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Abstract
Deoptimization enables speculative compiler optimizations,
which are an essential part in nearly every high-performance
virtual machine (VM). But it comes with a cost: a separate
first-tier interpreter or baseline compiler in addition to the
optimizing compiler. Because such a first-tier execution uses
a fixed stack frame layout, this affects all VM components
that need to walk the stack. We propose to use the optimizing
compiler also to compile deoptimization target code, i.e., the
non-speculative code where execution continues after a de-
optimization. Deoptimization entry points are described with
the same scope descriptors used to describe the origin of the
deoptimization, i.e., deoptimization is a two-way matching
of two scope descriptors describing the same abstract frame.
We use this deoptimization approach in a high-performance
JavaScript VM written in Java. It strictly uses a one-compiler
approach, i.e., all frames on the stack (VM runtime, first-tier
execution in an JavaScript AST interpreter, dynamic compi-
lation, deoptimization entry points) originate from the same
compiler. Code with deoptimization entry points generated
by the optimizing compiler imposes a much smaller over-
head than a traditional first-tier execution.

Categories and Subject Descriptors D.3.4 [Programming
Languages]: Processors—Run-time environments

Keywords Java; JavaScript; deoptimization; optimization;
virtual machine; language implementation

1. Introduction
Speculative optimizations are a key ingredient to achieve
high performance when executing managed languages such
as Java or JavaScript. The optimizing compiler speculates
based on profiling feedback collected by a lower execu-
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tion tier, e.g., incorporates type profiles or assumes that cer-
tain hard-to-optimize conditions do not occur. If the spec-
ulation was too aggressive, deoptimization is used to revert
back to the first execution tier. Such adaptive optimization
and deoptimization was first implemented for the SELF lan-
guage [17], and is now used by most high-performance VMs
such as the Java HotSpot VM or the V8 JavaScript VM.

A multi-tier optimization system increases the implemen-
tation and maintenance costs for a VM: In addition to the
optimizing compiler, a separate first-tier execution system
must be implemented [1, 3, 15]. The first tier is usually ei-
ther an interpreter or a baseline compiler, i.e., a compiler
that only assembles prepared patterns of machine code. Both
interpreters and baseline compilers use a fixed layout for
stack frames, i.e., each local variable of a source method
has a known position in the stack frame. The deoptimization
handler writes to these known locations without the need
for method-specific metadata generated by the interpreter or
baseline compiler. In contrast, the stack frame layout gen-
erated by optimizing compilers uses spill slots and regis-
ters allocated by the register allocator. The compiler gener-
ates metadata for every possible deoptimization origin point,
which is used by the deoptimization handler to read values.

Implementing and optimizing an interpreter or baseline
compiler is far from trivial [21], even though their com-
plexity is lower than the complexity of an optimizing com-
piler. Multiple execution environments need to be main-
tained and ported to new architectures In addition, they com-
plicate many other parts of the VM because they have to deal
with multiple layouts of stack frames: stack walking (for ex-
ample computing the stack frame size), collection of root
pointers for garbage collection (for example using an ab-
stract interpretation of bytecodes), exception handling (for
example interpreting the exception handler metadata of the
bytecodes), and debugging tools.

We propose a VM architecture that uses only one com-
piler for all execution tiers. Such an architecture is feasible
if: 1) start-up performance and therefore fast first-tier compi-
lation times are not important because applications are long-
running; 2) if the one compiler can be configured for vari-
ous optimization levels and offers an “economy” mode with
all expensive optimizations disabled; or 3) if the one com-
piler can also run ahead-of-time at build or installation time
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of the application. Our case study in this paper uses ahead-
of-time compilation, however the idea of deoptimization to
code generated by an optimizing compiler is general and not
limited to this case study.

With only a single compiler, deoptimization targets are
also optimized stack frames. Instead of relying on a fixed
layout of the frame, the compiler needs to generate metadata
for the deoptimization target code. We propose to use the
same metadata format also used for deoptimization origins.
The deoptimization handler reads and writes stack frames
whose layout is described by the same compiler in the same
metadata format. This aligns with our goal of reducing the
complexity of the VM and avoiding duplication of function-
ality.

This paper outlines the general approach of deoptimiza-
tion to optimized code, and discusses which compiler opti-
mizations are suitable for deoptimization target code. To the
best of our knowledge, this is the first system that allows
deoptimization to optimized code, with the notable excep-
tion of the Jikes RVM [11]. The deoptimization approach
of the Jikes RVM, based on a generalization of on-stack-
replacement, allows deoptimization to code generated by the
optimizing compiler of Jikes. But because the approach re-
quires the compilation to be performed at the time of deopti-
mization, we argue that it is infeasible to use anything other
than baseline compiled code as the deoptimization target in
the Jikes RVM.

In summary, this paper contributes the following:

• We present a novel way to implement deoptimization,
where the deoptimization target code is generated by the
same optimizing compiler that also generates the deopti-
mization origin code.

• We show which compiler optimizations can still be per-
formed when compiling the deoptimization target code.

• We use and evaluate the new deoptimization approach in
a high-performance JavaScript VM written in Java that
strictly adheres to the one-compiler design paradigm.

