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Abstract
Query planning is essential for graph query execution performance.
In distributed graph processing, data partitioning and messaging sig-
nificantly influence performance. However, these aspects are difficult
to model analytically, which makes query planning especially chal-
lenging. This paper introduces scouting queries, a lightweight mech-
anism to gather runtime information about different query plans,
which can then be used to choose the “best” plan. In a pipelined,
depth-first-oriented graph processing engine, scouting queries typ-
ically execute for a brief amount of time with negligible overhead.
Partial results can be reused to avoid redundant work. We evaluate
scouting queries and show that they bring speedups of up to 8.7× for
heavy queries, while adding low overhead for those queries that do
not benefit.

CCS Concepts
• Information systems → Query planning; Graph-based database
models; Parallel and distributed DBMSs.
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1 Introduction
Graph queries enable the interactive exploration of graphs, similar
to what SQL offers for relational databases. Graph queries focus
on edges, i.e., the connections between vertices, enabling users to
submit queries with any pattern, filter, or projection. For example,
the following simple SQL/PGQ [22] query:
SELECT

p_brand, p_type, p_size,
COUNT(DISTINCT supplier) AS supplier_cnt

FROM GRAPH_TABLE (tpch
MATCH (p IS part)-[ps IS partsupp]->(s IS supplier)
WHERE

p.p_brand <> 'Brand#45'
AND p.p_type NOT LIKE 'MEDIUM POLISHED%'
AND p.p_size IN (49, 14, 23, 45, 19, 3, 36, 9)
AND s.s_comment NOT LIKE '%Customer%Complaints%'

COLUMNS(p.p_brand AS p_brand, p.p_type AS p_type,
p.p_size AS p_size, s.s_suppkey AS supplier)

)
GROUP BY p_brand, p_type, p_size
ORDER BY supplier_cnt DESC, p_brand, p_type, p_size

counts the number of suppliers per part brand, type, and size with
some rather complex constraints. Graph queries are a highly chal-
lenging workload. The number of edges traversed by a query can
easily cause a combinatorial explosion of the intermediate and fi-
nal results. Therefore, efficient query planning is key to improving
graph query performance. The query plan dictates the order of pat-
tern matching operations, i.e., which vertex or edge is to be matched
first, second, and so on. An initial suboptimal decision by the graph
query planner can negatively impact the entire query execution.
Queries over large distributed graphs in particular can suffer from
significantly worse performance. In our simple query example above
(which represents TPC-H [7] query 16, see Section 4 for more de-
tails), matching from the PART first results in almost 4× worse
performance than starting from SUPPLIER.
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However, computing a performant query plan is notoriously dif-
ficult. The problem is exacerbated in the case of distributed query
engines due to the need to additionally account for data partition-
ing, for messaging and communication costs. Properly modeling
partitioning and the cost of networking for query planning is fairly
complex (if not outright impossible).

The classic techniques for query planning look similar to the ones
used in classic relational databases and primarily use data statistics
in order to compute the potential cardinality of each of the matches.
Computing the cardinality depends highly on the query; typically, the
more complex the query (e.g., long patterns and extensive filtering),
the harder it is for the query planner to produce a good estimate.

In this paper, we introduce scouting queries as a pragmatic solu-
tion to improve query planning and enhance the overall performance
of distributed graph pattern matching. Scouting queries are short
exploratory executions of the actual query used to benchmark the per-
formance of different query plans in order to find the best-performing
plan. Scouting queries follow these steps:

(1) Take the top 𝑁 plans with traditional query planning.
(2) Execute these 𝑁 plans with a short timeout (e.g., 50ms) and

record statistics of their execution. If the system detects that
the plan is close to completion, it simply allows this plan to
run to completion.

(3) Combine the per-plan cardinality metric of the traditional
query planner with the scouting query statistics and choose
the best candidate plan.

(4) Execute the selected plan and, if there are opportunities to
reuse the work of scouting queries, merge the outputs.

Scouting queries are better suited for large graphs and queries,
as are typical for distributed graph engines, with any potential over-
heads amortized by the gains of the improved query plan. Addition-
ally, scouting queries best fit engines with pipelined execution of
pattern matching, i.e., engines that eagerly push intermediate results
out as final. On top of such engines, the scouting query metrics in-
clude the actual final-result matching throughput, which gives a very
good indication of the actual performance of the engine. However,
as we detail in Section 3, scouting queries can be applied to any
graph-processing engine.

