
A Transformational Approach to Binary Translation
of Delayed Branches with Applications to SPARC®

and PA-RISC Instructions Sets

Cristina Cifuentes and Norman Ramsey

M/S MTV29-01
901 San Antonio Road
Palo Alto, CA 94303-4900

A Transformational Approach to Binary Translation
of Delayed Branches with Applications to SPARC ®

and PA-RISC Instructions Sets*

Cristina Cifuentes and Norman Ramsey

SMLI TR-2002-104 January 2002

Abstract:

A binary translator examines binary code for a source machine, optionally builds an intermediate rep-
resentation, and generates code for a target machine. Understanding what to do with delayed
branches in binary code can involve tricky case analyses, e.g., if there is a branch instruction in a
delay slot. Correctness of a translation is of utmost importance. This paper presents a disciplined
method for deriving such case analyses. The method identifies problematic cases, shows the transla-
tions for the non-problematic cases, and gives confidence that all cases are considered.The method
supports such common architectures as SPARC®, MIPS, and PA-RISC.

We begin by writing a very simple interpreter for the source machine’s code. We then transform the
interpreter into an interpreter for a target machine without delayed branches. To maintain the seman-
tics of the program being interpreted, we simultaneously transform the sequence of source-machine
instructions into a sequence of target-machine instructions. The transformation of the instructions
becomes our algorithm for binary translation. We show the translation is correct by reasoning about
corresponding states on source and target machines.

Instantiation of this algorithm to the SPARC V8 and PA-RISC V1.1 architectures is shown. Of interest,
these two machines share seven of 11 classes of delayed branching semantics; the PA-RISC has
three classes which are not available in the SPARC architecture, and the SPARC architecture has one
class which is not available in the PA-RISC architecture.

Although the delayed branch is an architectural idea whose time has come and gone, the method is
significant to anyone who must write tools that deal with legacy binaries. For example, translators
using this method could run PA-RISC on the new IA-64 architecture, or they may enable architects to
eliminate delayed branches from a future version of the SPARC architecture.

*This report is a very extended version of TR 440, Department of Computer Science and Electrical Engineering, The University
of Queensland, Dec 1998, and describes applications of the technique to translations of SPARC® and PA-RISC codes. This
report fully documents the translation algorithms for these machines.

email addresses:
cristina.cifuentes@sun.com
nr@eecs.harvard.edu

© 2002 Sun Microsystems, Inc. and Harvard University. All rights reserved. The SML Technical Report Series is published by Sun Microsystems
Laboratories, of Sun Microsystems, Inc. Printed in U.S.A.

Unlimited copying without fee is permitted provided that the copies are not made nor distributed for direct commercial advantage, and credit to the
source is given. Otherwise, no part of this work covered by copyright hereon may be reproduced in any form or by any means graphic, electronic,
or mechanical, including photocopying, recording, taping, or storage in an information retrieval system, without the prior written permission of the
copyright owner.

TRADEMARKS
Sun, Sun Microsystems, the Sun logo, Solaris, and Java are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and other
countries. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. in the U.S. and
other countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun Microsystems, Inc. UNIX is a registered
trademark in the United States and other countries, exclusively licensed through X/Open Company, Ltd.

For information regarding the SML Technical Report Series, contact Jeanie Treichel, Editor-in-Chief <jeanie.treichel@eng.sun.com>.All technical
reports are available online on our Website, http://research.sun.com/techrep/.

A Transformational Approach to
Binary Translation of Delayed Branches with

Applications to SPARC and PA-RISC Instruction Sets�

Cristina Cifuentes
Sun Microsystems Laboratories

Palo Alto, CA 94303, USA
cristina.cifuentes@sun.com

Norman Ramsey
Division of Engineering and Applied Sciences

Harvard University, Cambridge, MA 01238, USA
nr@eecs.harvard.edu

1 Introduction

Binary translation makes it possible to run code compiled for source platformS on target platformT .
Unlike interpreted or emulated code, binary-translated code approaches the speed of native code on
machineT . Hardware vendors can use binary translation to provide a tempting array of software along
with new machines [BKMM87, May87, AS92, SCK+93, EA97]. Hardware buyers can use binary
translation to run old code on new machines. This ability is particularly valuable when the old code
is available only in binary form, e.g., when it has been purchased from a third party or its source
code has been lost. Finally, binary translation is also an enabling technology for efficient simulation
[CK94, WR96].

The fundamental steps in binary translation are to distinguish code from data, to map data locations
from the source to the target machine, and to translate instructions. Data must be translated differently
from code, pointers must be translated differently from non-pointers, and code pointers (e.g., for indi-
rect branches) must be translated differently from data pointers [SCK+93, LB94]. This paper focuses
on translation: the problem of distinguishing code from data is difficult, but solutions are well known.

When a mapping from source locations to target locations has been established, translating instruc-
tions is mostly straightforward. Finding the target instructions needed to achieve a particular effect
is simply code generation. It is not always obvious, however, what is the effect of a delayed branch
instruction, especially when a branch or call instruction appears in a delay slot. Although the delayed

�This report is a very extended version of TR 440, Department of Computer Science and Electrical Engineering, The
University of Queensland, Dec 1998, and describes applications of the technique to translations of SPARC(R) and PA-RISC
codes. This report fully documents the translation algorithms for these machines.

1

branch is an architectural idea whose time has come and gone, the method is significant to anyone who
must write tools that deal with legacy binaries. For example, translators using this method could run
PA-RISC code on the new IA-64 architecture. They might also enable architects to eliminate delayed
branches from a future version of the SPARC architecture.

The contribution of this paper is a disciplined method for understanding the effects of delayed
branches, even in tricky, rarely used combinations. This method identifies cases that are problematic
for translation, shows the translations for the non-problematic and problematic cases, and gives con-
fidence that all cases are considered. We have applied the results of the method to the University of
Queensland binary translator [CVR99, CV00], and these results could profitably be applied not only
to other binary translators [ZT00], but also to any tools that analyze machine instructions, including
optimizers [SW93, BDB00], code instrumentors [Wal92, LB94, LS95], fault isolators [WLAG93], and
decompilers [CG95, Hof97, CSF98].

Our method uses register transfer lists (RTLs) as a semantic framework in which to reason about
instructions on both the source and target machines [RD98]. We divide a machine’s semantics into
two parts. We specify semantics common to most instructions (e.g., the advancement of the program
counter) as part of a simple imperative program representing the execution loop of a machine. We spec-
ify the unique effect of each instruction as a register transfer list. The effect of executing a program is
represented as the effect of running the execution loop on a sequence of instructions or, more precisely,
on a sequence of register transfer lists representing the semantics of the instructions.

We build a binary translator by considering semantics for two machines. Each has an execution
loop and a set of instructions. The source machine has delayed branching semantics, the target does
not. We begin by transforming the source machine’s execution loop into the target machine’s execution
loop. To maintain the proper semantics for a program, we simultaneously transform the sequence of
source-machine instructions into a sequence of target-machine instructions. This transformation of the
sequence of instructions becomes our algorithm for binary translation.

A quick reading of this paper might suggest that the problem we solve is trivial. To build a flow
graph representing a binary program, why not simply convert the delayed branch to a non-delayed
branch and push the instruction in the delay slot along zero, one, or both successor edges? (The set of
successors that should get copies of the instruction in the delay slot depends on whether the delayed
branch “annuls” that instruction.) This simple approach is in fact correct,exceptwhen the instruction
in the delay slot is itself a delayed branch, call, or other transfer of control. In that case, the “pushing”
approach fails to execute the instruction that is the target of the first branch. The methods in this paper
translate this case correctly. In practice, such cases occur rarely in user code, but they are recommended
in kernel code as a way of returning from interrupts or otherwise switching contexts [SPA92,xB.26].

The building blocks of this paper are not new. Register-transfer languages have been used to de-
scribe instructions for years [BN71, BS82]. Our program transformations draw from standard tech-
niques in compiler optimization [ASU86] and partial evaluation [JGS93].

The contribution of this paper is the idea of applying these well-known techniques to a new problem
domain, where they have been used to build a SPARC and PA-RISC architectures front end for the
University of Queensland binary translator [CVR99, CV00].

2

2 Semantic framework

Rather than translate source-machine instructions directly into target-machine instructions, we translate
source instructions into register transfer lists (RTLs), transform the RTLs, optimize the RTLs, and trans-
late the RTLs into target-machine instructions. RTLs provide a uniform framework that can express
source instructions, target instructions, and their interpretations by the source and target processors.

We writeR for the set of all possible RTLs. We assume that the effect of any machine instruction
can be described by a suitabler 2 R, as appears to be the case for many real microprocessors. This
paper describes a translation between subsetsLs � R andLt � R. The source-machine language,Ls,
has delayed branches; the target-machine language,Lt, does not.

2.1 Register transfer lists

Our RTL formalism is designed for use in tools and component generators, and it makes machine-
dependent computation explicit [RD98]. For this paper, we use a simplified version specified using the
following syntax:

rtl) [effectfj effectg] Multiple assignment

effect) [exp!] location:= exp Guarded assignment

exp) constant Constant
j location Fetch from a location
j exp binop exp Binary RTL operator
j operator(explist) RTL operator

A register transfer list is a list of guarded effects. Each effect represents the transfer of a value into
a storage location,1 i.e., a store operation. The transfer takes place only if the guard (an expression)
evaluates totrue. Effects in a list take place simultaneously, as in Dijkstra’s multiple-assignment
statement: an RTL represents a single change of state. Appendix A makes this notion precise by giving
a denotation functionR[[rtl]] : �! �.

