Efficient Multi-Word Compare and Swap

Rachid Guerraoui
EPFL, Lausanne, Switzerland
rachid.guerraoui@epfl.ch

Alex Kogan
Oracle Labs, Burlington, MA, USA
alex.kogan@oracle.com

Virendra J. Marathe
Oracle Labs, Burlinton, MA, USA

virendra.marathe@oracle.com

Igor Zablotchi!
EPFL, Lausanne, Switzerland
igor.zablotchi@epfl.ch

—— Abstract

Atomic lock-free multi-word compare-and-swap (MCAS) is a powerful tool for designing concurrent
algorithms. Yet, its widespread usage has been limited because lock-free implementations of
MCAS make heavy use of expensive compare-and-swap (CAS) instructions. Existing MCAS
implementations indeed use at least 2k + 1 CASes per k-CAS. This leads to the natural desire to
minimize the number of CASes required to implement MCAS.

We first prove in this paper that it is impossible to “pack” the information required to perform
a k-word CAS (k-CAS) in less than k locations to be CASed. Then we present the first algorithm
that requires k + 1 CASes per call to k-CAS in the common uncontended case. We implement our
algorithm and show that it outperforms a state-of-the-art baseline in a variety of benchmarks in
most considered workloads. We also present a durably linearizable (persistent memory friendly)
version of our MCAS algorithm using only 2 persistence fences per call, while still only requiring
k+ 1 CASes per k-CAS.

2012 ACM Subject Classification Theory of computation — Concurrent algorithms
Keywords and phrases lock-free, multi-word compare-and-swap, persistent memory
Digital Object Identifier 10.4230/LIPIcs.DISC.2020.4
Related Version https://arxiv.org/abs/2008.02527

Funding This work has been supported in part by the European Research Council (ERC) Grant
339539 (AOC).

1 Introduction

Compare-and-swap (CAS) is a foundational primitive used pervasively in concurrent algo-
rithms on shared memory systems. In particular, it is used extensively in lock-free algorithms,
which avoid the pitfalls of blocking synchronization (e.g., that employs locks) and typically de-
liver more scalable performance on multicore systems. CAS conditionally updates a memory
word such that a new value is written if and only if the old value in that word matches some ex-
pected value. CAS has been shown to be universal, and thus can implement any shared object
in a non-blocking manner [32]. This primitive (or the similar load-linked/store-conditional
(LL/SC)) is nowadays provided by nearly every modern architecture.

1 This work was done when the author was an intern at Oracle Labs.

© Rachid Guerraoui, Alex Kogan, Virendra J. Marathe, and Igor Zablotchi;
37 licensed under Creative Commons License CC-BY

34th International Symposium on Distributed Computing (DISC 2020).

Editor: Hagit Attiya; Article No. 4; pp.4:1-4:19

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:rachid.guerraoui@epfl.ch
mailto:alex.kogan@oracle.com
mailto:virendra.marathe@oracle.com
mailto:igor.zablotchi@epfl.ch
https://doi.org/10.4230/LIPIcs.DISC.2020.4
https://arxiv.org/abs/2008.02527
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

4:2

Efficient Multi-Word Compare and Swap

CAS does have an inherent limitation: it operates on a single word. However, many
concurrent algorithms require atomic modification of multiple words, thus introducing
significant complexity (and overheads) to get around the 1-word restriction of CAS [9, 17,
23, 24, 39, 44]. As a way to address the 1-word limitation, the research community suggested
a natural extension of CAS to multiple words — an atomic multi-word compare-and-swap
(MCAS). MCAS has been extensively investigated over the last two decades [4, 5, 17, 23,
24, 31, 32, 43, 51]. Arguably, this work partly led to the advent of the enormous wave of
Transactional Memory (TM) research [29, 30, 34]. In fact, MCAS can be considered a special
case of TM. While MCAS is not a silver bullet for concurrent programming [19, 33], the
extensive body of literature demonstrates that the task of designing concurrent algorithms
becomes much easier with MCAS. Not surprisingly, there has been a resurgence of interest
in MCAS in the context of persistent memory, where the persistent variant of MCAS
(PMCAS) serves as a building block for highly concurrent data structures, such as skip lists
and B+-trees [6, 53], managed in persistent memory.

Existing lock-free MCAS constructions typically make heavy use of CAS instructions [4,
31, 43], requiring between 2 and 4 CASes per word modified by MCAS. That resulting cost
is high: CASes may cost up to 3.2x times more cycles than load or store instructions [16].
Naturally, algorithm designers aim to minimize the number of CASes in their MCAS
implementations.

Toward this goal, it may be tempting to try to “pack” the information needed to perform
the MCAS in fewer than & memory words and perform CAS only on those words. We show
in this paper that this is impossible. While this result might not be surprising, the proof is not
trivial, and is done in two steps. First, we show through a bivalency argument that lock-free
MCAS calls with non-disjoint sets of arguments must perform CAS on non-disjoint sets of
memory locations, or violate linearizability. Building on this first result, we then show that
any lock-free, disjoint-access-parallel k-word MCAS implementation admits an execution
in which some call to MCAS must perform CAS on at least k different locations. (Our
impossibility result focuses on disjoint-access-parallel (DAP) algorithms, in which MCAS
operations on disjoint sets of words do no interfere with each other. DAP is a desirable
property of scalable concurrent algorithms [37].)

We also show, however, in the paper that MCAS can be “efficient”. We present the first
MCAS algorithm that requires k + 1 CAS instructions per call to k&-CAS (in the common
uncontended case). Furthermore, our construction has the desirable property that reads
do not perform any writes to shared memory (unless they encounter an ongoing MCAS
operation). This is to be contrasted with existing MCAS constructions (in which read
operations do not write) that use at least 3k + 1 CASes per k-CAS. Furthermore, we extend
our MCAS construction to work with persistent memory (PM). The extension does not
change the number of CASes and requires only 2 persistence fences per call (in the common
uncontended case), comparing favorably to the prior work that employs 5k + 1 CASes and
2k + 1 fences [53].

Most previous MCAS constructions follow a multi-phase approach to perform a k-CAS
operation op. In the first (locking) phase, op “locks” its designated memory locations one by
one by replacing the current value in those locations with a pointer to a descriptor object.
This descriptor contains all the information necessary to complete op by the invoking thread
or (potentially) by a helper thread. In the second (status-change) phase, op changes a
status flag in the descriptor to indicate successful (or unsuccessful) completion. In the third
(unlocking) phase, op “unlocks” those designated memory locations, replacing pointers to its
descriptor with new or old values, depending on whether op has succeeded or failed.

R. Guerraoui, A. Kogan, V. J. Marathe, and |. Zablotchi

In order to obtain lower complexity, our algorithm makes two crucial observations
concerning this unlocking phase. First, this phase can be deferred off the critical path
with no impact on correctness. In our algorithm, once an MCAS operation completes, its
descriptor is left in place until a later time. The unlocking is performed later, either by
another MCAS operation locking the same memory location (and thus effectively eliminating
the cost of unlocking for op) or during the memory reclamation of operation descriptors. (We
describe a delayed memory reclamation scheme that employs epochs and amortizes the cost
of reclamation across multiple operations.)

Our second, and perhaps more surprising, observation is that deferring the unlocking
phase allows the locking phase to be implemented more efficiently. In order to avoid the
ABA problem, many existing algorithms require extra complexity in the locking phase. For
instance, the well-known Harris et al. [31] algorithm uses the atomic restricted double-compare
single-swap (RDCSS) primitive (that requires at least 2 CASes per call) to conditionally
lock a word, provided that the current operation was not completed by a helping thread.
Naively performing the locking phase using CAS instead of RDCSS would make the Harris
et al. algorithm prone to the ABA problem (we provide an example in the full version of
our paper [25]). However, in our algorithm, we get ABA prevention “for free” by using a
memory reclamation mechanism to perform the unlocking phase, because such mechanisms
already need to protect against ABA in order to reclaim memory safely.