We prototype scouting queries on top of the PGX.D/Async en-
gine [34] which uses distributed depth-first-oriented matching, ea-
gerly pushing intermediate matches out as final. We evaluate our
prototype on several LDBC-inspired queries [39] and 12 actual TPC-
H queries expressed as graph queries. We find that the total workload
execution time improves by 3.3× and 1.7× for LDBC and TPC-H,
respectively, with a maximum speedup of 8.7× on a TPC-H query
and only two queries where scouting selects a worse query plan than
the default planner.

The rest of this paper is organized as follows: Section 2 discusses
the background and related work. Sections 3 and 4 present the
design and implementation/evaluation of scouting queries. Section 5
concludes this paper and highlights possible future work.

2 Background and Related Work
Property Graph. In a graph, the link between two entities is ma-
terialized and easily traversable when executing pattern-matching
queries. This gives a solid advantage to graph-oriented workloads

compared to the classic relational model, which relies on joins to
express links between entities. Our solution is based on the property
graph model (but could be easily ported to RDF [5]), which repre-
sents the graph topology as vertices and edges, and stores properties
and labels separately. Properties can be associated to any vertex or
edge and take the form of typed key-value pairs. Labels are key-only
and represent types or categories, e.g., person or animal. Separating
the topology from properties avoids the proliferation of edges and
allows for quick traversals of the graph.

Graph Querying and Pattern Matching. Several graph query lan-
guages exist, such as PGQL [4], SPARQL [6], Gremlin [1], and
Cypher [3]. In its simplest form, graph querying makes it possible to
find patterns in graphs, with filters and projections. In this work, we
use SQL/PGQ [22], an extension of SQL for graph queries. Projec-
tion and aggregation operations are the same as in SQL, including
GROUP BY and ORDER BY, but SQL/PGQ adds support for graph
patterns and vertex and edge labels. It matches homomorphic pat-
terns and it projects or aggregates the requested data – including
arbitrary expressions – out of the matched vertices and edges.

Graph pattern-matching traversals traditionally follow a breadth-
first (BFT) or depth-first traversal (DFT) execution, or nowadays a
mix of the two [41]. However, new database research trends point
to adopting multi-way joins, termed worst-case optimal joins, as
a way to avoid intermediate result explosion and to support graph
pattern matching in relational data systems [25]. Additionally, recent
research in graph mining [19, 20, 23, 26, 32, 40, 43] employs various
techniques such as subgraph-centric or edge-centric matching to
perform graph pattern matching.

2.1 Query Planning
Query planning is a fundamental step of all declarative query lan-
guages. Since the user only describes the computation logic, it is
the duty of the data management engine to come up with an execu-
tion sequence that returns the requested data. These engines have a
limited set of basic operations that can be composed together and
executed one after the other. The process of coming up with the right
sequence of operations is called query planning, where a query plan
is a specific scheduling of operations.

Table 1 describes the set of basic match operators that any (vertex-
centric) distributed query engine needs to support for query planning
in one way or another. The performance of any graph engine is
highly influenced by the query-plan selection. Query plans dictate
the pattern-matching order, i.e., which vertex or edge is matched
first, second, and so on, regardless of the engine’s execution model.

Every query which involves more than a single vertex match has
multiple query plans. For example, without inspection matches, a
simple pattern of two directed hops – MATCH (a)->(b)->(c)
– could be planned as (a)->(b)->(c) or as (c)<-(b)<-(a).
Adding inspection matches exponentially increases the number of
possible plans introducing (b)->(c)=>(b)<-(a) and
(b)<-(a)=>(b)->(c).*

For this reason, traditional query-planner methods come up with
different plans for the same query, and pick the best one according to
a cost metric. The cost of a query plan QP (𝑐𝑜𝑠𝑡 (𝑄𝑃) = 𝑋 ) represents

*->, <- and => are the query planner operators, i.e., outgoing and incoming edge
match, and inspection match, respectively.
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the predicted computational “costs” of the query in arbitrary units
of computations. The cost can be computed based on a number of
factors. One of the most important in graph querying is the cardi-
nality of the individual matches. The cardinality of a match is an
estimation of the number of data points it needs to process.