2. Deoptimization to Optimized Code
In the seminal first paper about deoptimization [17], de-
optimization replaces stack frames of optimized code with
frames of unoptimized code. Because of method inlining,
one optimized frame can be replaced with many unopti-
mized frames. This usually increases the size needed for the
frames on the stack. Therefore, lazy deoptimization is neces-
sary: When a method is marked as deoptimized, the stacks
of all threads are scanned for affected optimized frames. The
return address that would return to the optimized code is
patched to instead return to the deoptimization handler. At
the time the deoptimization handler runs, the frame to be de-
optimized is at the top of the stack and can be replaced with
larger unoptimized frames.

The optimizing compiler creates metadata, called scope
descriptors, for all possible deoptimization origin points. A
scope descriptor specifies 1) the method, 2) the virtual pro-
gram counter, i.e., the execution point in the method, 3) all
values that are live at that point in the method (typically
local variables and expression stack entries), and 4) a ref-
erence to the scope descriptor of the caller method, which
forms a linked list of scope descriptors when the optimizing
compiler performed method inlining. A value can either be
a constant, a stack slot, or a register. For each scope descrip-
tor of the inlining chain, the deoptimization handler creates
a target stack frame and fills it with the values described in
the scope descriptor and puts it on the stack. Unoptimized
frames have a fixed layout, i.e., values are consecutive on
the stack. Execution continues at the top of the newly writ-
ten frames.

In [17] and all subsequent systems we are aware of, the
deoptimization target is the first tier of an adaptive optimiza-
tion system: a bytecode interpreter or code generated by a
baseline compiler. Both have frames that fulfill the neces-
sary requirement of the deoptimization handler: stack frames
have a fixed layout that does not depend on the method that
is executed, i.e., values are consecutive on the stack.

Our simpler system consists of only one compiler that
can be configured for different optimization levels and ex-
ecution scenarios. Since an optimizing compiler is required
anyway to achieve excellent peak performance, it is desir-
able to use the same compiler also for the first execution
tier by disabling expensive optimizations. This deoptimiza-
tion target code uses the same stack frame layout as fully
optimized code, i.e., values are no longer consecutive on the
stack. Deoptimization needs to be adapted to this new target
frame layout. We call that deoptimization to optimized code
because the stack frame layout of the deoptimization target
code is the same as the stack frame layout of optimized code.
The remainder of this section shows how deoptimization can
be applied in this scenario, and which compiler optimiza-
tions are still allowed for deoptimization target code.

2.1 Matching of Scope Descriptors
Deoptimization entry points created by the optimizing com-
piler no longer have a fixed stack frame layout, so deopti-
mization entry points also need metadata about the location
of incoming values. This metadata is stored using the scope
descriptor format also used by deoptimization origin points.
The optimizing compiler already contains all logic to cre-
ate this information, which reduces the implementation and
maintenance costs.

The deoptimization handler now needs to perform a two-
way matching of scope descriptors: The layout of the origin
frame and the target frames are described using scope de-
scriptors that have a matching abstract method position, i.e.,
the same method at the same virtual program counter with
the same number of values. Iterating the values of both the
origin and target frame simultaneously yields the origin and
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Figure 1: Deoptimization to optimized code using matching
scope descriptors for the origin and target of deoptimization.

the target descriptor of a value. The deoptimization handler
copies each value from the origin to the target location. If the
target value is a constant, which can happen since the opti-
mizing compiler performs constant folding also for deopti-
mization entry points, then no value needs to be copied. The
deoptimization handler asserts that the origin value is the
same constant, i.e., that the optimizing compiler performed
the same constant folding also for the deoptimization origin.

Figure 1 illustrates the matching of scope descriptors.
The deoptimization origin is method foo at a point where
method bar is inlined. Two chained scope descriptors repre-
sent this state. The deoptimization handler replaces the de-
optimized frame with two new target frames. Each of these
frames has a scope descriptor without inlining. The virtual
program counters and number of values in the scope descrip-
tor are matching. In the method bar, two values are written
to the stack frames, in the stack slots 16 and 8. Target stack
slot 16 is filled from origin stack slot 24. These two stack
slots are highlighted in the figure. Target stack slot 8 is filled
with the string constant “a”, which is the result of more ag-
gressive constant folding in the optimized compilation due
to, e.g., the method inlining of bar into foo. In the method
foo, also two values are written to the stack frames even
though there are four scope values. The second scope value,
the constant 42, is the result of constant folding in the de-
optimization target method. The value correctly matches the
constant scope value in the deoptimization origin frame. The
third scope value is a local variable that is unused at the de-
optimization point, i.e., either not defined before the deopti-
mization point or not used after the deoptimization point. It
is ignored by the deoptimization handler.

Every value that is live in a deoptimization target frame
must be mentioned in the scope descriptor. Stack frame
slots that are not written by the deoptimization handler,
such as stack slot 24 in the target frame for method bar,
must be unused at the deoptimization point. This reduces
the optimization potential for deoptimization target code, but
does not prohibit all optimizations (see Section 2.5).

We want one deoptimization target method to be usable
for all possible deoptimization points of an origin method.

In other words, a deoptimization target method is a com-
pilation of the whole method, and not just the continuation
from a single deoptimization entry point. This avoids multi-
ple compilations of the same deoptimization target method,
and more importantly also allows ahead-of-time compilation
of the deoptimization target methods before an actual deop-
timization has happened. As a result, one deoptimization tar-
get method has many deoptimization entry points, i.e., many
points described by a scope descriptor.