Deferring the unlocking phase allows us to come up with an elegant and, arguably,
simple MCAS construction. Prior work shows, however, that the correctness of MCAS
constructions should not be taken for granted: for instance, Feldman et al. [20] and Cepeda et
al. [12] describe correctness pitfalls in MCAS implementations. Thus, we carefully prove the
correctness of our construction. We also evaluate our construction empirically by comparing
to a state-of-the-art MCAS implementation and showing superior performance in a variety
of benchmarks (including a production quality B+-Tree [6]) in most considered scenarios.

We note that the delayed unlocking/cleanup introduces a trade-off between higher MCAS
performance (due to fewer CASes per MCAS, which also leads to less slow-down due to less
helping) and lower read performance (because of the extra level of indirection reads have
to traverse when encountering a descriptor left in place after a completed MCAS). One

may argue that it also increases the amount of memory consumed by the MCAS algorithm.

Regarding the former, our evaluation shows that the benefits of the lower complexity overcome
the drawbacks of indirection in all workloads that experience MCAS contention. Furthermore,
we propose a simple optimization to mitigate the impact of indirection in reads. As for
the latter, we note that much like any lock-free algorithm, the memory consumption of our
construction can be tuned by performing memory reclamation more (or less) often.

The rest of the paper is organized as follows. In Section 2 we describe our model. In
Section 3 we present our impossibility result. Sections 4 and 5 detail our MCAS algorithms
for volatile and persistent memory. Section 6 elaborates our lazy memory reclamation
scheme. Section 7 presents the results of our experimental evaluation. We review related
work in Section 8 and conclude in Section 9. Due to space limitations, some content (proofs,
additional performance results etc.) has been omitted and appears in the full version of this
paper [25].

4:3

DISC 2020

4:4

Efficient Multi-Word Compare and Swap

2 System Model

2.1 Volatile Memory

We assume a standard model of asynchronous shared memory [35], with basic atomic read,
write and compare-and-swap (CAS) operations. The latter receives three arguments — an
address, an expected value and a new value; it reads the value stored in the given address
and if it is equal to the expected value, atomically stores the new value in the given address,
returning the indication of success or failure.

Using those atomic operations, we implement an atomic MCAS operation with the
following semantics. The MCAS operation receives an array of tuples, where each tuple
contains an address, an expected value and a new value. For ease of presentation, we assume
the size of the array is a known constant N. (In practice, the size of the array can be dynamic,
and different for every MCAS operation.) The MCAS operation reads values stored in the
given addresses, and if they all are equal to respective expected values, atomically writes
new values to the corresponding address and returns an indication of success. Otherwise, if
at least one read value is different from an expected one, the MCAS operation returns an
indication of failure. We also provide a custom implementation of a read operation from a
memory location that can be a target of an MCAS operation (which, in the most general
case, can be any shared memory location).

Our MCAS implementation is linearizable [35]. This means, informally, that each (read or
MCAS) operation appears to take effect instantaneously at some point in time in the interval
during which the operation executes. In terms of progress, our MCAS implementation is
non-blocking. That is, a lack of progress of any thread (e.g., due to the suspension or failure
of that thread) does not prevent other threads from applying their operations. Furthermore,
the MCAS implementation guarantees lock-freedom. That is, given a set of threads applying
operations, it guarantees that, eventually, at least one of those threads will complete its
operation.

Similar to many non-blocking algorithms, our design makes use of operation descriptors,
which store information on existing MCAS operations, including the status of the operation
and the array of tuples with addresses and values. We assume each word in the shared
memory can contain either a regular value or a pointer to such a descriptor. A similar
assumption has been made in prior work on MCAS [20, 31, 52, 53]. In practice, a single
(e.g., least significant) bit can be used to distinguish between the two.

Initialization of the descriptor is done before invocation of the MCAS operation. We
assume that all the addresses in the descriptor are sorted in a monotonic total order. This
assumption is crucial for the liveness property of our algorithm, but can be easily lifted by
explicitly sorting the array of tuples by corresponding addresses before an MCAS operation
is executed.

2.2 Persistent Memory

We extend the model in Section 2.1 with standard assumptions about PM [13, 15, 22, 38].
We assume the system is equipped with persistent shared memory that can be accessed
through the same set of atomic primitives (read, write and CAS). The system may also
be equipped with DRAM to be used as transient storage. As in previous work [38], we
assume that the overall system can crash at any time and possibly recover later. On such
a full-system crash, we assume that the contents of persistent memory — but not those of
processor caches, registers or volatile memory — are preserved. Moreover, threads that are

R. Guerraoui, A. Kogan, V. J. Marathe, and |. Zablotchi

active at the time of the crash are assumed to be lost forever and replaced by new threads
in case of recovery. After a full-system crash but before the system recovers and resumes
normal execution, we assume a recovery routine may be executed, in order to bring persistent
memory-resident objects to a consistent state. The recovery routine can be executed in
a single thread, and thus it does not have to be thread-safe. Another full-system crash,
however, may occur during the recovery routine.

As is standard practice [13, 15, 53], we assume that a-priori there is no guarantee on when
and in what order cache lines are written back to persistent memory. We assume the existence
of two primitives to enforce such write backs. The first primitive is PERSISTENT _FLUSH (addr),
which takes as argument a memory location and asynchronously writes the contents of that
location to persistent memory. Multiple invocations of this primitive are not ordered with
respect to each other and thus several flushes can proceed in parallel. Concrete examples of
this primitive are c1flushopt and clwb [36]. The second primitive is PERSISTENT_FENCE(),
which stalls the CPU until any pending flushes are committed to persistent memory. A
concrete example of this primitive is sfence [36]. LOCK-prefixed instructions such as CAS
also act as persistent fences [36]. Since persistent flushes do not stall the CPU, whereas
persistent fences do, the cost of writing to persistent memory is dominated by the latter
instructions and we consider the cost of the former to be negligible.

Regarding initialization, we assume descriptor contents are made persistent before invo-
cation of MCAS.

The safety criterion we use when working with persistent memory is durable linearizabil-
ity [38]. Informally, an implementation of an object is durably linearizable if it is linearizable
and has the following additional properties in case of a full-system crash and recovery: (1) all
operations that completed before the crash are reflected in the post-recovery state and (2) if
some operation op that was ongoing at the time of the crash is reflected in the post-recovery
state, then so are all the operations on which op depends (i.e., operations whose effects op
observed and thus need to be linearized before op).

3 Impossibility

In this section we show that any lock-free disjoint-access-parallel (DAP) implementa-
tion of MCAS requires at least one CAS per modified word. Consider a call to k-
CAS(addry, ..., addry, [old and new values]). We call addry, ..., addry the set of targets of
the call. We also define the range of the call in an execution F to be the set of locations
on which CAS (single-word CAS) is performed, successfully or not, during the call in E.
Intuitively, we say that an MCAS implementation is DAP if non-conflicting calls to k-CAS
do not access the same memory locations; for the formal definition, see [37].

» Definition 1 (Star Configuration). We say that a set {co,...,c¢} of calls to k-CAS are in a
star configuration if (1) the sets of targets of co and ¢; are non-disjoint for all i € {1,...,¢},
and (2) the sets of targets of ¢; and c; are disjoint for all i # j € {1,...,4}.

