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What Do We Want From a Pseudorandom Number Generator (PRNG)?

Many decades ago:
• A stream of floating-point values drawn uniformly from [0.0, 1.0),

approximated by drawing uniformly from the set { k/p | 0 ≤ k < p }
• It was considered okay if the low-order bits were “not very random”

Now:
• A stream of floating-point values drawn uniformly from [0.0, 1.0)

(as above, but we expect p to be much, much larger)
or a stream of w-bit integers drawn uniformly from [0, 2w)

(we expect all bits of each integer to be “equally random”)
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What Do We Want From a Pseudorandom Number Generator (PRNG)?

What else has changed?
• Moore’s Law: computers are much faster now
• Applications can draw many more numbers
• A PRNG that repeats its sequence after 232 values is not okay
• In fact, repeating after 264 values is not that great

• PRNG test suites are much more discriminating
• We now routinely test trillions of generated values,

rather than millions, looking for subtle statistical anomalies
• Parallelism (either SIMD or multithreading)
• Not just one generator: dozens, or millions
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Basic Structure of a Pseudorandom Number Generator (PRNG)

state
transition
function

state

output
function
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Mathematical Description

f

s

g

s1, s2, s3, …

t1, t2, t3, …

tk = g(sk)sk = f (sk−1)initial state s0

• The sequence of states is a cycle.
• Smallest k for which sk = s0 is 

called the period of the generator.• We assume f is bijective.



s1, s2, s3, …
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Slight Adjustment (Engineering Hack)

f

s

g t0, t1, t2, …

• This way f and g can be 
computed in parallel.

tk = g(sk)sk = f (sk−1)initial state s0
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Linear Congruential PRNG with Prime Modulus

(m×s) mod p

s
divide
by p

t0, t1, t2, …

• That’s a floating-point divide, 
producing a value in [0.0, 1.0).

• Division is expensive.

Given integer state s, modulus p, and multiplier m:

• Must choose s0, p, and m carefully.
• Typically p is prime.
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Linear Congruential PRNG with Power-of-Two Modulus

(m×s) mod 2k
s

k

k

Use k bits of state, modulus 2k, and odd multiplier m:

• Pretty good when k ≥ 2w.
• When k = w, low bits have small period.
• Overall period cannot be larger than 2k−2.

keep
high
bits

t0, t1, t2, …
w

• “keep high bits” is fast.
• Converting a bit string 

to floating-point is fast.
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Fiull-Period Linear Congruential PRNG with Power-of-Two Modulus

(m×s + a) mod 2k
s

keep
high
bits

t0, t1, t2, …a

k

k

w

Introduce odd additive parameter a; require (m mod 8) = 5:

• Generates all 2w values, even when k = w.
• Exactly equidistributed.
• But low-order bits still have low period.

• Now period is 2k.
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Parallel Streams?

(m×s + a) mod 2k
s

keep
high
bits

t0, t1, t2, …a

k

k

w

Idea: use a to provide independent parallel streams:

• Create many instances, each with a 
different value for a.

• Each parallel thread uses its own instance.
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One Big State Cycle versus Many Smaller State Cycles

T1 T2

T3 T4

T1

T2

T3

T4
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Parallel Streams?

(m×s + a) mod 2k
s

keep
high
bits

t0, t1, t2, …a

k

k

w

FAIL!

• Theorem: for any a and aʹ there exist constants i and r such that 
for all j, tʹj = (tj+i + r) mod 2k.

• In visual terms: changing a doesn’t change the shape of the 
graph that plots of tj versus j; it only translates it.
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Different Structures Produce Equivalent Streams

(m×s + a) mod 2k
s

keep
high
bits

t0, t1, t2, …a

k

k

w

(m×s + 1) mod 2k
s

keep
high
bits

t0, t1, t2, …

rk

w
+



w
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Improving the Output Function

(m×s + a) mod 2k
s

keep
high
bits

a

k

k

w

• Works great for parallel threads!
• Solves problem of low-period bits.
• But period is still only 2k.