To avoid a complex matching of inlined methods, the
scope descriptors for deoptimization entry points never have
inlined frames. One deoptimization origin frame that has
n methods inlined is always deoptimized to n deoptimized
frames that have no methods inlined. Note that this does
not preclude method inlining completely when compiling
deoptimization entry points (see Section 2.5).

Escape analysis performed by the compiler remove al-
locations and replaces fields of objects with scalar values.
During deoptimization, such objects need to be re-allocated.
Scope descriptors for deoptimization origin frames contain
all the necessary information for re-allocation (see for exam-
ple [18]). To avoid a complex matching of escape analyzed
objects, the scope descriptors for deoptimization entry points
never have virtual objects, i.e., escape analysis must be dis-
abled when compiling deoptimization target methods.

2.2 Deoptimization Entry Points in Optimized Code
Compiling deoptimization entry points using an optimized
compiler requires small compiler extensions. We present the
details for our Java optimizing compiler1. The deoptimiza-
tion approach itself is independent from the compiler, and
we believe deoptimization entry points can be easily added
to most optimizing compilers. For Java, the virtual program
counter of a scope descriptor is the bytecode index (bci).

The intermediate representation of our compiler is struc-
tured as a directed graph in static single assignment (SSA)
form [8]. Each IR node produces at most one value. To rep-
resent data flow, a node has input edges pointing to the nodes
that produce its operands. To represent control flow, a node
has successor edges pointing to its successors. In summary,
the IR graph is a superposition of two directed graphs: the
data-flow graph and the control-flow graph. This structure is
illustrated in Figure 2. Note that the two kinds of edges point
in opposite directions.

Nodes are not necessarily fixed to a specific point in the
control flow. The control-flow graph provides a backbone
around which most other nodes are floating. For example,
the Multiply node in Figure 2 is floating. These floating
nodes are only constrained by their data-flow edges, i.e., in-
put values as well as additional dependencies such as mem-
ory dependencies and guarding dependencies. The depen-
dencies maintain the program semantics but allow more free-
dom of movement for operations. The Java source code con-

1 Name of the compiler withheld for double-blind review.
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static int f;

static int foo(int x) {
int m = 2;
f = x * m;
int r = x * m;
return r;

}

IR Node

Control-flow Edge

Data-flow Edge

Param: x

StoreField: f State: foo@9

Start

Return

State: foo@0
Const: 2

Multiply

Figure 2: Example compiler IR graph.

tains two multiplications, but since their input operands are
equivalent only one Multiply node is created by the com-
piler.

Deoptimization requires knowing 1) where to continue
execution, and 2) how to reconstruct the machine state (stack
frame and registers) of the continuation point from the ma-
chine state of the optimized code. In order to know where
we want to continue, we keep a reference to the method and
the bci. For the VM state, we keep a mapping of the local
variables and operand stack slots to their values in the IR.
The information is maintained in a State node. Our com-
piler maintains a State node to store the new state after ev-
ery instruction that cannot be re-executed, e.g., every mem-
ory store, every method invocation, and every control flow
merge (see Section 2.3). In the example, the State node
referenced by the StoreField node provides the new state
to deoptimize to after changing memory. The example uses
three local variables, so every State node references three
input nodes. Local variables that are not yet assigned remain
uninitialized and are ignored during deoptimization. Note
that the entry points for deoptimization are compiler spe-
cific, and our deoptimization approach does not impose any
assumption or constraints about deoptimization points.

Figure 3 shows the compiler IR when the same method is
compiled with deoptimization entry points. A DeoptEntry

node represents an entry point. It references a State node
for the mapping of local variables. After IR graph building,
every state-changing node is followed by a DeoptEntry

node. Later compiler optimizations can separate these two
nodes or remove the state-changing node if it is unnecessary.
The DeoptEntry node must not be removed or moved by
the compiler.

Every value that is alive across a DeptEntry point must
be mentioned in the State node, i.e., must be a Java lo-
cal variable. Re-using the first Multiply node also for the
second multiplication is not allowed because it would intro-
duce a new value that is alive across the second DeoptEntry
point. To prevent such compiler optimizations, we wrap all
local variable values in a DeoptProxy node. All subsequent

IR Node

Control-flow Edge

Data-flow Edge

Param: x

StoreField: f State: foo@9

Start

Return

State: foo@0
Const: 2

Multiply

DeoptEntry

DeoptEntry

Multiply

DeoptProxy

DeoptProxy

Figure 3: Example compiler IR graph with deoptimization
entry points.

usages use the wrapped nodes. Therefore, the two Multiply
nodes have different input values and are no longer equiva-
lent from the compiler’s point of view. The DeoptEntry and
DeoptProxy nodes are inserted during IR graph building, to
avoid complicated rewrites of the graph.

2.3 Placement of Deoptimization Entry Points
The placement of deoptimization entry points depends on
the deoptimization strategy chosen by the execution environ-
ment. Two different strategies are possible. The deoptimiza-
tion approach presented works with both strategies, since the
placement of deoptimization entry points is the responsibil-
ity of the optimizing compiler.