An example of a star configuration for ¢ = k is the following set of calls C = {co, ..., ¢k},
where we omit old and new values for ease of notation and we assume that addresses agj) are
all distinct:

co: k—CAS(ago), ce a}co))

c1: k—CAS(aEO), aél), cee ag)). Call ¢1’s set of targets intersects that of ¢y in ago).

i, 1<i<k: k-CAS(@l”,...,al” ... al")
(0)

i

. Call ¢;’s set of targets intersects that of cg

in a;’ and is disjoint from the set of targets of ¢; for all j # 4,5 # 0.

4:5

DISC 2020

4:6

Efficient Multi-Word Compare and Swap

In this section, we assume without loss of generality that all calls in C have the correct
old values for their target addresses and that each new value is distinct from its respective
old value. Under these assumptions, in every execution it must be that either ¢y succeeds
and all ¢q, ..., ¢ fail, or that cq fails and all ¢q, ..., ¢, succeed.

We say that a state S of an implementation A is cp-valent with respect to (wrt) some
subset C' C C if, for any call ¢; € C, in any execution starting from S in which only ¢y and
¢; take steps, ¢y succeeds. Similarly, we say that a state S is C-valent wrt ¢ if, for any call
¢; € C, in any execution starting from .S in which only ¢y and ¢; take steps, ¢y fails. We say
that a state is univalent wrt ¢y and C' if it is ¢g-valent or C-valent; otherwise it is bivalent
wrt co and C. A state is critical wrt ¢p and C when (1) it is bivalent wrt ¢y and C and (2) if
any process in {cy} U C takes a step, the state becomes univalent wrt ¢y and C'.

Note that the initial state of A must be bivalent wrt ¢y and any non-empty subset of S.

» Lemma 2. Consider a lock-free implementation A of k-CAS and let C = {cp,...,ce} be a
star configuration of calls to k-CAS. Then there exists an execution FE of A such that, for
all 1 > 1, the ranges of ¢y and ¢; in E are non-disjoint.

Proof. We follow a bivalency proof structure. We construct an execution in which process
p; performs call ¢;, ¢ > 0. For ease of notation, we say that “call ¢; takes a step” to mean
“process p; takes a step in its execution of ¢;”.

The execution proceeds in stages. In the first stage, as long as some call in C can take a
step without making the state univalent wrt ¢y and any non-empty subset of C, let that call
take a step. If the execution runs forever, the implementation is not lock-free. Otherwise, the
execution enters a state .S where no such step is possible, which must be a critical state wrt
¢o and some subset Cy C C \ {¢p}. We choose C to be maximal, i.e., state S is not critical
wrt co and any subset of C \ Cy (otherwise, add that subset to Cy).

We prove in Lemma 3 below that ¢y and all calls in C; are about to perform CAS on
some common location [y. We let ¢y perform that CAS step, bringing the protocol to state
S’. By our choice of C; as maximal, S’ must be bivalent wrt ¢y and any subset of C\ Cy. The
execution now enters the second stage, in which we let calls in C \ C; take steps until they
reach a critical state wrt cg and some subset Cy C C \ Cy. By induction, we can show that
eventually cg will have reached critical points wrt all calls in C. At the end of the execution,
we resume each process in C \ ¢g for one step; they were each about to perform a CAS step
on some location on which ¢ has already performed a CAS step. Thus, in this execution,
all calls in C \ ¢y have performed a CAS on a common location with cg. <

» Lemma 3. Consider a lock-free implementation A of k-CAS and let C = {cqg,...,cx} be
a star configuration of calls to k-CAS. If S is a critical state of A wrt ¢y and some subset
C CC, then in S, cg and all calls in C are about to perform a CAS step on a common
location 1.

Proof. From S, we consider the next steps of ¢y and any ¢; € C:

Case 1 One of the calls is about to read; assume wlog it is c¢g. Consider two possible scenarios.
First scenario: ¢; moves first and runs solo until it returns (¢; must succeed because
¢; took the first step). Second scenario: ¢ moves first and reads, then ¢; runs solo
until it returns (¢; must fail because ¢y took the first step). But the two scenarios are
indistinguishable to ¢;, thus ¢; must either succeed in both or fail in both, a contradiction.

Case 2 Both calls are about to write. In this case, they must be about to write to the same
register r, otherwise their writes commute. First scenario: ¢y writes r, then ¢; writes
r, then ¢; runs solo until it returns (¢; must fail since ¢y took the first step). Second

R. Guerraoui, A. Kogan, V. J. Marathe, and |. Zablotchi

scenario: ¢; writes r and then runs solo until it returns (¢; must succeed since ¢; took
the first step). But the two scenarios are indistinguishable to ¢;, since its write to r
obliterated any potential write by ¢y to r, so ¢; must either succeed in both scenarios or
fail in both; a contradiction.

Case 3 ¢ is about to CAS and ¢; is about to write (or vice-versa). In this case, their
operations must be to the same memory location r (otherwise they commute). First
scenario: ¢yp CASes r, then ¢; writes to 7 and then runs solo until ¢; returns (¢; must
fail since ¢y took the first step). Second scenario: ¢; writes to r and then runs solo
until it returns (¢; must succeed since ¢; took the first step). But the two scenarios are
indistinguishable to ¢;, since its write to r obliterated any preceding CAS by ¢y to r;
thus ¢; must either succeed in both scenarios or fail in both; a contradiction.

Case 4 Both calls are about to CAS. In this case, they must be about to CAS the same
location, otherwise their CASes commute. <

» Theorem 4. Consider a lock-free disjoint-access-parallel implementation A of k-CAS in a
system with n > k processes. Then there exists some execution E of A such that in E some
call to k-CAS performs CAS on at least k locations.

Proof. We prove the theorem by contradiction. We first assume that calls to k-CAS perform
CAS on ezactly k — 1 locations and derive a contradiction; we later show how assuming that
k-CAS performs CAS on at most k — 1 locations also leads to a contradiction.

We construct an execution £ in which two concurrent but non-contending k-CAS calls
(i.e., two k-CAS calls with disjoint sets of targets) perform CAS on the same location, thus
contradicting the disjoint-access-parallelism (DAP) property and proving the theorem.

Let cg,...,c be k+ 1 calls to k-CAS in a star configuration. By Lemma 2, there exists
an execution F of A such that, for all ¢ > 1, the ranges of ¢y and ¢; in F are non-disjoint.

Let l1,...,lx—1 be the range of ¢y. By Lemma 2, in E the range of ¢; must intersect
that of ¢y in at least one location; assume wlog it is [;. Furthermore, the range of co must
also intersect that of ¢y in at least one location; moreover, due to the DAP property, the
intersection must contain some location other than [, since ¢; and ¢y have disjoint sets
of targets. By induction, we can show that the range of each call ¢;,i € {1,2,...,k — 1}
intersects the range of ¢y in [;. However, the range of ¢, must also intersect the range of
¢o in some location other than ly,...,Il;_1, due to the DAP property. We have reached a
contradiction.

If we now assume that calls to k-CAS perform CAS on k — 1 or fewer locations, then we
also reach a similar contradiction as above. In fact, if some call ¢; performs CAS on strictly
fewer than k£ — 1 locations, this may cause the contradiction to occur before call ¢, as ¢; now
has fewer locations to choose from in order intersect with the range of ¢y in some location
that is not in the ranges of ¢1,...,¢;—1. <

4 Volatile MCAS with k£ 4+ 1 CAS

In this section we describe our MCAS construction for volatile memory. Our algorithm uses
k 4+ 1 CAS operations in the common uncontended case, and does not involve cleaning up
after completed MCAS operations. In Section 6 we describe a memory management scheme
that can be used to clean up after completed MCAS operations as well as for reclaiming or
reusing operation descriptors employed by the algorithm.