Add a nonlinear hashing function:

hash

• The hash function 
(“bit mixer”)
should have good 
avalanche statistics.
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Getting a Large Period without Quadratic Cost

Ux

x
n

n

Alternate approach: F2-linear (“XOR-based”) generators.

• State vector is n bits; multiply 
by fixed n×n bit matrix U.

• Overall period can be as large 
as 2n−1 (x is never all-zeroes).

keep
high
bits

y0, y1, y2, …
w

• Output is (n/w)-equidistributed.
• Choosing U carefully allows 

constant-time execution using 
w-bit SHIFT/ROTATE/XOR instructions.
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Once Again, a Hash Function Helps

Ux

x
n

n

Alternate approach: F2-linear generators.

• These also have weaknesses,
but adding a hash function works.

keep
high
bits

ww
hash
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Compound PRNG Algorithm

(m×s + a) mod 2k
s

keep
high
bits

a

k

k

w

• “if the numbers are not random, they are at least higgledy piggledy”

Ux

x
n

n

keep
high
bits

w • Period is 2k(2n−1).
• Equidistributed.
• Slightly weak. 

+
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The LXM Algorithm (Ta-da!)

(m×s + a) mod 2k
s

keep
high
bits

a

k

k

w

Ux

x
n

n

keep
high
bits

w

+ w
hash

• Success! (?)

Linear Congruential Generator

XOR-Based Generator

Mixer
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Deployment

• Specific Java implementations of this algorithm are now in JDK17
• Part of a larger API design that includes a new RandomGenerator interface
• Easier for new PRNG algorithms to be created
• Easier for applications to switch among PRNG algorithms
• Also includes versions of the XOR-based xoroshiro and xoshoro algorithms
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Wait—What Makes LXM “Splittable”?

• The idea is that one can use an instance of the algorithm
to create (the state for) a new one that is statistically independent
(this is a generalization of the well-known idea of jumping
to a randomly chosen point within in a single state cycle)

• This idea was appeared in the SPLITMIX algorithm (OOPSLA 2014)
• Just generate new state data “at random”—but this was derived

by stepwise refinement of the DOTMIX algorithm (PPoPP 2012)
• Then reject certain state configurations known to be weak
• Deployed as Java class SplittableRandom in JDK8
• Unfortunately, other configurations also turned out to be weak

• LXM also splits by creating new instances ”at random”
• But we have good theoretical and empirical reasons to believe

that there are no weak configurations (we could be wrong)
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Other Strengths of the LXM Algorithm

• Thanks to the Linear Congruential Generator:
• The w-bit results are exactly equidistributed (period is a multiple of 2w)
• Additive parameter a makes it easy to provide independent parallel streams
• Greatly improves the tuple equidistribution of the XBG

• Thanks to the XOR-Based Generator:
• Period can be made very large without a large speed penalty
• If XBG (n/w)-tuples are equidistributed, so are the LXM (n/w)-tuples

• Thanks to the Mixing function:
• Eliminates linear artifacts, especially low-period low-order bits
• Crucial to independent parallel streams: in effect, a selects the hash function

A simple, even incremental idea, but apparently not in the prior literature.
We’ve seen many combinations of two of these elements before, but not all three.
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Contributions of This Paper

• Explaining why these specific components were chosen
and why they should be combined in a specific way

• Analyzing certain properties of the combination
• Period
• Equidistribution
• Probability of “accidental” correlations

• Comparing this algorithmic structure to prior work
• See PRNG history in §1 and Related Work in §11 of the paper.

• Extensive quality testing (using TestU01 and PractRand test suites)
• Studies of scaling
• Testing up to 224 parallel streams, using various splitting strategies
• Testing very small versions of the algorithm (48 bits of state)

• Timing tests (LXM is indeed “almost as fast” as SPLITMIX)