1. Deoptimization restores the stack frame of execution ex-
actly at the virtual program counter of the instruction that
triggers deoptimization. For example, if deoptimization
happens at a field load where the null check was specula-
tively eliminated but then the object is null during exe-
cution of the optimized code, deoptimization restores the
state just before the field load. The deoptimization target
code immediately throws the NullPointerException.
DeoptEntry points need to be emitted for all instructions
that might deoptimize. The Java HotSpot server com-
piler [19], for example, uses this approach.

2. Deoptimization restores the stack frame after the last
state-changing instruction before the virtual program
counter of the instruction that triggers deoptimization.
For example, if deoptimization happens at the field load
mentioned before, deoptimization restores some state
before the field load. The deoptimization target code
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Figure 4: Deoptimization entry points for an invocation.

continues execution until it reaches the field load too,
and then throws the NullPointerException. A lim-
ited amount of code is executed twice, but there is no
behavior change. DeoptEntry points only need to be
emitted after all instructions that are not re-executable,
i.e., might change memory or produce outside-visible ef-
fects. These include memory writes, method invocations
(because the callee can perform state-changing instruc-
tions), and control flow merges (because the information
which predecessor execution was coming from is not
preserved).

We use the second deoptimization approach because it
allows more aggressive compiler optimizations: deoptimiza-
tion origins for, e.g., null checks or array bounds checks can
be grouped or hoisted out of loops. The example in Figure 3
has a deoptimization entry point after the StoreField node,
because the memory store cannot be re-executed.

2.4 Deoptimization Entry Points for Method
Invocations

In addition to explicit deoptimization entry points, method
calls are implicit entry points. If deoptimization happens
while the method is currently executed, i.e., while the
method invocation is on the stack, deoptimization needs to
restore the state of the deoptimization target during the in-
vocation. Both placement strategies mentioned above need
these during-invoke deoptimization entry points.

Our second deoptimization approach requires additional
entry points for every method invocation. If the deoptimiza-
tion origin is after a invoke, the deoptimization entry point
modeling the state during the invoke cannot be used since it
does not contain the return value. A third deoptimization en-
try point is necessary in the exception handler of the invoke.
It is used in case the callee throws an exception and the deop-
timization origin is in the exception handler. Figure 4 shows
the three deoptimization entry points for an example method
invocation. Since the virtual program counter for all three
entry points is the same, additional tags are necessary to dis-
tinguish the entry points. The tags d, a, e are shown in the
Figure 4 in the State nodes.

1. The tag d denotes the entry point during the invoke.
The state references all values that are live across the
invocation, including method parameters, but no return
value. When deoptimization happens, the stack frame for
our example method and the stack frame for the callee
method bar are on the stack.

2. The tag a denotes the entry point after the invoke. It has
one more value than the first state: the return value of the
method.

3. The tag e denotes the entry point in the exception handler
of the invoke. It has one more value than the first state: the
exception that was thrown by the callee. In our compiler
IR, every IR node represents the value it produced. Since
the Invoke node produces the normal method return
value, we need a separate Exception node to model the
exception value.

2.5 Compiler Optimizations for Deoptimization
Targets

When compiling deoptimization target methods, the opti-
mizing compiler can perform some but not all standard com-
piler optimizations. Example of optimizations that are al-
lowed are:

• All local optimizations between deoptimization entry
points. Such optimization do not affect the state and
therefore the scope descriptors. Example optimizations
are value numbering, common subexpression elimina-
tion, and strength reduction. For example, the multipli-
cation by 2 in Figure 3 can be replaced with a left-shift
by 1.

• All constant folding, even across deoptimization entry
points. Constant values are allowed in scope descriptors.
It does not matter if the constant is a literal constant in
the source, or is the result of constant folding by the
compiler. Constant values in the target scope descriptor
are supported during deoptimization (see Section 2.1).

• Register allocation.
• Removing values from the state of deoptimization entry

points, e.g., pruning of unused local variables. Such op-
timizations lead to uninitialized values in the scope de-
scriptor, which are ignored during deoptimization.

• Dead code elimination, including deletion of unreachable
deoptimization entry points, as long as the same or more
dead code elimination is performed in the deoptimization
origin code.

• Method inlining. However, no deoptimization entry points
must be emitted in the inlined methods. A separate com-
pilation is necessary where the inlined method is the root,
this time with deoptimization entry points. This ensures
that deoptimization target scope descriptors do not have
inlined frames. We believe inlined frames would make
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matching of origin descriptors to target descriptors too
complex.
Method inlining removes the method invocation instruc-
tion and therefore the implicit during-invoke deoptimiza-
tion entry point. Inlining must insert an explicit deop-
timization entry point with the same state as the origi-
nal invocation instruction. The new entry point must be
after all instructions of the inlined method. The deopti-
mization handler restores a separate stack frame for the
inlined method, i.e., the deoptimization entry point will
be reached via a method return. Therefore, the explicit
during-invoke deoptimization entry point must mimic
the calling convention of the original method invocation,
e.g., values must not use caller-saved registers.