4:7

DISC 2020

4:8

Efficient Multi-Word Compare and Swap

Listing 1 Data structures used by our algorithm

struct WordDescriptor {
void* address;
uintptr_t old;
uintptr_t new;
MCASDescriptor* parent; 1;

enum StatusType { ACTIVE, SUCCESSFUL, FAILED };

struct MCASDescriptor {
StatusType status;
size_t N;
WordDescriptor words[N]; };

4.1 High-level Description

As is standard practice [28, 31, 52|, our MCAS construction supports two operations: MCAS
and read. Similarly to most MCAS algorithms [28, 31, 52], the MCAS operation uses
operation descriptors that contain a set of addresses (the target addresses or words), and old
and new values for each target address. In addition, each operation descriptor contains a
status word indicating the status of the corresponding MCAS operation.

The MCAS operation proceeds in two stages. In the first stage, we attempt to install a
pointer to the operator descriptor in each memory word targeted by the MCAS operation.
If we succeed to install the pointer, we say that the target address is owned (or locked) by
the descriptor. The first stage ends when all target addresses are owned by the descriptor, or
if we find a target address with a value different from the expected one. In the second stage,
we finalize the MCAS operation by atomically changing its status to indicate its success or
failure, depending on whether the first stage was successful (i.e., all target addresses have
been locked). The read operation returns the current value at an address, either by reading
it directly from the target address or by reading the appropriate value from a descriptor of a
completed MCAS operation installed in that address. If either MCAS or read encounter
another MCAS in progress (e.g., when they attempt to read the current value in the target
address), they first help that MCAS operation to complete.

4.2 Technical Details

Structures and Terminology. We describe the structures used by our algorithm and explain
the terminology. Pseudocode for the structures is shown in Listing 1. An MCASDescriptor
describes an MCAS operation. It contains a status field, which can be ACTIVE, SUCCESSFUL
or FATILED, the number N of words targeted by the MCAS and an array of WordDescriptors
for those words. These WordDescriptors are the children of the MCASDescriptor, who is
their parent. We say that an MCASDescriptor (and the MCAS it describes) is active if its
status is ACTIVE and finalized otherwise.

The WordDescriptor contains information related to a given word as target of an MCAS
operation: the word’s address in memory, its expected value and the new intended value.
The WordDescriptor also contains a pointer to the descriptor of its parent MCAS operation.
As described later, the pointer is used as an optimization for fast lookup of the status field
in the MCASDescriptor, and can be eliminated.

Algorithm. Both MCAS and read operations rely on the auxiliary readInternal func-
tion shown in Listing 2. The readInternal function takes an address addr and an
MCASDescriptor self (called the current descriptor) and returns a tuple. The tuple contains

© 0 N U oA W N e

== e
N2 O

35
36
37

R. Guerraoui, A. Kogan, V. J. Marathe, and |. Zablotchi

Listing 2 The readInternal auxiliary function, used by our algorithm.

readInternal (void* addr, MCASDescriptor *self) {
retry_read:
val = *xaddr;
if (!isDescriptor(val)) then return <val,val>;
else { // found a descriptor
MCASDescriptor* parent = val->parent;
if (parent != self && parent->status == ACTIVE) {
MCAS (parent) ;
goto retry_read;
} else {
return parent->status == SUCCESSFUL ?
<val ,val->new> : <val,val->o0ld>; } 1} }

Listing 3 Our main algorithm. Commands in italic are related to memory reclamation (discussed
in a later section).

read(void* address) {
epochStart () ;
<content, value> = readIntermnal (address, NULL);
epochEnd() ;
return value; }

MCAS (MCASDescriptor* desc) {
epochStart();
success = true;
for wordDesc in desc->words {
retry_word:

<content, value> = readInternal (wordDesc.address, desc);
// if this word already points to the right place, move on
if (content == &wordDesc) continue;

// if the ezpected wvalue 4is different, the MCAS fails

if (value != wordDesc.old) { success = false; break; }

if (desc->status != ACTIVE) break;

// try to install the pointer to my descriptor; <if failed, retry
if (!CAS(wordDesc.address, content, &wordDesc)) goto retry_word; 1}
if (CAS(&desc.status, ACTIVE, success ? SUCCESSFUL : FAILED)){
// if I finalized this descriptor, mark it for reclamation
retireForCleanup (desc);
returnValue = (desc.status == SUCCESSFUL);
epochEnd () ;
return returnValue; 7}

two values (which might be identical), and, intuitively, represent the contents in the given
(target) address and the actual value the former represents. More specifically, readInternal
reads the content of the given addr (Line 3). If addr does not point to a descriptor (this
is determined by the isDescriptor function; see below), the returned tuple contains two
copies of the contents of addr (Line 4). If addr points to an active WordDescriptor whose
parent is not the same as self, then readInternal helps the other (MCAS) operation to
complete (Line 8) and then restarts (Line 9). Therefore, the role of the self pointer is to
avoid an (MCAS) operation to help itself recursively. If addr points to a finalized descriptor,
the tuple returned by readInternal contains the pointer to the descriptor and the final
value, corresponding to the status of the descriptor (Line 12). Finally, if addr points to a
descriptor whose parent is equal to self, then readInternal returns the pointer to that
descriptor (Line 12; a value is also returned in the tuple in this case, but is disregarded; see
below).

Listing 3 provides the pseudo-code for the read and MCAS operations. The pseudo-code
includes extensions relevant to memory management (in étalics), whose discussion is deferred
to Section 6.

4:9

DISC 2020

4:10

Efficient Multi-Word Compare and Swap

The read operation is simply a call to readInternal with a self equal to null as the
current operation descriptor (Line 15).

The MCAS operation takes as argument an MCASDescriptor and returns a boolean
indicating success or failure. As mentioned above, the operation proceeds in two stages.
In the first stage, MCAS attempts to take ownership of (or acquire) each target word
(Lines 22-31). To this end, for each WordDescriptor w in its words array, we start by calling
readInternal on w’s target address addr (Line 24; as described above, this handles any
helping required in case another active operation owns addr). If addr is already owned by
the current MCAS, we move on to the next word (Line 26). Otherwise, if the current value
at addr does not match the expected value of w, the MCAS cannot succeed and thus we can
skip the next WordDescriptors and go to the second stage (Line 28). If the values do match,
we re-check if the operation is still active (line 29); otherwise we go to the second stage —
this prevents a memory location from being re-acquired by the current operation op in case
op was already finalized by a helping thread. Finally, we attempt to take ownership of addr
through a CAS (Line 31). Note that the failure of this CAS might mean that another thread
has concurrently helped this MCAS to lock the target word. Therefore, we simply retry
taking ownership on this target word, rather than failing the MCAS operation (Line 31).

In the second stage (Lines 32-34), MCAS finalizes the descriptor by atomically changing
its status from ACTIVE to SUCCESSFUL (if all word acquisitions were successful in stage one)
or to FAILED (otherwise).

Our pseudocode assumes the existence of the isDescriptor function, which takes a value
and returns true if and only if the value is a pointer to a WordDescriptor. This function
can be implemented, for instance, by designating a low-order mark bit in a word to indicate
whether it contains a pointer to a descriptor or not [31, 53].

We give a proof of correctness for our algorithm in the full version of our paper [25].

5 Persistent MCAS with £ + 1 CAS and 2 Persistent Fences

We discuss the modifications required to make our volatile MCAS algorithm work with
persistent memory. In the full version of our paper [25], we give the complete pseudocode for
these modifications.