Of course, different query planners can quantify different aspects
of the query plan. Different operators can require different amount of
work, and thus have different costs. Filters can be taken into consid-
eration in order to reduce the selectivity of operations based either on
fixed heuristics or static and runtime statistics. Choosing the optimal
query plan based on cost-based analysis is a well-explored topic and
is outside of the scope of this paper. Our solution, namely scout-
ing queries, builds directly on top of the traditional query planning
approaches.

2.2 Related Work
With data sets and queries becoming increasingly complex, a tradi-
tional static cost-based query optimization as introduced by Selinger
et al. [35] can become inefficient. The statistics and assumptions on
which this dynamic programming approach relies can be inaccurate
or sometimes even invalid. The limitations of the optimize-then-
execute paradigm have led to a plethora of new approaches that rely
on runtime feedback to correct the query plan [21]. This class of
techniques is called adaptive query processing.

Runtime statistics refinement [8, 14–18, 36, 37] is a technique
where statistics collection is triggered during query execution, re-
sulting in little to no overhead. The newly collected statistics can be
used for current or future query execution. Proactive re-optimization
is another technique where the query optimizer is invoked when esti-
mation violations occur [11, 24, 27, 28, 31]. Further improvements
such as leveraging intermediate results or strategically delaying
re-optimization have also been proposed [24, 28, 45]. Multi-plan
choices have the query optimizer concurrently run multiple query
plans, sometimes on different data subsets [9, 10, 12]. This approach
is the most closely related to our scouting queries, but our solution
is applied on distributed graph query execution with emphasis on
the engine’s throughput within a specified time frame, rather than
on a restricted subset(s) of the data. To the best of our knowledge,
this particular emphasis has not been previously documented in the
literature. Approaches such as Smooth Scan [13] avoid sensitivity to
the quality of the statistics and estimations.

A hot topic in database research is embedding machine-learning
models in the query optimizer to improve its efficiency. These vary

Table 1: Typical graph operators used in a distributed graph
pattern matching engine.

Operator SQL/PGQ Description
vertex match (x) Matches a vertex
outgoing
edge match

(x)->(y) Matches an outgoing edge
from the current vertex (x)

incoming
edge match

(x)<-(y) Matches an incoming edge to
the current vertex (x)

inspection
match

(x)->...
(y)->(x)

Transports the computation to
an already matched vertex (x)

from using supervised learning on previous execution plans to gener-
ating plans for future queries [33], to training recommender systems
on textual similarities between SQL queries, with the assumption that
textually similar queries should have similar query plans [44]. Using
latency to reward a reinforcement learning model in the query opti-
mizer [30] has also been proposed. Adjusting inaccurate statistics
by learning from the query planner’s past mistakes [37] comple-
ments those works. Somehow similar to scouting queries, Trummer
et al. [42] propose learning about the best join order while training
on slices of data until the best order is found. Other approaches
consist of enhancing instead of substituting the query optimizer, like
BAO [29], which learns the best execution plans for past queries
and chooses from multiple query plans suggested by a traditional
query optimizer. While these approaches suffer from limitations,
they herald even greater improvement possibilities [33]. Scouting
queries is a pragmatic approach to offer low-overhead optimized
distributed graph query plans.

3 Scouting Queries
Scouting queries aim to augment traditional query planning, solving
its shortcomings by gathering information about the actual final
runtime of the pattern matching part of graph queries. They do so by
executing various query plans of the same query for short duration
and collecting statistics to help decide which plan will be the best
once fully deployed.

3.1 Query Planning to Scouting Query Execution
In what follows, we detail the steps to integrate scouting queries in a
(distributed) graph engine.

Preselect top 𝑁 plans. We can use any traditional planner to preselect
the top 𝑁 query plans. Most algorithms assign an explicit confidence
value indicating how likely a query plan is to be the optimal one.
This confidence is internally used for ranking the 𝑁 query plans at
the beginning, but can also be used at a latter step to combine the
power of traditional query planning with scouting queries.

Run scouting queries. We create a scouting query for each of the 𝑁

query plans. Scouting queries are short executions of a query, which
run for a limited time (in the order of milliseconds) and collect
runtime information about their execution. Note that graph queries
typically include pattern matching followed by post processing, such
as GROUP BY and ORDER BY. Scouting queries execute only the
pattern matching part of the query. We use these executions to choose
the best performing query plan – out of 𝑁 – based on the collected
data. In order to collect statistics along the whole matching pattern,
it is important for scouting queries to execute on top of a depth-
first-oriented engine (DFT), i.e., an engine that eagerly pipelines
intermediate results out as final. Breadth-first-oriented (BFT) engines
(e.g, Neo4j [2]) collect all intermediate results per each match and
then proceed to subsequent matches.