Values are computed by expressions without side effects. Eliminating side effects simplifies anal-
ysis and transformation. Expressions may be integer constants, fetches from locations, or applications
of RTL operatorsto lists of expressions. RTL operators are pure functions on values. Expressions have
their own denotation functionE [[e]] : �! V , whereV is the domain of values.

In this paper, we assume that locations are single cells in a mutable store, although the full RTL
formalism supports a more general view that makes byte order explicit.

As an example of a typical RTL, consider a SPARC load instruction using the displacement ad-
dressing mode, written in the SPARC assembly language as

ld [%sp-12], %i0

This load instruction computes an address by adding�12 to the stack pointer (register 14), then loads
a word from that address into register%i0 (register 24). The effect of the instruction might be written

hRTL for sample instructioni�
$r[24] := $m[$r[14] + sx (�12)]

1Storage locations represent not only registers but also memory and other processor state.

3

The notation$space[address] specifies a cell in a mutable store. Thesx operator sign-extends the 13-bit
immediate constant�12 so it can be added to the 32-bit value fetched from register 14.

The load instruction not only loads a value into register 24; it also advances the program counter
to point to the next instruction. Changing the program counter is intimately connected with branching;
we separate the effect on the program counter in order to give it special treatment.

2.2 Processor state for delayed branches

A processor executing straight-line code executes one instruction after another, in sequence. A delayed
branch instruction causes the processor to depart from that sequence, but not immediately. When the
processor executes an instructionI that causes a delayed branch to a locationtarget , the processor first
executesI ’s successor, then executes the instruction located attarget . The location holdingI ’s succes-
sor is calledI ’s “delay slot.” On some machines, like those of the SPARC processor, the instructionI

can “annul” its successor, in which case the successor isnot executed; instead the processor stalls for
one or more cycles

To model delayed branches with annuls, we use three pieces of processor state:

PC is the program counter, which identifies the instruction about to be executed.

nPC is the “next program counter,” which identifies the instruction to be executed after the current
instruction.

annul is the “annul status,” which determines whether the processor executes the instruction atPC or
ignores it.2

In this model, a delayed control transfer is represented by an assignment tonPC . For example, a
SPARC call instruction simultaneously assigns the target address tonPC and the currentPC to regis-
ter 15:

hRTL for calli�
$r[15] := PC j PC := nPC j nPC := target

Thetarget address in the RTL is distinct from thetarget field in the binary representation of the call
instruction. In the case of the SPARC architecture, we abstract away from the rule that says the target
address is computed by extending thetarget field on the right with zeroes.

A call transfers control unconditionally; we represent a conditional branch by a guarded assignment
to nPC . TheBNE(branch not equal) instruction tests theZ (zero) bit in the condition codes:

hrtl for conditional branchBNEi�
:Z ! nPC := target

Again we abstract the computation of the target address relative to the location of the instruction.

2Readers who are familiar with the SPARC architecture must distinguish theannul status, which is part of the processor
state, from thea bit found in the binary representations of most branch instructions. The interpretation of theannul status
is trivial: it tells whether to execute an instruction. The interpretation of thea bit is more involved, because there are special
rules for some instructions. We abstract away from these special rules by associating with each instructionI a Boolean
expressionaI (not necessarily a single bit) that tells the processor whether to annul the instruction’s successor.

4

2.3 A canonical form of RTLs

To isolate the part of instruction semantics that is relevant to control flow, we put RTLs into the follow-
ing canonical form:

hRTL for generic instruction Ii�
bI ! nPC := target I j annul := aI j Ic

We interpret this form as follows:

bI is a Boolean-valued expression that tells whetherI branches. It is anexpression, not a constant or
a field of the instruction. For non-branching instructions,bI is false. For calls and unconditional
branches,bI is true. For conditional branches,bI is some other expression, the value of which
depends on the state of the machine (e.g., on the values of the condition codes).

target I is an expression that identifies the target address to whichI may branch. (IfbI is false, target I
is arbitrary.) For calls and PC-relative branches,target I is a constant that statically identifies a
target address. For indirect branches,target I may be a more complex expression, e.g., one that
fetches an address stored in a register.

aI is a Boolean-valued expression that tells whetherI annuls its successor. LikebI , it is an expres-
sion; it is not the value of thea bit in an instruction’s representation. For most instructions,aI
is false. For conditional branches,aI may be more complicated. For example, the SPARCBNE
instruction annuls its successor if thea bit is set and if the branch is not taken, soaI is a ^ Z.

Ic is an RTL that representsI ’s “computational effect.”Ic may be empty, or it may contain guarded
assignments that do not changeannul , nPC , orPC . Typical RISC instructions change control
flow or perform computation, but not both, soIc tends to be non-empty only whenbI andaI are
false. On CISC architectures, however, an instruction like “decrement and skip if zero” might
have both non-emptyIc (the decrement) and a nontrivialbI (the test for zero).

An instruction can be expressed in this canonical form if, when executed, it branches to at most one
target .This is true of all instructions on all architectures with which we are familiar, including indirect-
branch instructions (although the value oftarget may be different on different executions of an indirect
branch). We therefore defineLs as follows:

Ls
def
= fI 2 R j 9 bI ; target I ; aI ; Ic : R[[bI ! nPC := target I j annul := aI j Ic]] = R[[I]]g:

Here are a few example RTLs in canonical form; SPARC assembly language appears on the left,
RTLs on the right. The mnemonicba,a stands for “branch always, annul;”skip is the empty RTL.

add rs1, rs2, rd
false! nPC := any j annul := false j $r[rd] := $r[rs1] + $r[rs2]

ba,a addr true ! nPC := addr j annul := true j skip
call addr true ! nPC := addr j annul := false j $r[15] := PC

5

2.4 Instruction decoding and execution on two platforms

Given this canonical form for instructions, we represent instruction decoding using alet-binding nota-
tion:

hinstruction decodingi�
let (bI ! nPC := target I j annul := aI j Ic) � src[PC]
in : : :

end

The let construct bindsbI , target I , aI , andIc, which together determine the semantics of the instruc-
tion I found in the source memorysrc. Perhaps unusually, these identifiers are bound tosyntax(either
expressions or RTLs), not tovalues. Thelet-binding represents not only the process of using the binary
representation to identify the instruction and its operands, but also the mapping from that representation
into a register transfer list.

We have chosen a formalism in which an RTL alone is not sufficient to specify the behavior of
a machine when it executes an instruction; we also require anexecution loop. The source-machine
execution loop decodes an instruction and executes it as follows:

hSparc execution loopi�
fun loop() �
let (bI ! nPC := targetI j annul := aI j Ic) � src[PC]
in if annul then

[[PC := nPC j nPC := succs(nPC) j annul := false]]
else if[[bI]] then
[[PC := nPC j nPC := target I j Ic j annul := aI]]

else
[[PC := nPC j nPC := succs(nPC) j Ic j annul := aI]]

fi
; loop()

end

We specify the repeated execution of the processor loop as a tail call, rather than as a loop, because that
simplifies the program transformations to follow.

The execution loop is written using a simple imperative metalanguage, the semantics of which
are given in Appendix A. In the body of the paper, we use several notational shortcuts. The most
important of these are the brackets[[�]], which represent evaluation of syntax; for example,[[bI]] is short
for eval e(bI), which produces the value of the branch condition (true or false), given the current state of
the machine. The notation[[r]] is short foreval r(r), which changes the state of the machine as specified
byR[[r]].

The functionsuccs abstracts over the details of identifying the successor instruction on the source
machine;succt finds the successor on the target machine. In both cases,succ is computed as part of
instruction decoding.

6

Our example target, the Pentium, has neither delayed branches nor annulling, so it has a simpler
canonical form and a simpler execution loop. We define the target languageLt by its canonical form:

Lt
def
= fI 2 R j 9 bI ; target I ; Ic : R[[bI ! PC := targetI j Ic]] = R[[I]]g:

This is the target execution loop:

hPentium execution loopi�
fun simple() �
let (bI ! PC := target I j Ic) � tgt [PC]
in if [[bI]] then

[[PC := targetI j Ic]]
else
[[PC := succt(PC) j Ic]]

fi
; simple()

end

2.5 Strategy for translating delayed branches

The problem we are trying to solve is to take a source-machine program whose instructions are inLs,
and to translate it into a target-machine program whose instructions are inLt, such that when the two
programs are executed by their respective execution loops, the target program simulates the source
program in a way made precise inx3.1. Informally, a program is said to simulate another program if it
reproduces the state of the program being simulated after execution of each source instruction.

Both our formalism and the SPARC architecture manual give a clear semantics of delayed branches
in terms ofPC , nPC , andannul . It would therefore suffice to create a translation that represented
the sourcePC , nPC , andannul explicitly on the target machine, but such a translation would be very
inefficient. For example, the representation ofnPC would have to be updated in software after every
execution of a translated instruction. A better idea is to make the values of the sourcePC , nPC ,
andannul implicit in the value of the targetPC . How to do this based on the information in the
architecture manual is not immediately obvious, but our semantic framework enables a new technique.
We transformloop, eliminatingnPC andannul wherever possible, so that (almost all of)loop can
be expressed using only thePC . This transformation leads to suitable changes in the sequence of
instructions executed, thus guiding a transformation fromsrc to tgt . This latter transformation is an
algorithm for binary translation of delayed branch instructions.