In the MCAS function, after all target locations have been successfully acquired, we add
one persistent flush per target word and one persistent fence overall. The persistent fence
ensures that all target locations persistently point to their respective WordDescriptors before
attempting to modify the status.

When finalizing the status, we mark the status with a special DirtyFlag. This flag
indicates that the status is not yet persistent. We then perform a persistent flush and fence
after the status has been finalized. This ensures that the finalized status of the descriptor is
persistent before returning from the MCAS. Finally, we unset the DirtyFlag with a simple
store; this store cannot create a race with the CAS that finalizes the status because that
CAS must fail (the status must be already finalized if some thread is already attempting to
unset the dirty flag).

We also modify the readInternal function such that, when an operation op encounters
another operation op’ whose status is finalized but still has the DirtyFlag set, op helps op’
persist its status and unsets the DirtyFlag on op’ status.

Our modifications enforce the following invariants. First, at the time when a descriptor
becomes finalized, its acquisitions of target locations are persistent. Second, at the time
when an MCAS operation returns, its finalized status is persistent. Third, when a read

R. Guerraoui, A. Kogan, V. J. Marathe, and |. Zablotchi

or MCAS operation op returns, all operations on which op depends are finalized and their
statuses are persistent. With these invariants, we can argue that our persistent MCAS is

correct. By correctness we refer to lock-freedom (liveness) and durable linearizability (safety).
Lock-freedom is clearly preserved by our additions, thus we focus on durable linearizability.

We examine the point in time when a full-system crash may occur during the execution of
an MCAS operation op. There are two possibilities to consider:

1. If the crash occurs before op’s status was finalized and made persistent, then we know
that no operation op’ which observed the effects of op could have returned before the
crash; otherwise, op’ would have helped op and persisted its status. In this case, neither
op nor any such op’ will be linearized before the crash; during recovery, their effects will
be rolled back by reverting any acquired locations to their old values.

2. If the crash occurs after op’s status was finalized and made persistent, then op is linearized
before the crash. During recovery, any locations still acquired by op will be detached
and given either their new or old values (depending on op’s success or failure status), as
specified in op’s descriptor.

In sum, the recovery procedure of our algorithm is as follows. The recovery goes through
each operation descriptor D. If D’s status is not finalized, then we roll D back by going
through each target location ¢ of D; if £ is acquired by D (i.e., points to D), then we write
into /¢ its old value, as specified in D. If D’s status is finalized, then we detach D and install
final values; we go through each target location ¢ of D; if ¢ is acquired by D and D was
successful (resp. failed), then we write into ¢ the new (resp. old) value as specified in D.

6 Memory Management

The MCAS algorithm has been presented so far under the assumption that no memory is
ever reclaimed. For practical considerations, however, one should to be able to reclaim and/or
reuse MCAS operation descriptors. While efficient memory management of concurrent data
structures remains an active area of research (see, e.g., [3, 10, 18, 50, 54]), here we describe
one possible mechanism suitable for an MCAS implementation. Due to space limitations,
we briefly outline the mechanism here and defer its full description, as well as optimizations
for persistent memory and efficient reads, to the extended version of our paper [25].

We note that the life cycle of an operation descriptor comprises several phases. Once its
status is no longer ACTIVE, the (finalized) descriptor cannot be recycled just yet as certain
memory locations can point to it. Therefore, we need first to detach such a descriptor by
replacing the pointers to the descriptor (using CAS) with actual values (respective to whether
the corresponding MCAS has succeeded or failed) in affected memory locations. Only after
that, a detached descriptor can be recycled, provided no concurrently running thread holds
a reference to it. Note that CASes in the detachment phase are necessary only for those
affected memory locations that still point to the to-be-detached descriptor, which, as our
evaluation shows, is rare in practice.

Our scheme keeps track of two categories of descriptors: (1) those that have been finalized
but not yet detached and (2) those that have been detached but to which other threads
might still hold references. Similar to RCU approaches [41, 42], we use thread-local epoch
counters to track threads’ progress and infer when a descriptor can be moved from category
(1) to category (2), and when a descriptor from category (2) can be reclaimed.

4:11

DISC 2020

4:12

Efficient Multi-Word Compare and Swap

7 Evaluation

7.1 Experimental Setup

We evaluate our algorithm on a 2-socket Intel Xeon machine with two E5-2630 v4 processors
operating at 3.1 GHz. Each processor has 10 cores, each core has 2 hardware threads
(40 hardware threads total). Each experimental run lasts 5 seconds; shown values are the
average of 5 runs. We base our evaluation on the framework available from the authors of
PMwCAS [49, 53].

The baseline of our evaluation is the volatile version of PMwCAS [49, 53], a state-of-
the-art implementation of the Harris et al. [31] algorithm. Like the Harris et al. algorithm,
volatile PMwCAS requires 3k +1 CASes per k-CAS. We use PMwCAS as our baseline since
(1) it has recent, openly available and well-maintained code and (2) it is to our knowledge
the only other MCAS algorithm in which readers do not write to shared memory in the
common uncontended case.

PMwCAS implements an optimization of the Harris et al. algorithm: it marks pointers
with a special RDCSS flag instead of allocating a distinct RDCSS descriptor. However,
we found that this optimization made the PMwCAS algorithm incorrect, due to an ABA
vulnerability. In our evaluation, we fixed the PMwCAS implementation to allocate and
manually manage RDCSS descriptors.

Our evaluation uses three benchmarks: an array benchmark in which threads perform
MCAS-based read-modify-write operations at random locations in an array, a doubly-linked
list benchmark, in which threads perform MCAS-based operations on a list implementing an
ordered set, and a B+tree benchmark in which threads perform MCAS-based operations on
a B+-tree. The first two benchmarks are based on the implementation available in [49], and
the third is based on PiBench [48] and BzTree [6, 11]. We note, however, that we modified
the benchmark in [49] so all threads operate on the same key range (rather than having each
thread using a unique set of keys), so we could induce contention by controlling the size of
the key range.

In each experiment, we vary the number of threads from 1 to 39 (we reserve one hardware
thread for the main thread). Threads are assigned according to the default settings in the
evaluation frameworks used [11, 48, 49]. In the array and list benchmarks, threads are
assigned in the following way: we first populate the first hardware thread of each core on the
first socket, then on the second socket, then we populate the second hardware thread on each
core on the first socket, and finally the second hardware thread on each core on the second
socket. The B+-tree benchmark uses OpenMP [45], which dictates thread assignment; it
also employs a scalable memory allocator [1].

7.2 Array Benchmark

The benchmark consists of each thread performing the following in a tight loop: reading k
locations at random from the array (k = 4 in our experiments), computing a new value for
each location, and attempting to install the new values using an MCAS.

In this benchmark we measure two quantities. The first is throughput: the number of
read-modify-write operations completed successfully per time unit. The second metric is
the helping ratio. We measure the helping ratio by dividing the number of ongoing MCAS
operations encountered (and helped) during read or MCAS operations by the total number
of MCAS operations. A higher helping ratio thus means more operations are slowed down
due to the need to help other, incomplete MCAS operations.