On the one hand, scouting must run almost instantly compared to
the actual execution of the query in order to not add high overhead.
On the other hand, scouting should have enough time to explore the
complete query pattern. One should ideally configure the time limit
for each scouting query based on the expected performance of the
graph engine. For example, if the engine is capable of delivering
throughput in the million matches per second, running the scouting
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query for a few milliseconds is enough for almost any query. One
must also account for the overhead of starting the query. Altogether,
scouting is best-suited for large graphs and/or large queries, where
the benefits can easily outweigh the overhead.

Scouting query statistics policies. The best scenario is for scouting
to find some final (output) results of pattern matching. The out-
put throughput can be the main indication of how good the query
plan of the scouting query is. Our general assumption is that the
throughput of a limited execution of a query plan is roughly the
same as that of the entire execution (the experimental results in
Section 4 validate this assumption). This means that if the query
plan QP1 returns more results than query plan QP2 in the same
amount of time, we expect query plan QP1 to be better than plan
QP2. Our assumption could fail in theory, as the engine could be
lucky while executing a worse query plan. Imagine a query SELECT
COUNT(*) MATCH (a)->(b) WHERE ID(a) < 10 where
the best query plan starts from matching (a) because of the filtering
(assuming all IDs are > 0) and continues to the matching of (b). In
some extreme cases, the bad plan starting matching from (b) can
have higher or equal throughput during scouting, e.g., it matches
(b) and follows to (a) with 𝐼𝐷 (𝑎) = 1...5.

In order to alleviate this problem, we can mix the scouting find-
ings with the confidence values of the default query planner. The
query planner returns the confidence for each of the 𝑁 preselected
query plans. The formula for picking the best query plan can be
as follows: 𝑎𝑟𝑔𝑚𝑎𝑥 (𝑐𝑜𝑛𝑓 𝑖𝑑𝑒𝑛𝑐𝑒 (𝑄𝑃) ∗ (𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 (𝑄𝑃) + 1)). Of
course, depending on the engine and the traditional query planner,
one can devise different policies for weighing the query-plan se-
lection. (In our evaluation, Section 4, we use for instance only the
scouting query performance as the selection metric.)

Of course, there are queries that could have a small number or
no results, which means throughput 0 for all scouting queries. To
solve that issue, the engine uses a secondary metric (which requires
deeper integration to the execution engine). The engine records the
number of visited vertices for each vertex match and combines those
as a metric. Matches at latter parts of the query mean that results
flow faster towards the output, i.e., the matching happens faster.

Additionally, depending on the engine and the optimization cri-
terion, any other statistics/metrics can be deployed. The aforemen-
tioned metric optimizes for the engine performance. One can easily
create a metric that aims for a different optimization criterion, e.g.,
when the engine is low on memory, it can prefer memory consump-
tion over performance. In that case, while executing a scouting query,
it can monitor the memory consumption and pick the query plan
with the lowest consumption. Another policy, important in cloud
environments, is the one for minimizing the overall engine cost. To
minimize the cost for query execution, the engine can monitor the
usage of different modules (at their price) during scouting execution
and pick the query plan with the potentially lowest price for the user.

Execution of scouting queries. Every scouting query executes starting
from a set of vertices. If the graph vertex is fixed by the query,
e.g., (a)->(b)->(c) WHERE id(a) = 0, we use the filter
for bootstrapping the computation – for the plans that start with (a).
If there are multiple options for the starting vertex, we select the
starting vertices randomly. By choosing the vertices randomly, the

collected statistics are more representative compared to incremental
vertex selection, e.g., in sorted order based on the vertex ID.

The actual execution of the scouting is up to the engine. As we
mentioned above, in order for the queries to be short, the execution
must be somehow limited. One way is to limit the execution time
of the queries by the engine. To support this the engine needs an
efficient support for execution cancellation. Using cancellation, the
engine runs each of the scouting queries for the given amount of
time and then the query is stopped.

Another approach at obtaining meaningful results in a short time
is to limit the parts of the graph that are traversed. Instead of tra-
versals navigating all edges, the engine randomly chooses edges
followed for pattern matching at each step. In this case, the scouting
queries are performing a random walk with the given query on the
searched graph. This can be implemented by adding a random filter
on every element of the scouting query that returns false with a cer-
tain probability, thus pruning further exploration of some paths. This
approach is not as clean or effective as the time-capped method of
the previous paragraph, but can be used to deploy scouting queries in
BFT-based engines, which have no control of pushing output results
out eagerly.