Optimizations that are not allowed in deoptimization en-
try point are:

• Duplication of deoptimization entry points. The key for
the lookup of a particular deoptimization entry point in
the target method is the virtual program counter, plus the
tags for states at method invocations. Duplication of a de-
optimization entry point would lead to two entry points
with the same virtual program counter, i.e., the lookup
would no longer have a unique result. Many compiler op-
timization perform code duplication and are therefore not
allowed, for example, loop peeling, loop unrolling and
path duplication. We disable these optimizations man-
ually in our compiler when compiling a deoptimization
entry point.

• Optimizations that make new values alive across deop-
timization entry points, for example, value numbering
across deoptimization entry points. Such values would
not be mentioned in scope descriptors, because they are
not local variables of the original method. In the exam-
ple in Figure 3, value numbering is not performed for
the multiplication. Inserting proxy nodes as described in
Section 2.2 is sufficient to prevent such optimizations. It
is not necessary to disable optimizations such as global
value numbering completely.

• Escape analysis. Virtual representations of escape ana-
lyzed object allocations are not allowed at deoptimization
entry points. We believe that it would be too complex to
match escape analyzed objects of the origin method with
the matching escape analyzed objects of the deoptimiza-
tion target method.

• Speculative optimizations, i.e., all optimizations that rely
on deoptimization themselves. Deoptimization in deopti-
mization target code would replace a method with itself,
leading to an infinite deoptimization loop.

2.6 Implementation Details
This section presents details of our implementation that are
useful for implementers of our approach and to understand

the performance evaluation, but not an essential part or re-
striction of our approach.

For testing and debugging purposes, it is crucial to check
in the compiler that all values alive across deoptimization en-
try points are referenced in scope descriptors. Errors would
be difficult to identify in production: if a primitive integer
value is not correctly written by the deoptimization han-
dler, the application will continue without crashing but pro-
duce wrong results. We use an exhaustive check for this in
the back-end of the compiler. The register allocator already
builds lifetime intervals for all values, i.e., during register al-
location complete liveness information is already available
for free. For each deoptimization entry point, we check that
every value that is live, i.e., every value whose lifetime in-
terval crosses the deoptimization entry point, is mentioned
in the frame state (which is later converted to the scope de-
scriptor). At this point during compilation, it is still possible
to link the value back to the high-level compiler IR node that
produced the value, which greatly simplifies locating the of-
fending compiler optimization that introduced the compiler
IR node.

Our lazy deoptimization is split into two stages: The first
stage runs when frames are marked as deoptimized and the
return address is patched to the deoptimization handler. We
read origin frames at the first stage and build a heap-based
representation of the target stack frames. All access to the
scope descriptors happens at this stage. The second stage is
the the actual deoptimization handler, which just transfers
the heap-based frame onto the stack. Because the scope de-
scriptors are no longer needed by the deoptimization han-
dler, the machine code and all metadata of deoptimization
origin methods can be freed early, at the time frames are
marked as deoptimized. We do not have to wait until execu-
tion has reached all deoptimized frames, which can take long
when frames at the bottom of the stack are deoptimized.

Our scope descriptors contain references to stack slots
and constants, but not to physical registers of the processor.
This simplifies our implementation, because we do not have
to read or write registers.

Deoptimization origin frames never contain registers: all
registers are caller saved at invocation sites because our call-
ing convention does not use callee-saved registers; and the
top frame is never deoptimized because there is always at
least another frame on the stack for handling thread inter-
ruption and deoptimization.

We manually enforce that no values are in registers at de-
optimization entry points. The low-level instruction repre-
senting the deoptimization entry point is marked as destroy-
ing all registers. The register allocator automatically per-
forms the necessary spilling of values to the stack before
the deoptimization entry point and the reloading before the
next use automatically. All code necessary for this is already
present in the compiler because the same logic is used, e.g.,
for method invocations that also destroy registers.
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3. Case Study: A High-Performance
JavaScript VM

We use and evaluate deoptimization to optimized code in a
high-performance JavaScript VM that is written entirely in
Java. It adheres strictly to the one-compiler approach: the
same compiler is used to ahead-of-time compile the VM
runtime, including the garbage collector, and to dynamically
compile JavaScript code at run time. Our approach is similar
to the Jikes RVM [2] and the Maxine VM [22], which are
Java VMs written in Java. The garbage collector and the
deoptimization handler are written in a low-level dialect of
Java. Java can be used for low-level system programming
without language extensions as long as the compiler exposes
an unboxed pointer type and raw memory access [12]. The
remaining parts of the JavaScript VM, such as the JavaScript
parser, the JavaScript runtime, and the compiler are not using
these low-level extensions. All reachable Java code is ahead-
of-time compiled to a native executable. Java classes are
loaded at this time, so there is no Java class file loading
necessary at run time.

JavaScript code is executed using a mixed-mode ap-
proach: execution starts in an AST interpreter for fast startup
and to collect profiling information; frequently executed
JavaScript methods are dynamically compiled to achieve
the best possible peak performance. To avoid implementing
the JavaScript semantics twice (in the interpreter and the dy-
namic compiler), compilation is done by partial evaluation
of the interpreter. The long-known theory of using partial
evaluation for this purpose [13] has been shown to be feasi-
ble in practice in the last years in the PyPy project [6, 7] and
the Truffle project [23]. Both projects rely on speculative
optimization of dynamically compiled code and deoptimiza-
tion to the interpreter in case speculations were too aggres-
sive, e.g., when execution diverges from the type profiles
collected by the interpreter.