7

3 Transforming the execution loop

We wish to develop a translation function that we can point at a locationsrc[pcs] and that will produce
suitable instructions at a corresponding target locationtgt [pct]. We cannot simply havepct = pcs;
source program counters may not be identical to target program counters, because source and target
instruction sequences may be different sizes. During translation, we buildcodemap, a map that relates
program counters on the two machines, sopct = codemap(pcs).

We assume that when the source processor starts executing code atsrc[pcs], it is not “in the middle”
of a delayed or annulled branch, or formally,

annul = false^ nPC = succs(PC).

We call a statestableif it satisfies this predicate. The processor ABI (application binary interface)
guarantees that the processor will be in a stable state at a program’s start location [Pre93], and procedure
calling conventions guarantee that the processor will be in a stable state at procedure entry points.

We begin our transformation by defining a functionstable that can be substituted forloop whenever
annul = false^ nPC = succs(PC).

hstable execution loopi�
fun stable() �
[[annul := false j nPC := succs(PC)]];
let (bI ! nPC := targetI j annul := aI j Ic) � src[PC]
in if annul then

[[PC := nPC j nPC := succs(nPC) j annul := false]]
else if[[bI]] then
[[PC := nPC j nPC := target I j Ic j annul := aI]]

else
[[PC := nPC j nPC := succs(nPC) j Ic j annul := aI]]

fi
; loop()

end

Appendix B lists the transformations used to get from this definition to something much likesimple.
We do not show every step in the transformation ofstable. We perform distribution of sequential

composition overlet, forward substitute assignments toannul andnPC , distribute sequential compo-
sition (loop()) over conditional, replaceloop() with stable() where possible, and drop the (now dead)
assignments. The result is

hstable execution loopi+�
fun stable() �
let (bI ! nPC := targetI j annul := aI j Ic) � src[PC]
in if [[bI]] then

[[PC := succs(PC) j nPC := targetI j Ic j annul := aI]]
; loop()

else if[[aI]] then
[[PC := succs(PC) j nPC := succs(succs(PC)) j Ic j annul := true]]
; loop()

8

else
[[PC := succs(PC) j Ic]]
; stable()

fi
end

The last arm of theif shows the execution of an instruction that never branches or annuls. It corresponds
to the execution of a similar instruction on thesimple target.

The next step is to unfoldloop in the first and second arms of theif statement. In the second arm,
annul is true, so the call toloop() can be replaced byPC := nPC ; nPC := succs(nPC); stable().
The definition ofstable reduces to

hstable execution loopi+�
fun stable() �
let (bI ! nPC := targetI j annul := aI j Ic) � src[PC]
in if [[bI]] then

[[PC := succs(PC) j nPC := targetI j Ic j annul := aI]];
let (bI0 ! nPC := target I0 j annul := aI0 j I 0

c) � src[PC]
in if annul then

[[PC := nPC j nPC := succs(nPC) j annul := false]]
else if[[bI0]] then
[[PC := nPC j nPC := target I0 j I 0

c j annul := aI0]]
else
[[PC := nPC j nPC := succs(nPC) j I 0

c j annul := aI0]]
fi
; loop()

end
else if[[aI]] then
[[PC := succs(succs(PC)) j Ic]]
; stable()

else
[[PC := succs(PC) j Ic]]
; stable()

fi
end

9

Transformation proceeds by combining these two fragments, moving thelets together, and flatten-
ing the nestedif statements. We then use “The Trick” from partial evaluation [DMP96]: whenever
[[aI]] is free in a statementS, we replaceS with if [[aI]] thenS elseS fi. The Trick enables us to replace
several calls toloop with calls tostable. The result is the followingtranslation algorithm

hstable execution loopi+�
fun stable() �
let (bI ! nPC := targetI j annul := aI j Ic) � src[PC]

(bI0 ! nPC := targetI0 j annul := aI0 j I 0

c) � src[succs(PC)]
in if [[bI]] ^ [[aI]] then

[[Ic]];
[[PC := target I]]
; stable()

else if[[bI]] ^ :[[aI]] ^ [[bI0]] ^ [[aI0]] then
[[Ic]];
[[I 0

c]];
[[PC := target I0]]
; stable()

else if[[bI]] ^ :[[aI]] ^ [[bI0]] ^ :[[aI0]] then
[[Ic]];
[[PC := target I j nPC := target I0 j I 0

c j annul := false]]
; loop()

else if[[bI]] ^ :[[aI]] ^ :[[bI0]] ^ [[aI0]] then
[[Ic]];
[[I 0

c]];
[[PC := succs(target I)]]
; stable()

else if[[bI]] ^ :[[aI]] ^ :[[bI0]] ^ :[[aI0]] then
[[Ic]];
[[PC := target I j I

0

c]]
; stable()

else if:[[bI]] ^ [[aI]] then
[[PC := succs(succs(PC)) j Ic]]
; stable()

else if:[[bI]] ^ :[[aI]] then
[[PC := succs(PC) j Ic]]
; stable()

fi
end

10

This version ofstable suffices to guide the construction of a translator. Considering the cases in
order,

� A branch that annuls the instruction in its delay slot acts just like an ordinary branch on a machine
without delayed branches.

� A branch that does not annul, but that has an annulling branch in its delay slot, acts as if the first
branch never happened, and the second is a non-delaying branch.

� A non-annulling branch with another non-annulling branch in its delay slot is not trivial to trans-
late; this is the one case in which we cannot substitutestable for loop. Interestingly, the MIPS
architecture manual specifies that the machine’s behavior in this case is undefined [Kan88, Ap-
pendix A]. This case requires potentially unbounded unfolding ofloop, which we discuss inx7.

� A non-annulling branch with an annulling non-branch in its delay slot acts as a branch to the
successor of the target instruction. (Note that the SPARC architecture has an annulling non-
branch, viz,BN,A.)

� A non-annulling branch with a non-annulling non-branch in its delay slot has the effect of delay-
ing the branch by one or more cycles. This is the common case.

� An annulling non-branch skips over its successor.

� A non-annulling non-branch (i.e., an ordinary computational instruction) simply executes and
advances the program counter to its successor.

3.1 Derivation of a translator

Correctness

To say what it means to have a correct translation, we reason about states, about values of expressions
in states, and about state transitions. Recall that if a machine is in a state�, we writeE [[e]]� for the
value of expressione in state�; if executing instructionI causes a machine to make a transition from a
state� to a new state�0, we write�0 = R[[I]]�.

A translation is correct if execution on the target machine simulates execution on the source ma-
chine. The translator builds a map� from source-machine states to target-machine states.3 In a way
made precise below, this map respects the operation of the machine. In our design,� is partial—it is
not defined when the source machine is “about to” execute a delayed branch or annulled instruction.
To be precise,� is defined ifE [[:annul ^ nPC = succs(PC)]]�.

When referring to states, we use a left superscript ofs or t to designate a state on the source or
target machine. We use subscripts to number states in sequence.

3Technically, the translator establishes not a map but a relation, because more than one target-machine state can be used
to simulate a particular source-machine state. We nevertheless use the function� notation for its readability. When we
write s�, we really mean “any statet� such thatt� ands

� stand in a weak bisimulation relation.” Writing the existential
quantifiers and relations explicitly would obscure the ideas.

11

We say the target machinesimulatesthe source machine if the following condition holds: if we start
the source machine in a states�0, and theloop function takes it through a sequence of statess�0;

s�1; : : :,
then there is a subsequence of such statess�k0;

s�k1; : : : such thats�k0 ; s�k1 ; : : : is a subsequence of
the states that the target machine goes through when started in statet�0 = s�0. Further, each state
s�I ; I > 0 is the state of the source machine after execution of instructionI of the program.s�0 is the
initial state of the program. Informally, although the target machine may go through some intermediate
states that don’t correspond to any execution of the source, and though the source machine may go
through some intermediate states that don’t correspond to any execution of the target, when we remove
those intermediate states, what’s left of the executions corresponds one to one.4 We sketch a proof in
x6.

Translations of expressions and computational effects

In the RTL framework, the state of the machine is the contents of all the storage locations. In a na¨ıve
translator,� can mostly map locations to locations, without changing values. The exception is the
program counter; its translation must usecodemap, so we requireE [[PC]]� = codemap(E [[PC]]�).
Given a map� on locations, we can easily extend it to expressions likeaI , bI , andtargetI . If e is an
expression, thenE [[e]]� = E [[e]]�.

We assume that translations can be found for the computational effectsIc, which do not affectPC ,
nPC , or annul . Given an effectIc, we write its translationIc; in general,Ic is a sequence of RTLs,
not exactly one RTL. Any translation is acceptable as long as for any�, R[[Ic]]� = R[[Ic]]�.5 We
also assume that, given any conditionb and addresstarget , we can construct an instruction sequence
implementingb! PC := target on the target machine.

Under these assumptions, we analyze source branch conditionsbI , annulment conditionsaI , and
target addressestargetI , and we show how to construct branch conditions and target addresses for the
target machine. In the process, we build thecodemap function that takes source program counters to
target program counters.