Furthermore, while monitoring the number of matches for each
vertex match, the engine keeps track on whether the scouting query
already traversed significant parts of the graph. In that case, it gives
up on the execution of other scouting queries and lets the engine
execute the current plan. To minimize the potential of running a
worse query plan, we execute scouting queries in order of the default
query-planner confidence. We predict when a query plan should
continue by estimating the amount of remaining time after a scouting
query. For example, if the time limit for running each scouting query
is 10ms and we have 5 scouting queries, and if the first scouting
query traverses 40% of the graph in that time, we then make the
assumption that the query will continue with a similar pace, hence it
could finish execution in another 10-20ms in comparison to running
the remaining four scouting queries in 40ms.

3.2 Reusing Scouting Query Results
One potential overhead of scouting is when throwing away perfectly
correctly-computed query matches. We can alleviate this issue by
introducing scouting query result reusing. By definition, all query
plans return the same output results, but they can differ in the order
that intermediate results are expanded to generate final. DFT-oriented
engines return output matches eagerly compared to BFT. DFT en-
gines explore systematically all the matching subtrees with the same
prefix and once they move to another prefix there are no more results
with that same prefix.

We use this observation for building query-plan groups. If two
query plans have the same matching prefix, they belong to the same
group. For instance, if we set the prefix length to one (i.e., group
query plans which start with the same vertex match) for the query
example MATCH (a)->(b)->(c) we have following grouping
of query plans, starting from different vertices:

• start from (a): (a)->(b)->(c), (a)->(b)=>(c)<-(b)
• start from (b): (b)<-(a)=>(b)->(c), (b)<-(a)=>(c)<-(b),

(b)->(c)=>(b)<-(a), (b)->(c)=>(a)->(b)
• start from (c): (c)<-(b)<-(a), (c)<-(b)=>(a)->(b)



Better Distributed Graph Query Planning With Scouting Queries GRADES & NDA ’23, June 18, 2023, Seattle, WA, USA

The query plans within the same group can directly share scouting
results and the finally selected plan will reuse those results in its
execution. The results can be shared if a query traverses a whole
subtree for the given matched prefix. For our example with matched
prefix (a=1)->(b=2) it means traversing and trying to match
starting from root vertex (2). Thanks to DFT, we know that there
are no further matches after traversing the whole subtree and we do
not need to visit that part of the graph with the same prefix again.

For reusing the results, we first split the query plans into groups
according to their prefix. The length of the prefix can be set stati-
cally or dynamically after analyzing the top 𝑁 scouting query plans.
Because the engine needs to reuse results of scouting from the same
group, it keeps track of which matched prefixes were fully traversed
and the result for those prefixes. After running the next scouting
query from the same group, the engine should avoid those specific
traversed prefixes in order not to duplicate the same work. After
finishing all scouting queries from the group, we have a set of tra-
versed prefixes and their results. After selecting the winning query
plan, we can easily continue the computation from the non-visited
matched prefixes and the final output is the union of results from the
executed query and all the partial results collected during scouting.
Notice that even when each group contains a single query plan, we
can reuse the results collected during scouting execution.

The above-mentioned approach is the preferred approach for
reusing the results. Another possibility for avoiding duplicated work
is to mark all the matched and visited paths in the graph and store
results for each of them. One can notice that this approach is memory
consuming. Nevertheless, compared to the prefix approach, this
can be used together with the random-walk scouting queries or
potentially other approaches.

It is worth noting that result sharing with prefixes further avoids
re-traversing the non-matching paths of those prefixes. In our previ-
ous example, the (a=1)->(b=2) prefix could lead to 10 matched
(c) vertices and 20M non matched, e.g., because of a filter WHERE
c.value = 43. Having completed this prefix with scouting cov-
ers both the matching and non-matching cs.

4 Evaluation
In this Section, we evaluate the potential benefits, as well as the
overhead of scouting queries in distributed graph queries.