Our JavaScript AST interpreter is written in Java and
ahead-of-time compiled into the native executable. When
a dynamically compiled JavaScript method is deoptimized,
execution continues in this interpreter, i.e., the deoptimiza-
tion target is optimized code that was ahead-of-time com-
piled. All possible deoptimization origin points that could
be triggered at run time are known ahead of time too, so we
can also ahead-of-time compile all necessary deoptimization
target methods.

When the dynamic compiler performs a partial evalua-
tion, it inlines AST interpreter methods (written in Java)
for all AST nodes of a particular JavaScript method. This
means that the origin scope descriptors for a deoptimization
usually have deep inlining. Deoptimization restores all the
AST interpreter frames necessary to continue AST interpre-
tation. All restored frames use the code compiled with deop-
timization entry points. However, AST interpreter methods
are usually short and invocation-heavy, i.e., they dispatch ex-
ecution to child nodes, compute a result, and return the re-
sult to the parent node. All methods invoked by the AST
interpreter after deoptimization are the regularly compiled
methods, i.e., code without deoptimization entry points. The
performance of deoptimization target code is not crucial for
our VM, but it can still be relevant when using our deopti-
mization approach in a different setting, so we evaluate the
performance of deoptimization target code in Section 4.3.

Figure 5 shows an extended example of stack frames and
compilation in our JavaScript VM. The first stack on the left
hand side has the VM initialization code, three JavaScript
methods, and then some VM runtime code on the stack.
Two of the three JavaScript methods have been executed fre-
quently and were therefore compiled. A compiled JavaScript
method consists of one stack frame. The first JavaScript
method is running in the AST interpreter. An interpreted
JavaScript method consists of many stack frames because
the AST interpreter recursively calls the execute method
of each AST node.
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Assume that the VM runtime code on top of the stack
triggers deoptimization of the JavaScript method m2, which
is in the middle of the stack. The stack frame of method
m2 is marked as deoptimized. As mentioned in Section 2.6,
we immediately construct a heap-based representation of the
deoptimized frames (first stage of deoptimization). A pointer
to this heap memory is installed into the deoptimized frame
for later use by the deoptimization handler, i.e., the second
stage of deoptimization. Otherwise, the content of the stack
frame is no longer used. Therefore, that frame is printed
crossed-out in the second stack of Figure 5.

When execution returns to the deoptimized frame, the de-
optimization handler transfers the heap-base representation
of the deoptimized frames onto the stack. The third stack of
Figure 5 shows the stack after the deoptimization handler
completed. Execution continues with the top frame of the
deoptimized frames.

The AST interpreter returns out of some deoptimized
methods, and calls new AST interpreter methods. The newly
called AST interpreter methods are regular ahead-of-time
compiled methods without deoptimization entry points. As-
sume that then the JavaScript method m2 calls another
JavaScript method m4, which then triggers a run of the
garbage collector. The garbage collector is part of the VM
runtime, i.e., also ahead-of-time compiled code. The forth,
right-hand-side stack of Figure 5 shows this final stack.

The final stack shows all three possible kinds of frames:
1) regular ahead-of-time compiled code, which is used both
for the VM runtime and for the AST interpreter; 2) ahead-
of-time compiled code with deoptimization entry points,
which is used only for the few frames that are the result of
deoptimization; and 3) dynamically compiled code, which is
the result of the partial evaluation. All three kinds of frames
are created by the same compiler, use the same frame layout,
are described by the same metadata for the garbage collector,
and can be debugged and inspected using the same tools.

4. Evaluation
This section evaluates our deoptimization approach using
the case study, our high-performance JavaScript implemen-
tation. All measurements were performed on a dual-socket
Intel Xeon E5-2699 v3 with each 18 physical cores (36 vir-
tual cores) per socket running at 2.30 GHz, 256 GByte main
memory, Oracle Linux Server release 6.5 (kernel version
2.6.32-431.29.2.el6.x86 64), and Oracle JDK 1.8.0 92-b14.
All benchmarks were run on a server with a minimal setup
and no CPU consuming processes running, frequency scal-
ing disabled. Performance results are the mean of 5 execu-
tions (each execution in a new process) with a relative stan-
dard deviation below 5%.

4.1 Size of Deoptimization Target Code
Figure 6 presents static numbers about deoptimization en-
try points and code size. Deoptimization target code, i.e.,

Methods requiring deoptimization entry points 5,291       

Code size with deoptimization entry points [MByte] 2.18         

Code size without deoptimization entry points [MByte] 2.65         

Deoptimization entry points 41,053    

Explicit deoptimization entry points 26,592    

Implicit deoptimization entry points at invokes 14,461    

Scope values of all entry points 116,525  

Average number of values per entry point 2.8           

Size of encoded deoptimization metadata [MByte] 0.76         

Average metadata size per entry point [Byte] 19.5         

Total number of compiled methods 26,812    

Code size [MByte] 18.43       

Figure 6: Deoptimization entry points in our JavaScript VM.

code with deoptimization entry points, is necessary for all
methods that can be dynamically compiled and therefore be
the origin of a deoptimization. In our case study, this is the
JavaScript AST interpreter that consists of 5,291 methods.
When compiled with deoptimization entry points, they re-
quire 2.18 MByte of machine code. Compiled without de-
optimization entry points, they require 2.65 MByte of ma-
chine code. Both versions are ahead-of-time compiled and
included in our JavaScript executable. The size of the two
versions is different because of the differences in compiler
optimizations, as explained in Section 2.5.