Structure of the translator

Our translator works with one basic block at a time.codemap must be built incrementally—by the
translator itself—because the only way to know the size of the target basic blocks is to translate the
source basic blocks. The translator maintains a work queue of untranslated blocks, each of which is
represented by a(pcs; pct) pair. pcs is the address of some code on the source machine.pct may be the
corresponding target-machine address, or more likely a placeholder for a target-machine address, to be
filled in later. (For example,pct might be a pointer to a basic block in a control-flow graph.)codemap

contains pairs that have already been translated. We use the following auxiliary procedures:
4In the terminology of [Mil90], the transitions to these intermediate states are “silent.”
5We extendR to sequences of RTLs using the standard rule for sequential composition:R[[r1; r2]] = R[[r2]] Æ R[[r1]].

12

queueForTranslation(pcs; pct) Add a pair to the work queue.
codemap(pcs) If a pair (pcs; pct) is in codemap, returnpct. Otherwise, letpct be a fresh

placeholder, add(pcs; pct) to codemap, and returnpct. (We usecodemap both
as a function and as a collection of ordered pairs, but these usages are
equivalent.)

emit(pct; I) Emit target-machine instructionsI atpct, returning a pointer to the location
following the instructions. IfI is a sequence ofn instructions,emit(pct; I)
returns the result of applyingsucct to pct, n times.

newBlock() Return a pointer to a fresh placeholder.

Placeholders created withcodemap correspond to basic blocks in the source program. Placeholders
created withnewBlock are artifacts of translation.

The translator loops, removing pairs from the work queue, and callingtrans if those pairs have not
already been translated.trans translates individual basic blocks. If an instruction branches,trans calls
queueForTranslation with the target addresses (from source and target machines). If an instruction
flows through to its successor,trans calls itself tail-recursively.6 The outline oftrans is

htranslatori�
fun trans(pcs; pct) �
hput (pcs; pct) in codemap if they are not there alreadyi
let I as(bI ! nPC := target I j annul := aI j Ic) � src[pcs]
in caseclass(I) of
hcases for translation of Ii

end

4 Application to the SPARC instruction set

To this point, the development of our idea is abstract; it could apply to any machines with and without
delayed branches. The value of our work, however, is that it can be applied to real translators for
real instruction sets. This section applies our formal analysis to the SPARC V8 instruction set, and it
sketches the derivation of a translator. We used this derivation to build the SPARC front end of the
University of Queensland binary translator [CVR99, CV00].

4.1 Classification of SPARC instructions

The three properties of instructions that govern the translation of control flow arebI (must branch,
may branch, may not branch),aI (must annul, may annul, may not annul), andtargetI (static target,
dynamic target, no target). There are 15 reasonable combinations of these three properties. On the
SPARC architecture, only 9 combinations are used:

6Recursive calls totrans could be replaced by calls toqueueForTranslation . The converse is not true, becausetrans

would recur forever on loops.

13

Instruction bI aI target I Ic Class
BA true false static skip SD
BN false false N/A skip NCT
Bcc test cc(icc) false static skip SCD
BA,A true true static skip SU
BN,A false true N/A skip SKIP
Bcc,A test cc(icc) :test cc(icc) static skip SCDA
CALL true false static $r[15] := PC SD
JMPL true false dynamic $r[rd] := PC DD
RETT true false dynamic hrestore statei DD
TN false false N/A skip NCT
Ticc test cc(icc) test cc(icc) dynamic hsave statei TRAP
TA true true dynamic hsave statei TRAP 0

NCT false false N/A varies NCT

These combinations enable us to classify instructions. We name 8 of the 9 classes as follows:

NCT Non-control-transfer instructions (arithmetic, etc.)
DD Dynamic delayed (unconditional)
SD Static delayed (unconditional)
SCD Static conditional delayed
SCDA Static conditional delayed, annulling
SU Static unconditional (not delayed)
SKIP Skip successor (implement as static unconditional)
TRAP Trap

Our treatment of trap instructions may be surprising, since the architecture manual presents them
as instructions that set bothPC andnPC . BecausenPC is always set toPC + 4 [SPA92,xC.8], we
can model this behavior as settingnPC to the address of the trap handler and settingannul to true.
Our model introduces a stall before the trap is taken, but no interesting state changes during a stall, so
there is no problem. For simplicity, we put the unconditional trap (TRAP 0) in the same class as the
conditional traps (TRAP). We can’t do this with the branch instructions because ofBA,A ’s anomalous
treatment of thea bit.

The table exposes a useful property of the SPARC instruction set;aI is not arbitrary, but is always
given by one of these four possibilities:

aI � false Never annul.
aI � true Always annul.
aI � bI Annul if branch taken.
aI � :bI Annul if branch not taken.

Whenever processor designers use this scheme,aI can be eliminated at binary-translation time. A more
generalaI would require a second test in the translated code.

14

4.2 Translations of SPARC instructions

Deriving a translation function is tedious but straightforward. We start from thetrans algorithm in
x3.1, pg 13, and expand it into the following algorithm, parameterized by the class of instructions:

hsparc translatori�
fun trans(pcs; pct) =
codemap(pcs) � pct
let I as(bI� > nPC := targetI j annul := aI j Ic) = src[pcs]
in caseclass(I) of
j NCT =) nonBranching; nonAnnulling

j SKIP =) nonBranching; annulling

j SU =) branching; annulling

j SD =) branching; nonAnnulling

j DD =) branching; nonAnnulling

j SCD =) if (bI) then
branching; nonAnnulling

else
nonBranching; nonAnnulling

fi
j SCDA =) if (bI) then

branching; nonAnnulling

else
nonBranching; annulling

fi
end

Before we look at individual translations of some of the classes of instructions, we give some exam-
ples in Table 1 of translations of SPARC assembly code into Pentium assembly code, i.e., translations
from a machine that has delayed branches to one that does not have delayed branches. These examples
are shown unoptimized; in some cases, such asbe followed bymov, it is possible to putI 0 beforeI,
eliminating significant overhead. This restructuring is not possible in the general case, however, and
particular cases may be best left to a general-purpose optimizer.

We show only a few representative cases of the transformations applied to the skeletontrans algo-
rithm, the complete algorithm is documented in Appendix C. We apply the transformations listed in
Appendix B throughout this process.

Translation of non control transfer instructions

For non-control-transfer instructions,bI � false andaI � false, i.e., these are non branching, non
annulling instructions, which correspond to the last arm of thestable algorithm (pg 10). The translation
is

hcases for translation of Ii�
j NCT =) pct := emit(pct; Ic); trans(succs(pcs); pct)

15

class(I) class(I 0) SPARC instructions Pentium instructions

NCT any add %i1, %i2, %i3 mov eax, SPARCI1
add eax, SPARCI2
mov SPARCI3, eax

SU any ba,a L jmp L

SD NCT ba L
add %i1, %i2, %i3

nop
mov eax, SPARCI1
add eax, SPARCI2
mov SPARCI3, eax
jmp L

SCD NCT be L
mov %o1, %o2

...

nop
je BB
mov eax, SPARCO1
mov SPARCO2, eax

...

BB: mov eax, SPARCO1
mov SPARCO2, eax
jmp L

SCDA NCT be,a L
mov %o1, %o2

...

nop
je BB

...

BB: mov eax, SPARCO1
mov SPARCO2, eax
jmp L

SD SD ba L1
ba L2
mov 3, %o0

...
L1: mov 2, %o0

...
L2: : : :

nop
nop
mov eax, 2
jmp L2

SPARC assembly language puts the destination on the right, but Intel assembly language
puts the destination on the left. The SPARC architecture has more registers than the Pen-
tium, so we map onto them memory locationsSPARCI1 = %i1, SPARCI2 = %i2, etc.
The examples whereclass(I) is SCD andSCDA show the samebe instruction with and
without the,a suffix (annul when branch not taken).

Table 1: Example translations from SPARC architecture to Pentium architecture

16

Translation of static unconditional branch with annul intructions

The static unconditional branch with annul is just like an ordinary branch; i.e.,bI � true andaI � true,
which corresponds to the first arm ofstable. The translation is

hcases for translation of Ii+�
j SU =) pct := emit(pct;PC := codemap(target I));

queueForTranslation(target I ; codemap(target I));

Translation of static delayed instructions

The next simplest cases are the static delayed (SD) class, withbI � true andaI � false. These instruc-
tions include unconditional branches and calls, and the translation depends on what sort of instructionI 0

is found in the delay slot.

hcases for translation of Ii+�
j SD =)
let (bI0 ! nPC := target I0 j annul := aI0 j I 0

c) � src[succs(pcs)]
in caseclass(I 0) of
htranslation cases forclass(I 0), where class(I) = SDi

end

In the common case, we have a non-control-transfer instruction in the delay slot, withbI0 � false
andaI0 � false. This corresponds to the fifth arm ofstable, which executes[[Ic]]; [[PC := target I j I

0

c]].
Sincetarget I is a constant, we can rewrite this as[[Ic]]; [[I

0

c]]; [[PC := targetI]]. The translation is then

htranslation cases forclass(I 0), where class(I) = SDi�
j NCT =)
pct := emit(pct; Ic);
pct := emit(pct; I

0

c);
pct := emit(pct;PC := codemap(target I));
queueForTranslation(target I; codemap(target I));

This translation is not sufficient for call instructions, because a called procedure may use the program
counter captured byIc, and its use of that program counter is determined by software convention, not
by the semantics of the hardware. On the SPARC architecture, ifI is a call instruction, convention says
that translation should resume withtrans(succs(succs(pcs)); pct), or if the call returns a structure, with
trans(succs(succs(succs(pcs))); pct).