4.1 Experimental Settings
Implementation and Configuration. We implement a prototype of
scouting queries on top of the PGX.D/Async graph query and pattern
matching engine [34], which is the perfect target, as it is a distributed
engine with eager, DFT-style completion of pattern matching. We
configure the solution to scout the top 𝑁 + 1 query plans, where 𝑁

is the number of neighbor matches per query. For instance, pattern
(a)->(b) has 𝑁 = 1, hence we run two scouting queries (for
(a)->(b) and (b)<-(a)). This way, we allow more scouting
queries for longer patterns, which are expected to also result in
longer queries, while maintaining the overhead relatively contained.
Furthermore, PGX.D/Async uses intermediate-result buffering for
remote edges, which can result in intermediate results flowing slower
towards output. To reduce the effect of buffering in the short scout-
ing execution (which could bias the scouting metrics), we reduce
the size of buffers by 1

16 for scouting queries. Alternatively, one

could incorporate the number of buffered intermediate results in the
scouting performance metric, weighing intermediate results in the
later parts of the query plan more than those in earlier parts.

Additionally, we configure scouting queries with 50ms timeout
and use only the scouting query throughput as the query plan selec-
tion criterion, such that we evaluate strictly the efficiency of scouting
queries. Finally, we do not implement the result sharing solutions
described in Section 3.2, thus the scouting query executions are strict
overhead on top of the selected query plan execution.

Query Planning in PGX.D/Async. Planning uses the operators de-
scribed in Table 1 to devise potential logical query plans. It then
rewrites the logical query plan with a cost-based optimizer, imple-
mented using dynamic programming, that is based on the following
heuristics [34, 41]: (i) heavily filtered vertices are preferred for the
earlier stages of the plan, (ii) inspection matches increase the plan’s
cost, (iii) the cost of an edge match is approximately 𝑙𝑜𝑔 of the cost
of a neighbor one, as it can be implemented with a binary search in
the neighbor list of the source vertex, and (iv) forward and reverse
neighbor matches are equally weighed.

Hardware. We use a cluster of eight machines, each with two Intel
Xeon CPU E5-2699 v3 2.30GHz CPUs with 18 cores (hyperthreads
disabled/DVFS enabled), for 36 cores in total. Each processor con-
tains 384GB of DDR4-2400 memory and LSI MegaRAID SAS-3
3108 storage. Each machines includes a Mellanox Connect-X Infini-
Band card, all connected to an EDR 100Gbit/s InfiniBand network.

Graphs and queries. Our experiments use two classic graphs and
the corresponding queries. First, we use the latest LDBC graph [39]
(scale factor 300, with 817 million vertices and 5.27 billion edges)
and a set of 12 queries derived from the LDBC Business Intelli-
gence (BI) standard queries [38]. This is not the official LDBC
standard. The scope of this evaluation covers user-provided fixed-
pattern queries, thus the latest LDBC BI queries are outside of the
scope of this work. We use the older/first version of BI: Out of
the 24 original queries, four represent simple path patterns (i.e.,
Q2, Q4, Q12, Q23) and are directly used in our experiments. The
remaining ones either include regular path queries (e.g., MATCH
(a)-/:knows*/->(b)), or include subqueries in projection or
filters (e.g., SELECT ... FROM (SELECT ...) ...). We
devise simplified variants of these queries in order to support the
benchmark specification as closely as possible. For example, the
original Q8 is:
SELECT
relatedTag, COUNT(DISTINCT cmnt) AS count

FROM GRAPH_TABLE (ldbc
MATCH
(m IS Post|cmnt)-[IS postHasTag|cmntHasTag]->(tag IS Tag),
(c IS Cmnt)-[IS cmntReplyOfC|cmntReplyOfP]->(m),
(c)-[IS cmntHasTag]->(relatedTag IS Tag)

WHERE
tag.name = 'Genghis_Khan'
AND NOT EXISTS
(SELECT * MATCH (c)-[IS cmntHasTagTag]->(tag))

COLUMNS(relatedTag.t_name AS relatedTag, c.aa_id AS cmnt)
)
GROUP BY relatedTag
ORDER BY count DESC, relatedTag
FETCH FIRST 100 ROWS ONLY
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from which we remove the subquery. We plan to extend the SQL/PGQ
support of scouting queries in future work.