R. Guerraoui, A. Kogan, V. J. Marathe, and |. Zablotchi

Array Size 10

Array Size 100

Array Size 1000

z

0

Q

S

=

~— 4 - -

b=

2

g 2| |

§ | T" i) o-mm

ﬁ 0 20 40

Number of Threads Number of Threads Number of Threads
o 1 1 _n 6 1 nd ﬂ
B p2T
ch 10 | Dn 1 4|) o | p |
. -] A
a0 | - 0.5 m s
£ 5 & 1 2| e . "
o] o W st -
(]
T oL | 4 oL ‘ | 0| ms-Se-eo0000d |
0 20 40 0 20 40 0 20 40

Number of Threads

Number of Threads

‘—Q—AOPT-D-PMWCAS‘

Figure 1 Array benchmark. Top row shows throughput (higher is better), bottom row shows
helping ratio (lower is better). Each column corresponds to a different array size (10, 100 and 1000,

Number of Threads

respectively).
@ List Size 5 List Size 50 List Size 500
§ 30 [] 8
6
— B 20 |
= 20 4
£ 10 B 10 m| 2
a0 B] B 3 o mE
é’ | bﬂ-ﬂ o-B I:I-Dq I:|1:|_|T_|-I:I'|:| | 0
E 0 20 40 0 20 40

Number of Threads

Number of Threads

Number of Threads

Tree Size 4000000

Number of Threads

- Tree Size 16 Tree Size 512
B

o

=)

- 21

=

o

ERE L -
5 L Ogoad®0
=

= 0 20 40

Number of Threads

‘—Q—AOPT-D-PMWCAS‘

Figure 2 Top row: Doubly-linked list benchmark (80% reads) with different initial list sizes (5,
50 and 500 elements). Bottom row: B+4-tree benchmark (80% reads) with different initial tree sizes

(16, 512 and 4000000 elements).

Number of Threads

4:13

DISC 2020

4:14

Efficient Multi-Word Compare and Swap

We run the benchmark with three array sizes (10, 100, and 1000) in order to capture
different contention levels. The results of this benchmark are shown in Figure 1 (our algorithm
is denoted AOPT in all figures in this section).

The top row of Figure 1 shows that our algorithm outperforms PMwCAS at every
contention level and at every thread count, including in single-threaded mode. This can
be explained by two related factors. First, our algorithm has a lower CAS complexity
(k+ 1 CASes per k-CAS for our algorithm compared to 3k 4+ 1 for PMwCAS). Second, as a
consequence of its lower complexity, in our algorithm there is a shorter “window” for each
MCAS operation to interfere with other operations by forcing them to help.

To illustrate the second factor above, we examine the helping ratios of the two algorithms
(bottom row of Figure 1). We observe that the helping ratio of our algorithm is considerably
lower than that of PMwCAS. This means that, on average, each operation helps (and is
slowed down by) fewer MCAS operations in our algorithm than in PMwCAS.

In order to quantify the impact of descriptor cleanup on performance in our algorithm, we
also measure the detaching ratio: the number of CASes performed in order to detach (in the
sense of Section 6) finalized MCAS descriptors, divided by the total number of completed
MCAS operations. We find the detaching ratio to be less than 0.001 for every thread count
and array size. This is because finalized MCAS descriptors are constantly being replaced
by ongoing MCAS operations, and thus recycling these detached descriptors requires no
CASes. We conclude that the vast majority of our MCAS operations do not incur any
cleanup CASes.

7.3 Doubly-linked List Benchmark

In this benchmark we operate on a shared ordered set object implemented from a doubly-
linked list. The list supports search and update (insert and delete) operations. Insertions are
done using 2-CAS and deletions are done using 3-CAS. We initialize the list by inserting a
predefined (configurable) number of nodes. During the benchmark, each thread selects an
operation type (search, insert or delete) at random, according to a configurable distribution;
the thread also selects a value at random; it then performs the selected operation with the
selected value.

We perform this benchmark with three initial list sizes (5, 50 and 500 elements). The
operation distribution is: 80% reads, 20% updates (in all our experiments, updates are evenly
distributed among insertions and deletions). As is standard practice, the initial size of the
list is half of the key range. Results are shown in the top row of Figure 2. We also ran
experiments with 50%, 98%, and 100% reads; performance graphs for these less representative
cases are available in the full version of our paper [25].

Our algorithm outperforms PMwCAS for list sizes 5 and 50 by 2.6x and 2.2x on average,
respectively. This shows that under high and moderate contention, our algorithm’s faster
MCAS operations (due to the double effect of lower complexity and lower helping ratio)
compensate for its slower read operations (due to the extra level of indirection). In the low
contention case (list size 500), PMwCAS outperforms our algorithm at low thread counts and
is outperformed at high thread counts. On average, PMwCAS outperforms our algorithm by
1.2x. Under low contention, operations have a low probability to conflict on the same element
and thus the lower read complexity of PMwCAS has a stronger impact on performance than
the lower MCAS complexity of our algorithm.

R. Guerraoui, A. Kogan, V. J. Marathe, and |. Zablotchi

7.4 B+4-tree Benchmark

In this benchmark we operate on a B+-tree which supports search and update (insert and
delete) operations. Insertions and deletions use k-CAS, where k may vary, e.g., depending
on whether the operation led to nodes being split or merged.

Similar to the previous benchmark, we initialize the B-+-tree with a configurable number
of entries; threads then select operations and values at random. We perform the benchmark
with 80% reads and three initial tree sizes (16, 512, and 4000000). As for the previous
benchmark, performance graphs for the 50%, 98% and 100% reads cases are shown in the
full version of our paper [25]. As before, the initial size of the tree is half of the key range.
Results are shown in the bottom row of Figure 2.

We observe a similar behavior to the previous benchmark. Our algorithm outperforms
PMwCAS under high and medium contention (because it performs fewer CASes and triggers
less helping) and is slightly outperformed under low contention (where helping no longer
plays a major role).

8 Related Work

Lock- and wait-free implementations of MCAS. Our algorithm shares similarities with
previous work [31, 53]: as has become standard practice, it uses operation descriptors and a
three-phase design (locking, status-change and unlocking). However, our algorithm introduces
key differences with respect to previous work: it defers the unlocking phase and combines it
with the reclamation of descriptors, without compromising correctness. This deferment has
a triple beneficial effect on complexity: (1) it removes k CASes from the critical path, (2) it
allows these CASes to be amortized across several operations, and (3) it removes the onus of
ABA-prevention from the locking phase, thus shaving off k& further CASes from the latter.
Table 1 summarizes the differences between our algorithm and existing non-blocking
MCAS implementations, while the detailed treatment of each of the numerous prior efforts
is deferred to the full version of our paper [25]. The results in Table 1 reflect the number
of CASes per MCAS operation required for correctness by each algorithm in the common
uncontended case. We note that previous MCAS implementations perform descriptor cleanup
immediately after applying MCAS, and it is not clear how to separate cleanup from these
algorithms while preserving correctness. If we take the cleanup cost into consideration for our
algorithm as well, its theoretical (worst-case) complexity becomes 2k + 1, the same as some
of the previous work. As our experiments in Section 7 demonstrate, however, the number of
CASes in the cleanup phase is negligible in practice. Furthermore, we highlight the fact that
unlike most previous work, including the one that employs 2k + 1 CASes, readers in our case
do not write into the shared memory in the common case, even when cleanup is considered.

General techniques. Transactional memory (TM) [34, 51] can be seen as the most general
approach to providing atomic access to multiple objects. It allows a block of code to be
designated as a transaction and thus executed atomically, with respect to other transactions.
Thus, TM is strictly more general than MCAS. This generality comes at a cost: software
implementations of transactional memory (STM) have prohibitive performance overheads,
whereas hardware support (HTM) is subject to spurious aborts and thus only provides
“best-effort” guarantees. Prior work on nonblocking STMs [21, 40] share goals similar to our
work; namely reduction of overheads in the critical path. However, these works (i) either
employ k extra cleanup CASes [21] on the critical path, incurring precisely the overheads
we avoid in our work, or (ii) employ a vastly more complex “stealing” framework to avoid
overheads from the critical path [40].