Translation of dynamic delayed instructions

The treatment of classDD (dynamic delayed) branches is similar to that of classSD , except that
the target addresses are computed dynamically. This means that it is not possible to usecodemap at
translation time; the translated code might usecodemap at run time, or it might call an interpreter or a
dynamic translator.

17

Translation of static conditional delayed instructions

The most common class involving dynamic conditions is theSCD (static conditional delayed) class, in
which bI is dynamic andaI is false. Again, the translation depends on what is in the delay slot.

hcases for translation of Ii+�
j SCD =)
let (bI0 ! nPC := target I0 j annul := aI0 j I 0

c) � src[succs(pcs)]
in caseclass(I 0) of
htranslation cases forclass(I 0), where class(I) = SCDi

end

The most common delay instruction is a non-control-transfer instruction (classNCT), wherebI0 =
falseandaI0 = false. In this case,stable reduces to

hspecialization of stable for SCD with NCT in the delay sloti�
if [[bI]] then
[[Ic]]; [[PC := targetI j I

0

c]]; stable()
else
[[Ic j PC := succs(PC)]]; stable()

fi

BecauseIc does not affectPC , we transformstable as follows:7

htransformed specialization of stable for SCD with NCT in the delay sloti�
[[Ic]];
if [[bI]] then
[[PC := target I j I

0

c]]
else
PC := succs(PC);

fi
; stable()

7We have the alternative of unfolding the call tostable in theelsebranch and moving bothIc andI 0c ahead of theif . This
transformation leads to a translation in whichI

0

c moves ahead of the branch, andI
0

c’s successor follows the branch. Epoxie
and Noxie use this translation [Wal92]. The problem is that, if the branch conditionbI tests condition codes, andI 0c sets
condition codes, it will be necessary to save and restore the condition codes in order to get the correct branch instruction. It
is much simpler to moveI 0c into a new block, which the optimizer can sometimes eliminate.

18

In general, no single target instruction implements[[PC := targetI j I
0

c]], so we rewrite it into the
sequence[[I 0

c]]; [[PC := targetI]], and we put this sequence into a new “trampoline” basic blockbb.
stable becomes

hfinal specialization of stable for SCD with NCT in the delay sloti�
[[Ic]];
if [[bI]] then
PC := bb;

else
PC := succs(PC);

fi
; stable()

which we translate using an ordinary branch instruction:

htranslation cases forclass(I 0), where class(I) = SCDi�
j NCT =)

local bb := newBlock();
pct := emit(pct; Ic);
pct := emit(pct; bI ! PC := bb);
bb := emit(bb; I 0

c);
bb := emit(bb;PC := codemap(target I));
queueForTranslation(target I; codemap(target I));
trans(succs(pcs)); pct);

Translation of static conditional delayed annulling instructions

The cases for classSCDA(static delayed branches that annul when not taken) are similar to those of
classSCD. For example, whenSCDA is followed byNCT , bI is dynamic,aI � :bI , andbI0 � aI0 �
false. stable reduces to:

hspecialization of stable for SCDA with NCT in the delay sloti�
[[Ic]];
if [[bI]] then
[[I 0

c]];
[[PC := target I]]

else
PC := succs(succs(PC));

fi
; stable()

The translation is like that of classSCD, creating a new basic block, but the recursive call is
trans(succs(succs(pcs)); pct), so translation resumesafter the delay slot instead ofat the delay slot.

19

The most difficult cases arise when the instruction in the delay slot of a branchI is another delayed
branch instructionI 0. These cases multiply like rabbits. We show just one, but it is almost useful;
putting an unconditionalSD branch in the delay slot of another unconditionalSD branch makes it
possible to execute a single non-branchingNCT instruction “out of line.” (To make the case truly
useful, the target of the first branch should be computed dynamically, but this change would complicate
the exposition significantly.)

WhenSD is in SD ’s delay slot,bI0 = true andaI0 = false, andstable reduces to the following
code.

hspecialization of stable for SD with SD in the delay sloti�
[[Ic]];
[[PC := target I j nPC := target I0 j I 0

c j annul := false]]
; loop()

We unfold the call toloop and substitute forward forPC , nPC , andannul . Removing dead assign-
ments leaves

htransformed specialization of stable for SD with SD in the delay sloti�
[[Ic]];
[[I 0

c]];
let (bI00 ! nPC := target I00 j annul := aI00 j I 00

c) � src[[[target I]]]
in if [[bI00]] then

[[PC := targetI0 j nPC := target I00 j I 00

c j annul := aI00]]
else
[[PC := targetI0 j nPC := succs(targetI0) j I 00

c j annul := aI00]]
fi
; loop()

end

We can now moveloop() inside the conditional, convert it tostable() in one branch, unfold, etc.
We wind up with 4 cases based on the values of[[aI00]] and [[bI00]]. BecauseI is a static branch, the
value of [[target I]] is independent of the state of the machine, so we can findI 00 and the expressions
[[aI00]] and [[bI00]] statically. The simplest case is one in whichI 00 never branches (NCT), i.e., where
bI00 = falseandaI00 = false. This case reduces to

hfurther specialization of stable for SD with SD in the delay slot (class(I”)=NCT)i�
[[Ic]];
[[I 0

c]];
[[PC := target I0 j I 00

c]]
; stable()

As before, becauseI 0 is static, we can rewrite[[PC := target I0 j I 00

c]] as the sequence[[I 00

c]]; [[PC :=
target I0]], and we read off the following translation:

htranslation cases forclass(I 00), where class(I) = SD and class(I’) = SDi�
j NCT =)
pct := emit(pct; Ic);

20

pct := emit(pct; I
0

c);
pct := emit(pct; I

00

c);
pct := emit(pct;PC := codemap(target I0));
queueForTranslation(target I0; codemap(target I0));

Since on the SPARC architectureIc andI 0

c are no-ops, the translation executes the effect ofI 00, then
branches totarget I0 , as shown in the last example in Table 1. The instruction in the delay slot ofI 0

(mov 3, %o0 in Table 1) is not executed.
Refer to Appendix C for a complete description of the SPARC V8 translation algorithm.

4.3 Simplified translation of many branch instructions

When translating a branch with a non-branch in the delay slot, our method can be reduced to a simple
strategy: rewrite the branch as a non-delayed branch, and push the delay instruction to the destination
address, the fall-through address, neither, or both, according to the table below.

aI � bI Push the delay instruction to the fall-through address.
aI � :bI Push the delay instruction to the destination address.
aI � false Push the delay instruction to both addresses.
aI � true Discard the delay instruction.

To push the delay instruction to the destination address, we create a new “trampoline” basic block,
which avoids problems in case other branches also flow to the same address.

The third, fourth, and fifth examples in Table 1 show how this strategy is applied to the unconditional
(SD), conditional (SCD), and conditional annulled (SCDA) branches on the SPARC architecture. On
the MIPS, programmers may not put branches in delay slots [Kan88, Appendix A], andaI � false
always, so a single instance of this strategy applies to every branch instruction [SW93].

5 Application to the PA-RISC instruction set

The PA-RISC architecture’s concept of delayed branches is the same as that of the SPARC architecture;
however, the notation used in the architectural manual is fairly different at first glance. Any transfer of
control instruction is delayed, the instruction following the control transfer instruction (thedelay slot
instruction) is executed before control reaches the target of the branching instruction.

Execution of the delay slot instruction is optional; this is determined by the “nullify” bit in the
branch instruction [Pac94]. The concept of the nullify bit is modelled in our system by the annul state.

5.1 Modelling PA-RISC instruction address queues

The PA-RISC processor’s documentation describes an instruction address (IA) queue for handling of
the address of the instruction to be executed next. There are three elements in the IA queue; theFront,
Back and theNext elements. TheFront element is the address of the instruction to be executed, i.e.,

this is equivalent to the Program Counter (PC) in our model. TheBack element holds the address of
the next instruction (after the one atFront). This element is equivalent to ournPC state, before the
nPC is modified by the execution of the instruction at PC. TheNext element is only used in control

21

transfer instructions and refers to the address of the next PC after execution of the control transfer
instruction, i.e., it is the new value of nPC afterBack is updated.

There are two address queues: one for offsets within a given space, and one for different spaces.
The former is called the Instruction Address Offset Queue (IAOQ) and the latter the Instruction Ad-
dress Space Queue (IASQ). An address in the PA-RISC is determined by the combination of a given
space address and the offset address. The combined IASQFront and IAOQFront elements provide
the virtual address of the current executing instruction, whereas the IASQBack and IAOQBack pro-
vides the virtual address of the following instruction that will be executed (see PA-RISC architecture
manual [Pac94] at page 4-11).

Instruction Address Offset Queue (IAOQ)
IAOQ Front< �� IAOQ Back;
IAOQ Back< �� IAOQ Next;
if (taken branch)

IAOQ Next< �� Branch target offset;
else

IAOQ Next< �� IAOQ Back + 4;

Instruction Address Space Queue (IASQ)
IASQ Front< �� IASQ Back;
IASQ Back< �� IASQ Next;
if (BE or BLE)

IASQ Next< �� Branch target space ID;
else

IASQ Next< �� IASQ Back;

Figure 1: Updating Instruction Address Queues in the PA-RISC Architecture

For illustration purposes, we have reproduced Figure 4-3 of the PA-RISC architecture manual
[Pac94], pg 4-12, in Figure 1. This figure describes the changes of state of the IA queues during
control transfer instruction execution. Conceptually, the offset and space queues provide one address,
and the 3 different addresses being stored in the IA queues expose a temporary address that is stored in
the physical queue. In our system, we model two states; the address of the current instruction (PC) and
that of the next instruction to be executed (nPC). These two states are equivalent to storing the three
different values in the following algorithm:

if (taken branch)
nPC <-- Branch target offset;

else
nPC <-- nPC + 4;

In other words, there are two values for nPC in the previous algorithm; the initial nPC value and
the new nPC value; these are equivalent to theNext and Back values in the PA-RISC notation. We
therefore model these IA queues using our PC and nPC state variables.