Second, we express the classic TPC-H [7] relational database
workload as a graph (both the data and the queries, scale factor
300, with 2.36 billion vertices and 6.14 billion edges) and optimize
with scouting queries. For instance, the workload includes region
vertices, which are connected with countries, in which customer
vertices reside. With SQL/PGQ, Q3 is expressed as:
SELECT

l_orderkey,
SUM(l_extendedprice * (1 - l_discount)) AS revenue,
o_orderdate,
o_shippriority

FROM GRAPH_TABLE (tpch
MATCH

(l IS lineitem)-[IS lineitem_orders]->(o IS orders),
(o)-[IS orders_customer]->(c IS customer)

WHERE
c.c_mktsegment = 'BUILDING'
AND o.o_orderdate < DATE '1995-03-15'
AND l.l_shipdate > DATE '1995-03-15'

COLUMNS(l.l_orderkey AS l_orderkey,
l.l_extendedprice AS l_extendedprice,
o.o_orderdate AS o_orderdate,
o.o_shippriority AS o_shippriority)

)
GROUP BY l_orderkey, o_orderdate, o_shippriority
ORDER BY revenue DESC, o_orderdate
FETCH FIRST 100 ROWS ONLY

We rewrite and use the 12 TPC-H standard queries that require
no subquery support.

Methodology. Our approach affects primarily the pattern-matching
part of graph queries and is oblivious to the post-processing oper-
ators, such as GROUP BY and ORDER BY. Accordingly, in our
experiments, we report the pattern matching execution time for both
non-scouting and scouting and additionally the scouting execution
overhead from all 𝑁 queries for scouting.

We perform 10 runs of each query and report the median latency.
Scouting is not deterministic: With some queries, scouting could
dictate different query plans in different runs. We thus report the
plans that are selected, and how often they did so, under the result
bars. For each experiment set, we execute the queries in a per-graph
round-robin fashion in order to reduce caching effects.

4.2 Results
Figures 1 and 2 include the results of PGX.D/Async with and without
scouting queries on LDBC and TPC-H workloads, respectively.

Overall. Scouting improves the total workload execution time, in-
cluding scouting overhead, by 3.3× for LDBC and 1.7× for TPC-H.

For both LDBC and TPC-H, we see that scouting queries result
in the same query plan as the default query planner for only 4 out
of 22 queries. Interestingly, even for these four queries the overall
performance is slightly faster with scouting queries, even though we
have not enabled result reuse. Our analysis shows that the scouting
query warmup gives a good performance boost to the actual execu-
tion (especially for Q4 on LDBC that is tiny). The exact overhead
from scouting queries is shown in orange and depends on (i) the
query execution duration and (ii) the number of neighbor matches
the query includes. As mentioned earlier, we run 𝑁 + 1 scouting
queries, where 𝑁 is the number of neighbor matches in that query.

Table 2: Scouting query execution statistics of TPC-H Q7. Visited
and Matched correspond to vertices.

QP1 Visited Matched QP3 Visited Matched
0 N1 225 18 N2 225 18
1 s 5488 5488 c 78683 78683
2 li 3179315 966944 o 746157 746157
3 o 663104 663104 li 2594222 787010
4 c 370814 370814 s 533522 533522
5 N2 370814 14877 N1 533522 21551

A second class of queries are the ones that marginally benefit
from scouting queries (i.e., Q23 on top of LDBC and Q10 on TPC-
H). For those, scouting queries cause the engine to use a different
query plan, however, this plan is not so much faster than the original
plan. For instance, query Q10 on TPC-H benefits by 40% (280ms
faster) with the new query plan, but the scouting query overheads
(𝑁 = 4) cancel this speedup.

A third category includes queries that have overall worse perfor-
mance with scouting. This happens either because the queries are
very short (Q2, Q4, Q15, Q17 on LDBC) and the scouting overheads
are higher than any possible benefits, or because scouting queries
choose a worse plan than the default query planer. The latter only
happens to Q20 from LDBC and Q19 from TPC-H. In Q20/LDBC,
scouting consistently in all 10 runs returns query plan 2, while in
Q19/TPC-H, scouting takes the wrong decision 6 out of 10 runs,
resulting in 1.6× slower execution time, 1.8× with the scouting over-
head. In both cases, the scouting timeout is too short to select the
best query plan. For Q19/TPC-H, the collected statistics are almost
identical in both query plans, hence it is a matter of “luck”, which
plan is selected. When choosing the optimal timeout, one must strike
a balance between collecting more precise statistics and the overhead
of executing scouting queries.

The five LDBC queries that are altogether slower with scouting
are relatively short (average execution time of 1.7s) and have an
1.8× average slowdown. With TPC-H, only three queries are slower
(average execution time 0.9s) with 1.3× average slowdown.