4:15

DISC 2020

4:16

Efficient Multi-Word Compare and Swap

Table 1 Comparison of non-blocking MCAS implementations in terms of the number of CAS
instructions required, whether readers perform writes to shared memory or expensive atomic
instructions, and the number of persistent fences (all per k-word MCAS, in the uncontended case).

CASes Readers write P. fences

Israeli and Rappoport [37] 3k+2 Yes N/A
Anderson and Moir [4] 3k+2 Yes N/A
Moir [43] 3k+4 Yes N/A
Harris et al. [31] 3k+1 No N/A
Ha and Tsigas [27, 28] 2k+2 Yes N/A
Attiya and Hillel [7] 6k+2 N/A N/A
Sundell [52] 2k+1 Yes N/A
Feldman et al. [20] 3k—1 Yes N/A
Wang et al. [53] (volatile) 3k+1 No N/A
Wang et al. [53] (persistent) 5k+1 No 2k +1
Our algorithm kE+1 No 2

Prior Work on Persistent MCAS. Pavlovic et al. [46] provide an implementation of MCAS
for persistent memory which differs from ours in the progress guarantee (theirs is blocking)
and hardware assumpions (theirs uses HTM).

Wang et al. [6, 53] introduce the first lock-free persistent implementation, based on the
algorithm of Harris et al. [31]. The main differences with respect to our algorithm are
outlined in Table 1. This algorithm uses a per-word dirty flag to indicate that the word
is not yet guaranteed to be written to persistent memory. Operations encountering a set
dirty flag will persist the associated word and then unset the flag. This technique avoids
unnecessary persistent flushes, but uses 2 extra CAS instructions per target location in order
to manipulate the dirty flag.

In our work we use the recent durable linearizability correctness condition [38], which
assumes a full-system crash-recovery model, but other models of persistent memory can be
explored in this context [2, 8, 14, 26, 47].

9 Conclusion

Atomic multi-word primitives significantly simplify concurrent algorithm design, but existing
implementations have high overhead. In this paper, we propose a simple and efficient lock-
free algorithm for multi-word compare-and-swap, designed for both volatile and persistent
memory. The complementary lower bound shows that the complexity of our algorithm, as
measured in the number of CASes in the uncontended case, is nearly optimal.

—— References

1 Yehuda Afek, Dave Dice, and Adam Morrison. Cache index-aware memory allocation. In
Proceedings of the International Symposium on Memory Management (ISMM), page 55-64.
Association for Computing Machinery, 2011.

2 Marcos K Aguilera and Svend Frglund. Strict linearizability and the power of aborting.
Technical Report HPL-2003-241, HP Labs, 2003.

R. Guerraoui, A. Kogan, V. J. Marathe, and |. Zablotchi

10

11

12

13

14

15

16

17

18

19

Dan Alistarh, William M. Leiserson, Alexander Matveev, and Nir Shavit. Forkscan: Conser-
vative Memory Reclamation for Modern Operating Systems. In Proceedings of the Twelfth
FEuropean Conference on Computer Systems, EuroSys 2017, pages 483498, 2017.

James H. Anderson and Mark Moir. Universal Constructions for Multi-object Operations. In
14th Annual ACM Symposium on Principles of Distributed Computing, pages 184—193, 1995.
James H. Anderson, Srikanth Ramamurthy, and Rohit Jain. Implementing Wait-free Objects
on Priority-based Systems. In 16th Annual ACM Symposium on Principles of Distributed
Computing, pages 229-238, 1997.

Joy Arulraj, Justin Levandoski, Umar Farooq Minhas, and Per-Ake Larson. BzTree: A
High-Performance Latch-free Range Index for Non-Volatile Memory. In /4th International
Conference on Very Large Data Bases, 2018.

Hagit Attiya and Eshcar Hillel. Highly concurrent multi-word synchronization. Theor. Comput.
Sci., 412(12-14):1243-1262, 2011.

Ryan Berryhill, Wojciech M. Golab, and Mahesh Tripunitara. Robust shared objects for
non-volatile main memory. In 19th International Conference on Principles of Distributed
Systems, OPODIS 2015, pages 20:1-20:17, 2015.

Anastasia Braginsky and Erez Petrank. A Lock-free B4+Tree. In Proceedings of the Twenty-
fourth Annual ACM Symposium on Parallelism in Algorithms and Architectures, pages 5867,
2012.

Trevor Alexander Brown. Reclaiming Memory for Lock-Free Data Structures: There Has to
Be a Better Way. In Proceedings of the 2015 ACM Symposium on Principles of Distributed
Computing, pages 261-270, 2015.

Bztree: a high-performance latch-free range index for non-volatile memory. https://github.

com/wangtzh/bztree, 2019.

Diego Cepeda, Sakib Chowdhury, Nan Li, Raphael Lopez, Xinzhe Wang, and Wojciech Golab.
Toward linearizability testing for multi-word persistent synchronization primitives. In 28rd
International Conference on Principles of Distributed Systems, OPODIS 2019, volume 153,
pages 19:1-19:17, 2019.

Nachshon Cohen, Rachid Guerraoui, and Igor Zablotchi. The Inherent Cost of Remembering
Consistently. In Proceedings of the 30th ACM Symposium on Parallelism in Algorithms and
Architectures, SPAA 2018, 2018.

Jeremy Condit, Edmund B. Nightingale, Christopher Frost, Engin Ipek, Benjamin C. Lee,
Doug Burger, and Derrick Coetzee. Better 1/O through byte-addressable, persistent memory.
In Proceedings of the 22nd ACM Symposium on Operating Systems Principles 2009, SOSP
2009, pages 133-146, 2009.

Tudor David, Aleksandar Dragojevic, Rachid Guerraoui, and Igor Zablotchi. Log-Free Con-
current Data Structures. In 2018 USENIX Annual Technical Conference, USENIX ATC 2018,
2018.

Tudor David, Rachid Guerraoui, and Vasileios Trigonakis. Everything you always wanted to
know about synchronization but were afraid to ask. In ACM SIGOPS 24th Symposium on
Operating Systems Principles, SOSP ’18, Farmington, PA, USA, November 3-6, 2013, pages
33-48, 2013.

David Detlefs, Christine H. Flood, Alex Garthwaite, Paul Martin, Nir Shavit, and Guy L.
Steele, Jr. Even Better DCAS-Based Concurrent Deques. In 14th International Conference on
Distributed Computing, pages 59-73, 2000.

Dave Dice, Maurice Herlihy, and Alex Kogan. Fast non-intrusive memory reclamation for
highly-concurrent data structures. In Proceedings of the 2016 ACM SIGPLAN International
Symposium on Memory Management, pages 36—45, 2016.

Simon Doherty, David L. Detlefs, Lindsay Groves, Christine H. Flood, Victor Luchangco,
Paul A. Martin, Mark Moir, Nir Shavit, and Guy L. Steele, Jr. DCAS is Not a Silver Bullet
for Nonblocking Algorithm Design. In Proceedings of the Sixteenth Annual ACM Symposium
on Parallelism in Algorithms and Architectures, pages 216224, 2004.

4:17

DISC 2020

https://github.com/wangtzh/bztree
https://github.com/wangtzh/bztree

4:18

Efficient Multi-Word Compare and Swap

20
21
22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

Steven D. Feldman, Pierre LaBorde, and Damian Dechev. A Wait-Free Multi-Word Compare-
and-Swap Operation. International Journal of Parallel Programming, 43(4):572-596, 2015.
Keir Fraser. Practical lock-freedom. PhD thesis, University of Cambridge, UK, 2004.