22

5.2 Classification of PA-RISC instructions

PA-RISC has several types of control transfer instructions, commonly referred to as branching instruc-
tions in the PA-RISC architecture documentation [Pac94]. Branching instructions are either uncondi-
tional or conditional. Unconditional instructions are local or external. Conditional instructions can only
be local. Figure 2 enumerates the different types of branching instructions.

Branching Instructions
Unconditional

Local External Conditional
MOVB, MOVIB BL BE

COMPBx, COMPIBx GATE BLE
ADDBx, ADDIBx BLR

BB, BBV BV

Figure 2: Classification of PA-RISC Control Transfer Instructions

We briefly describe the instructions of Figure 2. The unconditional branching instructions are calls
or jumps; these are:BL is the branch and link (call) instruction,GATEis the gateway instruction (a call
that changes priviledge level),BLR is the branch and link register instruction,BV is the branch vectored
instruction,BE is the branch external instruction, andBLE is the branch and link external instruction.
Conditional branching instructions are the ones denoted by anx as the prefix to the instruction name
(e.g.,ADDBx). Such instructions take two forms, and branch on the result of the operation being true
or branch on false. The operation per se is part of the instruction, and are as follows:COMPBxdoes
a compare instruction and then branches on true or false,COMPIBxdoes a compare immediate and
branches on true or false,ADDBxdoes an add and branches on the result of that add being true or false,
andADDIBx does and add immediate and branches on true or false. TheBB instruction branches on
bit and theBBVbranches on variable bit.

Conditional branching instructions effectively perform the semantics of a non-control transfer in-
struction (move, compare, or add) and then perform a branch based on a condition sometimes de-
termined by the instruction being executed (move, compare, or add). We model these conditional
instructions in the following way:

hconditional branching modeli�
src[PC] = (Ic;Bcondx)

wherex can be true or false. That is, a conditional branching instruction is a compound instruction
which can be modelled as two separate instructions, one performing computation and the next per-
forming the branch. We use theBcondx notation to refer to any such conditional branch (on true or
false) derived from a conditional branching instruction.

We now classify the PA-RISC V1.1 architecture instructions based on our variables:bI (must
branch, may branch, may not branch),aI (must annul, may annul, may not annul), andtarget I (static
target, dynamic target, no target). This classification leads to 9 combinations on the PA-RISC:

23

Instruction bI aI target I Ic Class
BL true false static $r[t] := nPC + 4 SD
GATE true false static hchange priviledge leveli SD
BLR true false dynamic $r[t] := nPC + 4 DD
BV true false dynamic skip DD
BL,n true true static $r[t] := nPC + 4 SU
GATE,n true true static hchange priviledge leveli SU
BLR,n true true dynamic $r[t] := nPC + 4 DU
BV,n true true dynamic skip DU
BE true false static hchange spacei SD
BE,n true true static hchange spacei SU
BLE true false static $r[31] := nPC + 4 SD

hchange spacei
BLE,n true true static $r[31] := nPC + 4 SU

hchange spacei
BcondT test(cond) false static skip SCD
BcondT>,n test(cond) test(cond) static skip SCDA>

BcondT<,n test(cond) :test(cond) static skip SCDA
BcondF :test(cond) false static skip SCD
BcondF>,n :test(cond) :test(cond) static skip SCDA>

BcondF<,n :test(cond) test(cond) static skip SCDA
NCT false false N/A hvariesi NCT
NCTcond false test(cond) N/A hvariesi NCTA

The 9 classes are as follows:

SD Static delayed (unconditional)
DD Dynamic delayed (unconditional)
SU Static unconditional (not delayed)
DU Dynamic unconditional (not delayed)
SCD Static conditional delayed
SCDA Static conditional delayed, annulling
SCDA> Static conditional delayed, annulling on> displacement
NCT Non-control-transfer instructions (arithmetic, etc.)
NCTA Non-control-transfer, annulling

Note that compound trap instructions such as “add and trap on overflow” were not modelled in this
study. In practice, these instructions behave in a similar way to the SPARC V8 TRAP class. Therefore,
in the PA-RISC architecture, the SPARC SKIP class is not present, and in the SPARC architecture, the
DU, SCDA> and NCTA classes are not present.

5.3 Derivation of a translator

We derived a translator in the same way that the SPARC translator was derived (x4.2). The complete
set of transformations and final algorithm are documented in Appendix D.

24

6 Proving correctness

We prove correctness of translation by reasoning about transitions from states to states. As noted in
x3.1, we want to show that running the translated code results in an execution on the target machine
that simulates the original execution on the source machine. Formally, if we start the source machine
in a states�0, and theloop function takes it through a sequence of statess�0;

s�1; : : :, then there is a
subsequence of such statess�k0 ;

s�k1 ; : : : such thats�k0 ; s�k1 ; : : : is a subsequence of the states that the
target machine goes through when started in statet�0 = s�0. Each states�I ; I > 0 is the state of the
source machine after execution of instructionI of the program.

The result desired follows directly from thistransition theorem: If s�m is a source-machine state
such that

1. E [[annul = false^ nPC = succs(PC)]]s�m,

2. there is a corresponding target-machine statet�n = s�m, and

3. trans has been called with arguments(E [[PC]]s�m; E [[PC]]t�n),

then there is ani such that ini steps, the source machine reaches a states�m+i that also satisfies
E [[annul = false^nPC = succs(PC)]]s�m+i. Also, there is aj such that inj steps, the target machine
reaches a statet�n+j = s�m+i, and furthermore (a)i > 0 or j > 0 and (b)trans has been called with
arguments(E [[PC]]s�m+i; E [[PC]]t�n+j).

We prove the transition theorem by case analysis on the classes of the instructions located at
src[PC]. We assume that the translations of expressions and computational effects, whatever they
are, satisfy the following identities:

E [[e]]� = E [[e]]�

R[[Ic]]� = R[[Ic]]�

Because of condition 1, we can substitutestable for loop, so we can apply our transformed version
of stable, which assigns directly toPC . We assume that all mappings� usecodemapto map the source
program counter to the target program counter. To translate a branch, we therefore write

R[[PC := target]]� = substtarget
PC

�

= subst
codemap(target)

PC
�

= subst
codemap(target)

PC
�

= R[[PC := codemap(target)]]� (�)

The simplest case in the proof of the transition theorem is a non-control-transfer instruction (NCT).
The canonical form of such an instruction is

false! nPC := any j annul := false j Ic.

The action ofstable on this form isR[[PC := succs(PC) j Ic]]. Ic leaves the program counter un-
changed, so we rewrite this asR[[Ic;PC := succs(PC)]]. The binary translation has the formIc, which

25

may be a sequence ofj instructions. Thereforej applications ofsimple, or equivalently,j state transi-
tions on the target machine, have the effect ofR[[Ic;PC := succ

(j)
t (PC)]]. Givens�m andt�n satisfying

the hypotheses of the transition theorem, after one step, the source machine reaches the state

s�m+1 = R[[PC := succs(PC)]](R[[Ic]]
s�m):

After j steps, the target machine reaches a state

t�n+j = R[[PC := succ
(j)
t (PC)]](R[[Ic]]

t�n)

= R[[PC := succ
(j)
t (PC)]](R[[Ic]]s�m)

= R[[PC := succ
(j)
t (PC)]](R[[Ic]]s�m)

Fromtrans, codemap(succs(pcs)) = succ
(j)
t (pct), so by(�)

t�n+j = R[[PC := succs(PC)]](R[[Ic]]s�m)

= s�m+1

Thus, after one step on the source andj steps on the target, we again reach a pair of states satisfying
the conditions of the transition theorem.

As another example, consider an instruction of classSCD with an instruction of classNCT in the
delay slot. If the source machine begins in states�, after 1 or 2 steps it reaches states�0, where

s�0 = if E [[bI]](R[[Ic]]
s�) then (R[[PC := target I]] Æ R[[I 0

c]] Æ R[[Ic]])
s�

else(R[[PC := succs(PC)]] Æ R[[Ic]])
s� fi

If the target machine begins in statet� = s�, it reaches statet�0, where

t�0 = if E [[bI]](R[[Ic]]s�) then
(R[[PC := codemap(target I)]] Æ R[[I 0

c]] Æ R[[PC := bb]] Æ R[[Ic]])s�
else

(R[[PC := succt(PC)]] Æ R[[Ic]])s� fi

BecauseR[[PC := t1]] Æ R[[PC := t2]] = R[[PC := t1]], and becauseR[[I 0

c]] commutes with assign-
ments toPC , it is easy to show thatt�0 = s�0.

The other cases for translation can be proved correct in similar fashion.

7 Experience

We have used translators for delayed branches in two tools: a binary translator [CVR99, CV00] and
a decompiler [CSF98]. In both tools, we translate machine instructions into a machine-independent
intermediate formwithout delayed branches. The binary translator uses this form to generate target
code, applying standard optimization techniques. The decompiler analyzes the intermediate form to
recover high-level information like structured control flow.

