright © 2021, Oracle and/or its affiliates20

Deployment

• Specific Java implementations of this algorithm are now in JDK17
• Part of a larger API design that includes a new RandomGenerator interface
• Easier for new PRNG algorithms to be created
• Easier for applications to switch among PRNG algorithms
• Also includes versions of the XOR-based xoroshiro and xoshoro algorithms



Copyright © 2021, Oracle and/or its affiliates21

Wait—What Makes LXM “Splittable”?

• The idea is that one can use an instance of the algorithm
to create (the state for) a new one that is statistically independent
(this is a generalization of the well-known idea of jumping
to a randomly chosen point within in a single state cycle)

• This idea was appeared in the SPLITMIX algorithm (OOPSLA 2014)
• Just generate new state data “at random”—but this was derived

by stepwise refinement of the DOTMIX algorithm (PPoPP 2012)
• Then reject certain state configurations known to be weak
• Deployed as Java class SplittableRandom in JDK8
• Unfortunately, other configurations also turned out to be weak

• LXM also splits by creating new instances ”at random”
• But we have good theoretical and empirical reasons to believe

that there are no weak configurations (we could be wrong)



Copyright © 2021, Oracle and/or its affiliates22

Other Strengths of the LXM Algorithm

• Thanks to the Linear Congruential Generator:
• The w-bit results are exactly equidistributed (period is a multiple of 2w)
• Additive parameter a makes it easy to provide independent parallel streams
• Greatly improves the tuple equidistribution of the XBG

• Thanks to the XOR-Based Generator:
• Period can be made very large without a large speed penalty
• If XBG (n/w)-tuples are equidistributed, so are the LXM (n/w)-tuples

• Thanks to the Mixing function:
• Eliminates linear artifacts, especially low-period low-order bits
• Crucial to independent parallel streams: in effect, a selects the hash function

A simple, even incremental idea, but apparently not in the prior literature.
We’ve seen many combinations of two of these elements before, but not all three.



Copyright © 2021, Oracle and/or its affiliates23

Contributions of This Paper

• Explaining why these specific components were chosen
and why they should be combined in a specific way

• Analyzing certain properties of the combination
• Period
• Equidistribution
• Probability of “accidental” correlations

• Comparing this algorithmic structure to prior work
• See PRNG history in §1 and Related Work in §11 of the paper.

• Extensive quality testing (using TestU01 and PractRand test suites)
• Studies of scaling
• Testing up to 224 parallel streams, using various splitting strategies
• Testing very small versions of the algorithm (48 bits of state)

• Timing tests (LXM is indeed “almost as fast” as SPLITMIX)