Michal Friedman, Maurice Herlihy, Virendra J. Marathe, and Erez Petrank. A persistent
lock-free queue for non-volatile memory. In Proceedings of the 23rd ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming, PPoPP 2018, pages 28-40, 2018.
Michael Greenwald. Non-blocking synchronization and system design. ph.d. thesis, stanford
university, 1999.

Michael Greenwald. Two-handed emulation: how to build non-blocking implementation of
complex data-structures using DCAS. In 21st Annual ACM Symposium on Principles of
Distributed Computing, pages 260—269, 2002.

Rachid Guerraoui, Alex Kogan, Virendra J. Marathe, and Igor Zablotchi. Efficient multi-word
compare and swap. ArXiv preprint arXiv:2008.02527, 2020. URL: https://arxiv.org/abs/
2008.02527.

Rachid Guerraoui and Ron R. Levy. Robust Emulations of Shared Memory in a Crash-Recovery
Model. In 24th International Conference on Distributed Computing Systems (ICDCS 2004),
pages 400-407, 2004.

Phuong Hoai Ha and Philippas Tsigas. Reactive Multi-Word Synchronization for Multiproces-
sors. In 12th International Conference on Parallel Architectures and Compilation Techniques
(PACT 2003), pages 184-193, 2003.

Phuong Hoai Ha and Philippas Tsigas. Reactive Multi-word Synchronization for Multiproces-
sors. J. Instruction-Level Parallelism, 6, 2004.

Tim Harris, James R. Larus, and Ravi Rajwar. Transactional Memory: 2nd Edition. Morgan
& Claypool, 2010.

Timothy L. Harris and Keir Fraser. Language support for lightweight transactions. In
Proceedings of the 2003 ACM SIGPLAN Conference on Object-Oriented Programming Systems,
Languages and Applications, pages 388-402, 2003.

Timothy L. Harris, Keir Fraser, and Ian A. Pratt. A Practical Multi-word Compare-and-Swap
Operation. In 16th International Conference on Distributed Computing, pages 265279, 2002.
Maurice Herlihy. A methodology for implementing highly concurrent data objects. ACM
Transactions on Programming Languages and Systems, 15(5):745-770, November 1993.
Maurice Herlihy, Victor Luchangco, Mark Moir, and William N. Scherer, III. Software
Transactional Memory for Dynamic-sized Data Structures. In Proceedings of the Twenty-
second Annual Symposium on Principles of Distributed Computing, pages 92-101, 2003.
Maurice Herlihy and J. Eliot B. Moss. Transactional Memory: Architectural Support for
Lock-free Data Structures. In 20th Annual International Symposium on Computer Architecture,
pages 289-300, 1993.

Maurice Herlihy and Jeannette M Wing. Linearizability: A correctness condition for concurrent
objects. ACM Transactions on Programming Languages and Systems, 12(3):463-492, 1990.
Intel. Intel® 64 and TA-32 Architectures Software Developer’s Manual Com-
bined. https://software.intel.com/sites/default/files/managed/39/c5/
325462-sdm-vol-1-2abcd-3abcd.pdf, 2018.

Amos Israeli and Lihu Rappoport. Disjoint-Access-Parallel Implementations of Strong Shared
Memory Primitives. In Proceedings of the Thirteenth Annual ACM Symposium on Principles
of Distributed Computing, pages 151-160, 1994.

Joseph Izraelevitz, Hammurabi Mendes, and Michael L. Scott. Linearizability of persistent
memory objects under a full-system-crash failure model. In Distributed Computing - 30th
International Symposium, DISC 2016, pages 313-327, 2016.

Justin J. Levandoski, David B. Lomet, and Sudipta Sengupta. The Bw-Tree: A B-tree for
New Hardware Platforms. In Proceedings of the 2013 IEEE International Conference on Data
Engineering (ICDE 2013), pages 302-313, 2013.

https://arxiv.org/abs/2008.02527
https://arxiv.org/abs/2008.02527
https://software.intel.com/sites/default/files/managed/39/c5/325462-sdm-vol-1-2abcd-3abcd.pdf
https://software.intel.com/sites/default/files/managed/39/c5/325462-sdm-vol-1-2abcd-3abcd.pdf

R. Guerraoui, A. Kogan, V. J. Marathe, and |. Zablotchi

40

41
42

43

44

45

46

47

48

49

50

51

52

53

54

Virendra J. Marathe and Mark Moir. Toward high performance nonblocking software trans-
actional memory. In Proceedings of the 18th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, PPOPP 2008, Salt Lake City, UT, USA, February 20-23,
2008, pages 227-236. ACM, 2008.

Paul E. McKenney. Is parallel programming hard, and, if so, what can you do about it?, 2017.
Paul E. McKenney and John D. Slingwine. Read-Copy Update: Using Execution History to
Solve Concurrency Problems. In Parallel and Distributed Computing and Systems, 1998.
Mark Moir. Transparent Support for Wait-Free Transactions. In 11th International Workshop
on Distributed Algorithms, pages 305-319, 1997.

Aravind Natarajan and Neeraj Mittal. Fast Concurrent Lock-free Binary Search Trees. In
Proceedings of the 19th ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, pages 317-328, 2014.

The OpenMP API specification for parallel programming. https://www.openmp.org/, 2019.
Matej Pavlovic, Alex Kogan, Virendra J. Marathe, and Tim Harris. Persistent Multi-Word
Compare-and-Swap. In ACM Synposium on Principles of Distributed Computing, 2018.
Steven Pelley, Peter M. Chen, and Thomas F. Wenisch. Memory persistency: Semantics for
byte-addressable nonvolatile memory technologies. IEEE Micro, 35(3):125-131, 2015.
Benchmarking framework for index structures on persistent memory. https://github.com/
wangtzh/pibench, 2019.

Persistent multi-word compare-and-swap (PMwCAS) for NVRAM. https://github.com/
microsoft/pmwcas, 2019.

Manuel Péter and Jesper Larsson Traff. Stamp-it, amortized constant-time memory reclamation
in comparison to five other schemes. In Proceedings of the 23rd ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming, PPoPP 2018, pages 413-414, 2018.

Nir Shavit and Dan Touitou. Software Transactional Memory. In 14th Annual ACM Symposium
on Principles of Distributed Computing, pages 204213, 1995.

Hakan Sundell. Wait-Free Multi-Word Compare-and-Swap Using Greedy Helping and Grabbing.
International Journal of Parallel Programming, 39(6):694-716, 2011.

Tianzheng Wang, Justin Levandoski, and Per-Ake Larson. Easy Lock-Free Indexing in
Non-Volatile Memory. In 34th IEEE International Conference on Data Engineering, 2018.
Haosen Wen, Joseph Izraelevitz, Wentao Cai, H. Alan Beadle, and Michael L. Scott. Interval-
based memory reclamation. In Proceedings of the 23rd ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, pages 1-13, 2018.

4:19

DISC 2020

https://www.openmp.org/
https://github.com/wangtzh/pibench
https://github.com/wangtzh/pibench
https://github.com/microsoft/pmwcas
https://github.com/microsoft/pmwcas

	Introduction
	System Model
	Volatile Memory
	Persistent Memory

	Impossibility
	Volatile MCAS with k+1 CAS
	High-level Description
	Technical Details

	Persistent MCAS with k+1 CAS and 2 Persistent Fences
	Memory Management
	Evaluation
	Experimental Setup
	Array Benchmark
	Doubly-linked List Benchmark
	B+-tree Benchmark

	Related Work
	Conclusion