26

Many problems of binary translation are beyond the scope of this paper.

� Our translator does not guarantee that the source and target codes have the same atomicity proper-
ties; providing atomic three-address operations on a two-address machine would be prohibitively
expensive.

� Self-modifying code and dynamic code generation can be handled either by resorting to interpre-
tation or by invoking the translator dynamically.

� Different machines use different representations of condition codes, and a na¨ıve translation would
emulate source-machine condition codes in a target-machine register. This emulation may be
necessary in some cases (e.g., when a Pentium program depends on the value of the “parity of
the least-significant byte” bit), but in common cases, one definition of condition codes reaches
one use (in a conditional branch), and the source-machine condition code can be eliminated by
forward substitution. This has been implemented in the binary translator system.

� The CPU model used in this paper models hardware exceptions as assignment to a special “ex-
ception location.” This model is suitable only for a machine with precise exceptions. It is an
open question whether a similar formalism could help derive a translation between machines
with precise and imprecise exceptions.

Our first attempt at translating delayed branches was based on a case analysis of the SPARC’s
architecture manual. This analysis created an extra basic block for every delayed instruction that needed
to be executed along any given path. More seriously, the analysis did not cover all cases, as there were
many combinations whose meaning was not clear from a direct reading of the manual. It was difficult
even to characterize the set of binary codes that could be analyzed. These difficulties motivated the
work presented here.

We have replaced our first attempt with a new implementation based on the method described in this
paper. The new implementation is used in both tools. The advantages of the new method are three-fold:
it can handle any branch in a delay slot, even if the target is a branch; it generates better intermediate
code than before; and we recover control-flow graphs with fewer basic blocks.

All the transformations discussed in this paper were done by hand. We investigated formal methods
tools that might have helped us transformstable, but we were left with the impression that this is still a
research problem [Sha96], and it was easy enough to transformstable by hand. By contrast, it would be
very useful to automate the derivation of the translator fromstable and the discovery of the translations
of theaI ’s, bI ’s, andIc’s. This work is not intellectually demanding, but it is tedious because there are
many cases.

Our implementation includes simple optimizations not mentioned above. For example, we do not
create thenop instructions shown in Table 1 whenIc is skip. There are also many cases in which
further transformation ofstable can show that it is not necessary to create new basic blocks.

To test the correctness of our implementation, we developed a test suite that includes not only
standard programs but also artificial programs with different kinds of branches in delay slots. We
manually checked that the intermediate forms and control-flow graphs derived from the translation were
correct at each relevant basic block. We also executed test cases on both source and target machines, to
make sure the proper effects were executed in both source and target codes.

27

As presented in this paper, a branch in a delay slot requires a recursive call toloop, not tostable.
Most cases, including all those shown in the SPARC architecture manual, can be handled by an addi-
tional unfolding ofloop, which we have done in our implementation. The unfolding game can go on
indefinitely; no matter how many times we unfoldloop, a single recursive call toloop remains, and it is
always possible to write a program whose interpretation reaches this recursive call. Because a program
that does this indefinitely is not useful (it does nothing but jump from one branch to another, never ex-
ecuting a computational instruction), we do not unfold beyond what is shown in this paper. This level
of unfolding handles the case of two branch instructionsI1 andI2, whereI2 is in I1’s delay slot. If the
target ofI1 is also a branch instruction, our system currently rejects the code. A fall back interpreter or
a fallback translation algorithm that takes bothnPC andPC as parameters is needed for completeness.

Acknowledgments

We thank Jack Davidson for helpful discussions, Mike Van Emmerik for the implementation of the
translator, and Mitch Wand for help with semantics. This work has been supported by grant A49702762
from the Australian Research Council. The second author had additional support from National Science
Foundation grants ASC-9612756 and CCR-9733974 and from DARPA contract MDA904-97-C-0247.

References

[AS92] Kristy Andrews and Duane Sand. Migrating a CISC computer family onto RISC via
object code translation.Proceedings of the Fifth International Conference on Architec-
tural Support for Programming Languages and Operating Systems,in SIGPLAN Notices,
27(9):213–222, October 1992.

[ASU86] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman.Compilers: Principles, Techniques,
and Tools. Addison-Wesley, 1986.

[BDB00] Vasanth Bala, Evelyn Duesterwald, and Sanjeev Banerjia. Dynamo: A transparent dy-
namic optimization system.Proceedings of the ACM SIGPLAN ’00 Conference on Pro-
gramming Language Design and Implementation,in SIGPLAN Notices, 35(5):1–12, May
2000.

[BKMM87] Arndt Bergh, Keith Keilman, Daniel Magenheimer, and James Miller. HP3000 emulation
on HP Precision Architecture computers.Hewlett-Packward Journal, December 1987.

[BN71] C. Gordon Bell and Allen Newell. Computer Structures: Readings and Examples.
McGraw-Hill, New York, 1971.

[BS82] Mario R. Barbacci and Daniel P. Siewiorek.The Design and Analysis of Instruction Set
Processors. McGraw-Hill, New York, NY, 1982.

[CG95] Cristina Cifuentes and K. John Gough. Decompilation of binary programs.Software—
Practice & Experience, 25(7):811–829, July 1995.

28

[CK94] Bob Cmelik and David Keppel. Shade: A fast instruction-set simulator for execution
profiling. In Proceedings of the 1994 ACM SIGMETRICS Conference on Measurement
and Modeling of Computer Systems, pages 128–137, May 1994.

[CSF98] Cristina Cifuentes, Doug Simon, and Antoine Fraboulet. Assembly to high-level language
translation. InProceedings of the International Conference on Software Maintenance,
pages 228–237. IEEE-CS Press, November 1998.

[CV00] Cristina Cifuentes and Mike Van Emmerik. UQBT: Adaptable binary translation at low
cost. IEEE Computer, 33(3):60–66, March 2000.

[CVR99] Cristina Cifuentes, Mike Van Emmerik, and Norman Ramsey. The design of a resource-
able and retargetable binary translator. InWorking Conference on Reverse Engineering
(WCRE’99), pages 280–291, October 1999.

[DMP96] Olivier Danvy, Karoline Malmkjær, and Jens Palsberg. Eta-expansion does The Trick.
ACM Transactions on Programming Languages and Systems, 18(6):730–751, November
1996.

[EA97] Kemal Ebcioğlu and Erik R. Altman. DAISY: Dynamic compilation for 100% architec-
tural compatibility. In24th Annual International Symposium on Computer Architecture,
pages 26–37, 1997.

[Hof97] Thomas Hoffman. Recovery firm hot on heels of missing source code.Computer World,
March 24 1997.

[JGS93] Neil D. Jones, Carsten K. Gomard, and Peter Sestoft.Partial Evaluation and Automatic
Program Generation. Prentice Hall International, International Series in Computer Sci-
ence, June 1993. ISBN number 0-13-020249-5 (pbk).

[Kan88] Gerry Kane.MIPS RISC Architecture. Prentice Hall, Englewood Cliffs, NJ, 1988.

[LB94] James R. Larus and Thomas Ball. Rewriting executable files to measure program behavior.
Software—Practice & Experience, 24(2):197–218, February 1994.

[LS95] James R. Larus and Eric Schnarr. EEL: machine-independent executable editing.Pro-
ceedings of the ACM SIGPLAN ’95 Conference on Programming Language Design and
Implementation,in SIGPLAN Notices, 30(6):291–300, June 1995.

[May87] Cathy May. MIMIC: A fast System/370 simulator.Proceedings of the ACM SIGPLAN ’87
Symposium on Interpreters and Interpretive Techniques,in SIGPLAN Notices, 22(7):1–13,
June 1987.

[Mil90] Robin Milner. Operational and algebraic semantics of concurrent processes. In J. van
Leewen, editor,Handbook of Theoretical Computer Science, volume B: Formal Models
and Semantics, chapter 19, pages 1201–1242. The MIT Press, New York, N.Y., 1990.

29

[Pac94] Hewlett Packard. PA-RISC 1.1 Architecture and Instruction Set Reference Manual.
Hewlett Packard, third edition, 1994. HP Part Number: 09740-90039.

[Pre93] Prentice Hall, Englewood Cliffs, NJ.System V Application Binary Interface, SPARC
Architecture Processor Supplement, third edition, 1993. Unix Press.

[RD98] Norman Ramsey and Jack W. Davidson. Machine descriptions to build tools for embedded
systems. InACM SIGPLAN Workshop on Languages, Compilers, and Tools for Embedded
Systems (LCTES’98), volume 1474 ofLNCS, pages 172–188. Springer Verlag, June 1998.

[SCK+93] Richard L. Sites, Anton Chernoff, Matthew B. Kirk, Maurice P. Marks, and Scott G.
Robinson. Binary translation.Communications of the ACM, 36(2):69–81, February 1993.

[Sha96] Natarajan Shankar. Steps towards mechanizing program transformations using PVS.Sci-
ence of Computer Programming, 26(1–3):33–57, May 1996.

[SPA92] SPARC International, Englewood Cliffs, NJ.The SPARC Architecture Manual, Version 8,
1992.

[SW93] Amitabh Srivastava and David W. Wall. A practical system for intermodule code opti-
mization. Journal of Programming Languages, 1:1–18, March 1993. Also available as
WRL Research Report 92/6, December 1992.

[Wal92] David W. Wall. Systems for late code modification. In Robert Giegerich and Susan L. Gra-
ham, editors,Code Generation - Concepts, Tools, Techniques, pages 275–293. Springer-
Verlag, 1992.