The 5,291 methods have a total of 26,592 explicit deop-
timization entry points, and 14,461 implicit deoptimization
entry points during method invocations. All entry points to-
gether have 116,525 values, which means on average one
entry point has only 2.8 live values. We use a dense binary
encoding to reduce the size of the deoptimization informa-
tion, since it is read only infrequently. All entry points are
encoded in 0.76 MByte, so on average one entry point is en-
coded in 19.5 Byte.

In total, the JavaScript executable contains 26,812 com-
piled methods with 18,43 MByte of machine code. Note that
due to method inlining, the number of compiled methods is
lower than the number of methods in the source code. The
number of methods includes all parts of the JavaScript VM
and runtime system, e.g., it includes the JavaScript parser
and the garbage collector.

4.2 Performance of Deoptimization
We use the standard Octane JavaScript benchmark suite to
evaluate the performance of deoptimization. We exclude the
latency and code loading benchmarks since they evaluate
startup behavior.

Figure 7 shows dynamic numbers collected during the
run of each benchmark. The number of methods compiled at
run time and the code size heavily depend on the size of the
benchmark. The partial evaluator produces scope descriptors
with deep inlining and escape analysis requires metadata
to re-alocated objects during deoptimization. Therefore the
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 zlib 

Number of runtime compiled methods 49 82        153      149      23        37        152      1,625   381      13,452 226      255      3,317     30        

Code size [MByte] 0.12 0.33     1.54     0.58     0.18     0.50     1.15     4.23     1.43     19.57   2.03     2.97     30.42     0.76     

Size of scope descriptor [MByte] 0.17 1.12     3.03     1.53     0.23     1.44     3.16     7.68     2.54     39.54   2.56     9.80     82.23     2.02     

Number of deoptimizations 0 2          38        5          3          5          7          83        50        1,891   19        548      12,347   4          

Time in deoptimization handler [ms] 0.00 0.00     0.13     0.01     0.01     0.03     0.03     0.21     0.08     2.32     0.05     3.22     22.39     0.01     

Number of frames restored 0 11        754      13        25        149      204      1,016   330      10,033 257      25,134 193,753 28        

Average frames per deoptimization 0.0 5.5       19.8     2.6       8.3       29.8     29.1     12.2     6.6       5.3       13.5     45.9     15.7       7.0       

Number of scope values 0 11        664      21        24        141      178      1,288   384      10,587 231      19,398 196,725 22        

Average scope values per frame 0.0 1.0       0.9       1.6       1.0       0.9       0.9       1.3       1.2       1.1       0.9       0.8       1.0         0.8       

Objects re-allocated 0 5          252      5          14        43        92        505      111      7,639   85        12,199 46,284   6          

Average objects per deoptimization 0 2.5       6.6       1.0       4.7       8.6       13.1     6.1       2.2       4.0       4.5       22.3     3.7         1.5       

Figure 7: Performance of deoptimization and statistics about restored frames.

size of the frame descriptors relative to the code size and
relative to the number of compiled methods is higher than
the ratios for deoptimization target code presented in the
previous section.

The number of deoptimizations are generally low, with a
few exceptions for complex benchmarks such as gbemu and
typescript. But even the benchmarks with more deoptimiza-
tions spend only milliseconds in the deoptimization handler,
which is insignificant compared to the seconds or minutes
of benchmark execution time. This is the expected behav-
ior: deoptimization is the safety net that allows speculative
optimizations. But it is essential to collect enough profiling
information before compilation to avoid using it.

In our case study, deoptimization restores the state of an
AST interpreter, i.e., of call-intensive code. Therefore, the
average number of frames restored per deptimization, i.e.,
the number of scope descriptors processed during one de-
optimization, is high. Escape analysis in compiled code is
essential to replace the heap-based local variables of the in-
terpreter with registers in compiled code, which leads to the
high number of objects re-allocated during deoptimization.
The average number of scope values per frame is low, which
matches the observations of Figure 6.

4.3 Performance of Deoptimization Target Code
Since deoptimization happens rarely and execution usually
stays in deoptimization target code only for a short amount
of time, the performance of deoptimization target code does
not matter in our case study. Still, we are interested and want
to report the performance of deoptimization target code.
For this, we use a synthetic experiment where we use our
JavaScript VM like a pure Java benchmark by disabling the
dynamic compiler. This means that the AST interpreter runs
like a normal Java application, which can be executed on
any Java VM. We then force the execution to use a) the
deoptimization target code for every executed method, and
b) the deoptimization target code for just the AST interpreter.
The configuration b) uses the deoptimization target code

 Score 
Geomean Relative

Performance of our system

Fully optimized code (our ahead-of-time compiler) 155.4       100%

AST interpreter using deoptimization target code 102.2       66%

Everything using deoptimization target code 62.9         40%

Performance of the JavaHotSpot VM

Fully optimized code (server compiler) 300.5       100%

AST interpreter using deoptimization target code 6.6           2%

Everything using deoptimization target code 4.1           1%

Figure 8: Performance comparison of deoptimization target
code relative to deoptimization deoptimization origin code,
for Octane JavaScript benchmarks (higher score is better).

only for parts that could actually be deoptimized, i.e., for the
methods listed in Figure 6 “requiring deoptimization entry
points”.