Finally, the remaining queries (Q12, Q14, and Q24 on LDBC and
Q5, Q7, Q8, Q9, and Q16 on TPC-H) represent the queries where
scouting helps the most. In these cases, the default query planner
cannot find the best plan, while the actual scouting-query execution
successfully unveils a better plan. Intuitively, these tend to be longer
queries with complex connections and filters. The result is speedups
from 1.3 to 8.7× maximum, with 3.4× and 3.2× average speedups
for LDBC and TPC-H, respectively.

In summary, the experimental results meet our intuition: Scouting
is better suited for large complex queries where (i) traditional query
planning has a hard time finding the best plan and (ii) the reduction
of the long execution times outweighs any scouting overheads.

Deep Dive Q7/TPC-H. We now analyze Q7 from TPC-H in order
to explain the complexities of query planning in distributed graph
query engines that bring about the need for dynamic planning ap-
proaches such as scouting queries. We choose Q7 as it combines the
complexities of long patterns with heavy filtering. Q7 calculates the
total money transfers between France and Germany over two years:
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Figure 1: Query execution times for LDBC without (no-SQ) and with scouting queries (SQ). Mosaic-pattern bars represent queries
where the default query planner and scouting queries give the same query plan. The query plans (QP𝑖) and how many times each was
chosen are listed beneath each query, sorted from best to worst, with the one preferred by scouting highlighted in red.
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SELECT
supp_nation,
cust_nation,
EXTRACT(YEAR FROM l_shipdate) AS l_year,
SUM(l_extendedprice * (1 - l_discount)) AS revenue

FROM GRAPH_TABLE (tpch
MATCH

(li IS lineitem)-[IS lineitem_supplier]->(s IS supplier),
(li)-[IS lineitem_orders]->(o IS orders),
(o)-[IS orders_customer]->(c IS customer),
(s)-[IS supplier_nation]->(n1 IS nation),
(c)-[IS customer_nation]->(n2 IS nation)

WHERE
((n1.n_name = 'FRANCE' AND n2.n_name = 'GERMANY')
OR (n1.n_name = 'GERMANY' AND n2.n_name = 'FRANCE'))

AND l_shipdate BETWEEN
DATE '1995-01-01' AND DATE '1996-12-31'

COLUMNS(li.l_shipdate AS l_shipdate,
li.l_extendedprice AS l_extendedprice,
li.l_discount AS l_discount,
n1.n_name AS supp_nation,
n2.n_name AS cust_nation)

)
GROUP BY supp_nation, cust_nation, l_year
ORDER BY supp_nation, cust_nation, l_year

The query plan proposed by the default planner (QP1) starts from
the supplier nation, goes to the supplier’s line-items, to the orders,
to the customers, and then to the second nation. Scouting queries
instead choose the third query plan (QP3) that starts from the cus-
tomer nation, moves to the customer, the orders, the line-items, the
suppliers, and the suppliers’ nation. The default query planner gives
3× lower cardinality to QP1 than QP3, thus it is certain about the
choice of this particular plan.

However, the default query planner misestimates how selective
the line-item filter is, bringing line-item matching as early in the
plan as possible. As we see in Table 2, this choice leads to an
early explosion of visited vertices in Stage 2 (li), compared to
the smaller and later explosion in Stage 3 (li) for QP3. Looking
at the query, this explosion makes a big difference, leading to a
greater number of intermediate matches that need to extract data out
of the line-item vertices for projections and to support the group-
by operation, i.e., EXTRACT(YEAR FROM l_shipdate), and
SUM(l_extendedprice * (1 - l_discount)).
This data needs to be carried across machines in a distributed engine,
leading to overheads. In practice, expressing all these fine details in
a default query planner is almost impossible.

5 Concluding Remarks
This paper introduces scouting queries, a mechanism built on top of
traditional query planners to enable selecting the best query plan for
pattern matching in (distributed) graph queries. An efficient query
plan is a critical part of any query engine significantly affecting its
performance. Our approach uses runtime statistics collected during
the execution of candidate query plans and is thus able to correct any
misestimations of the default query planner. Our evaluation shows
that scouting queries can significantly improve performance on real
graphs, while maintaining low overhead.

In future work, we intend to test BFT-style scouting matching,
scouting-result reusing and different scouting metrics. Furthermore,
we plan to use scouting queries in a feedback loop to improve query
planners, both manually and with machine-learning techniques.
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