The top block of rows in Figure 8 show the performance
difference for our system, i.e., deoptimization target code
is generated by the same optimizing compiler hat produces
the fully optimized code. The explicit deoptimization entry
points and the limitations to compiler optimizations reduce
performance, but only to 40% when running only deopti-
mization target code, and 66% when running the AST in-
terpreter with deoptimization entry points. In cases where
code size is more important than peak performance, it would
therefore be feasible to use the deoptimization target code
also for regular execution.

The bottom block of rows in Figure 8 show the perfor-
mance difference when deoptimizing to an interpreter. We
use the Java HotSpot VM for this comparison, which has an
aggressively optimized bytecode interpreter. Still, the perfor-
mance is low compared to optimized code (compiled by the
Java HotSpot server compiler [19]): the interpreter reaches
only 1% and 2% of the optimized performance for our two
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different configurations. The Java HotSpot VM has a slightly
better garbage collector and more optimized runtime system,
therefore the absolute score of the Octane benchmarks on the
Java HotSpot VM, 300.5, is higher than on or system, 155.4.
This difference is not relevant for this paper.

Baseline compilers usually reach a better performance
than interpreters, but unfortunately we are not aware of a
Java VM that uses a baseline compiler and can execute
current Java 8 code. The Jikes RVM, the Maxine VM, and
the JRocket VM are Java VMs with a baseline compiler, but
none of them has been updated in the last years to Java 8 and
therefore cannot run our Java code.

5. Related Work
Deoptimization was introduced to support debugging in the
SELF VM [17]. In the interactive environment of SELF, the
programmer could set breakpoints and replace methods with
new versions at any time. Deoptimization allowed imple-
menting these features without impacting the peak perfor-
mance, because the optimizing compiler did not need to cre-
ate code or restrict optimizations. Instead, execution reverted
to the first-tier execution using deoptimization when the user
started debugging a method. Debugging is still an important
application of deoptimization, for example, the Java HotSpot
VM uses deoptimization for debugging the same way as
SELF did. However, debugging is by far not the only ap-
plication of deoptimization. It is useful for all speculative
compiler optimizations, i.e., optimizations where the com-
piler omits code for a complicated but infrequent situation.
Many feedback directed adaptive optimizations have been
proposed and implemented [4].

Most current implementations of deoptimization follow
the original design of the SELF VM. The Jikes RVM [2]
is a notable exception [11]. It implements deoptimization
as a generalized form of on-stack-replacement [16]. Deop-
timization target can be produced by any compiler, but it is
bound to a single actual deoptimization. Values are not com-
ing from a scope descriptor, but emitted as constants in on-
the-fly generated bytecodes. Using the optimizing compiler
for deoptimization targets is therefore unattractive due to the
long compilation time that is added to the deoptimization
time.

Simple interpreters can be written quickly and without
architecture specific code. Production-quality interpreters
are heavily optimized though, making their implementa-
tion complex and difficult to port. A non-comprehensive
list of optimizations include dispatching techniques [5, 10],
caching of values in registers [9], and combination of in-
structions to super-instructions [20]. The interpreter of the
Java HotSpot VM is even generated during startup of the
VM [14], i.e., the C++ code is actually an architecture-
specific assembler generator2. To ease porting, the Java

2 http://hg.openjdk.java.net/jdk9/jdk9/hotspot/file/tip/src/cpu/x86/vm/
templateTable x86.cpp

HotSpot VM has a second, slower interpreter written in pure
C++ code3.

Baseline compilers eliminate the dispatching overhead
of interpreters, but several of the interpreter optimizations
techniques still apply to baseline compilers. In many cases,
they are also highly architecture-specific. For example,
the baseline compiler of the V8 JavaScript VM has more
architecture-specific code for each architecture than architecture-
independent code4, even when not counting the assembler
code performing the actual instruction encoding (which can
be shared with the optimizing compiler). Our deoptimiza-
tion to optimized code eliminates the need for an interpreter
or baseline compiler can therefore reduce the complexity of
a VM significantly.

6. Conclusions
Deoptimization to optimized code uses the same compiler
for the origin as well as the target of deoptimization, i.e.,
for the speculatively optimized code that is optimized as ag-
gressively as possible as well the limited-optimization code
where execution continues after a deoptimization. Deopti-
mization uses a two-way matching of the scope descriptors
that describe live values, so that the location of origin and
target values can be freely decided by the compiler. The
scope descriptors have a matching state, i.e., the same vir-
tual program counter and the same live values. This restricts
some optimizations that the compiler can perform for deopti-
mization target code, but many important optimizations such
as method inlining, constant folding, and register allocation
are still possible. The evaluation using high-performance
JavaScript VM shows that the approach works in practice
and that deoptimization target code is fast. However, the
main advantage of deoptimization to optimized code is a
simplification of the VM architecture: there is no need for
a separate interpreter or baseline compiler, and all parts of
the VM that need to walk the stack are simple because all
stack frames are produced by the same optimizing compiler.
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