[WLAG93] Robert Wahbe, Steven Lucco, Thomas E. Anderson, and Susan L. Graham. Efficient
software-based fault isolation. InProceedings of the Fourteenth ACM Symposium on
Operating System Principles, pages 203–216, December 1993.

[WR96] Emmett Witchel and Mendel Rosenblum. Embra: Fast and flexible machine simulation.
In Proceedings of the ACM SIGMETRICS International Conference on Measurement and
Modeling of Computer Systems, volume 24,1 ofACM SIGMETRICS Performance Evalu-
ation Review, pages 68–79, New York, May23–26 1996. ACM Press.

[ZT00] Cindy Zheng and Carol Thompson. PA-RISC to IA-64: Transparent execution, no recom-
pilation. Computer, 33(3):47–52, March 2000.

30

A Formal models

This appendix provides formal semantics for the RTLs and the metalanguage used in the body of the
paper. We use a “core” metalanguage that is simpler than what is used in the body. Here is its grammar;
the “fbracesg” are EBNF meta-notation for sequences. statement

program) ffun function-name() � statementg

statement) statement; statement
j eval r(rtl)
j if meta-expthen statementelsestatementfi
j let (rtl) � memory[exp] in statementend
j function-name()

meta-exp) eval e(exp)
j : meta-exp
j meta-exp̂ meta-exp

The program fragments used in the paper should be rewritten into the simpler core using the following
rules:

� The expression[[e]] is short foreval e(e).

� The statement[[r]] is short foreval r(r).

� An if statement usingelseif is short for nestedif statements.

� A let binding multiple RTLs is short for nestedlet bindings (as in ML).

We present the semantic rules in three layers: expressions, which map states to values; RTLs,
which map states to states; and statements, which map continuations to continuations. To simplify the
semantic equations, we use a revised grammar for RTLs. explist

rtl) expg ! location:= expr j rtl
rtl) location:= expr j rtl
rtl)
rtl) name

exp) constant
j location
j expoperatorexp
j operator(explist)
j name

explist) exp, explist
j

In the right-hand sides forrtl , the vertical barj is the RTL parallel-composition operator; elsewhere, it
is the EBNF metasymbol for alternatives.

31

To define denotations, we begin with domainsBits (bit vectors),Bool (Booleans), and an unspeci-
fied domainL of locations. We construct domains for values and states.

V = Bits + Bool (values)

L (locations)

� : � = L! V (states)

The let construct in our metalanguage binds names to RTLs and expressions. The body of the paper
does not say how to give meanings to such names; this appendix uses environments. Making environ-
ments explicit adds precision but also detail; the detail would be distracting in the body of the paper.

� : Env r = name! exp + rtl (RTL environments)

The environment� is unusual because the denotations of names aresyntax, not values.
We assume that the denotations of constants, operators, and locations are given by functionsN ,O,

andL. We provide semantic equations for expressions. We use “cons” and “nil,” written “::” and “[]”,
to construct lists. The denotation functions have the following types:

N : constant! V

O : operator! V list ! V

L : location ! Env r ! � ! L

E : exp ! Env r ! � ! V

EL : exp list ! Env r ! � ! V list

Here are the semantic equations definingE on expressions andEL on lists of expressions.

E [[constant]]�� = N [[constant]]

E [[location]]�� = �(L[[location]]��)

E [[exp1 operatorexp2]]�� = O[[operator]](E [[exp1]]�� :: E [[exp2]]�� :: [])

E [[operator(explist)]]�� = O[[operator]](EL[[explist]]��)

E [[name]]�� = E(�(name))��

EL[[exp; explist]]�� = E [[exp]]�� :: EL[[explist]]��

EL[[]]�� = []

As noted above, names denote syntax, which is unusual.

32

The semantics of RTLs are slightly more complicated than one might expect, because an RTL
represents a multiple, simultaneous assignment. The key is the auxiliary functionU (“update”), which
computes the values of all the guards, locations and right-hand sides.U returns a function, which
performs those assignments that are called for by the values of the guards. The denotation functionR
usesU to compute this function, then applies the function to the current state�. We use “upds”
to update a state and polymorphic “if” to choose between states. Here are the types of the relevant
functions.

R : rtl ! Env r ! � ! �

U : rtl ! Env r ! � ! � ! �

upds : � ! L! V ! �

if : 8�:V ! � ! �! �

The following definition ofU ignores a subtlety; properly speaking, an RTL should not have a de-
notation if the same location appears on more than one left-hand side. In our definition, the leftmost
assignment takes priority. This simplification is warranted because it enables us to avoid putting er-
ror values in our domains, but readers should take care not to use transformations whose correctness
depends on the order in which “simultaneous” assignments take place!

U [[location := exp j rtl]]�� = ��0:upds(U [[rtl]]���0)(L[[location]]��)(E [[exp]]��)

U [[expg ! location := expr j rtl]]�� =

if(E [[expg]]��)(��
0:upds(U [[rtl]]���0)(L[[location]]��)(E [[expr]]��))(U [[rtl]]��)

U [[]]�� = ��0:�0

U [[name]]�� = U(�(name))��

R[[rtl]]�� = U [[rtl]]���

Next, we present the semantics of statements. We use a continuation semantics in which the answers
are sequences of states; these are the sequences used inx6. Statements also require an additional
environment�f , which is used to give meanings to function calls. Our functions are parameterless, and
the denotation of a function is the same as the denotation of a statement: a function from continuations
to continuations.

C = � ! A (continuations)

A = � list (answers)

�f : Envf = name! C ! C (function environments)

S : statement ! Env f ! Env r ! C ! C

33

The most important semantic equation is the one forevalr; evaluating an RTL adds a state to the answer.
Since our interpreters don’t halt, it doesn’t really matter if we add the pre-state or the post-state; we’ve
chosen the pre-state because it is simpler. The other semantic equations are more or less standard.

S[[eval r(rtl)]]�f�r� = ��:� :: �(R[[rtl]]�r�)

S[[statement 1; statement2]]�f�r� = S[[statement 1]]�f�r(S[[statement 2]]�f�r�)

S[[if exp then statement1 elsestatement2 fi]]�� =
��:if(E [[exp]]�r�)(S[[statement 1]]�f�r��)(S[[statement 2]]�f�r��)

S[[let (rtl) � memory[exp] in statement end]]�f�r� =

��:S[[statement]]�f (decode(E [[exp]]�r�)�rtl �r)��

S[[function-name()]]�f�r� = �f function-name�

Thedecode function in the rule forlet binding hides substantial work. When applied as in

decode addr � rtl �r;

the decode function performs the following computations:

1. It examines the machine state�, looking at the contents of memory at addressaddr in that state.
Using the machine-dependent rules for binary representations of machine instructions, and the
machine-dependent meanings of those instructions, it computesI : � ! �, a representation of
the semantics of the machine instruction located at addressaddr .

2. It identifies the free variables ofrtl , and it chooses bindings for those variables such that given
those bindings, the denotation ofrtl is I.

3. Finally, it adds those bindings to environment�r, and returns the new environment.

The only remaining semantic equation is the equation for function definitions. A function definition
adds another function to the environment�f . This equation requires a fixed-point computation to
compute the new environment�0, because functions may call themselves recursively.

D[[fun name() � statement]]�f = �0

where�0 = upde(�f ; name;S[[statement]]�0(�x:?))

Here,(�x:?) is the empty RTL environment, andupde adds a binding to an environment.
Given a machine state�0, which determines a binary program and a program counter, the sequence

of states produced by the execution of that program is�f i (��:?)�0, wherei is the name of the in-
terpreter (loop or simple), and�f is the environment produced by processing the definitions of the
interpreters. If the interpreter runs forever without halting, the usual least-fixed-point calculation pro-
duces an infinite list of states.

34

B Transformations

This appendix lists the transformations used in the body of the paper. This list should make it easier
for readers to verify the soundness of our transformations. It may also help readers judge how difficult
it would be to automate the transformations. Our purpose is to build readers’ intuitions; hence, we do
not attempt to be completely precise and formal.

� Commutativity of simultaneous composition.

S j T � T j S;

providedS andT have disjoint locations on their left-hand sides. This should be the case for all
RTLs of interest.

� Associativity of sequential composition.

S; (T ;V) � (S;T);V � S;T ;V

� Converting simultaneous composition to sequential composition.

S j T � S;T ;

provided no location on any left-hand side ofS appears in a guard or a right-hand-side ofT . In
other words, if the locations changed byS don’t affect the values computed byT , S andT can
be performed in sequence, rather than in parallel.

This transformation changes the answer produced by a program; it introduces a new intermediate
state. Introducing a finite number of such states is harmless, as it doesn’t prevent us from proving
the transition lemma. Introducing such new states may be necessary when the target machine’s
instruction set does not contain the source machine’s instruction set; this is the rule that enables us
to use asequenceof target-machine instructions to translate asinglesource-machine instruction.

� Distribution of sequential composition over conditional.

if P then S1 elseS2 fi;S3 � if P then S1;S3 elseS2;S3 fi

We can move a trailing statement inside a conditional, provided we replicate it on both branches.
There is a slightly more restrictive rule for moving leading statements inside conditionals.

S1; if P then S2 elseS3 fi � if P then S1;S2 elseS1;S3 fi,

provided no location modified byS1 is read byP .

� Distribution of sequential composition overlet. We can move a leading statement insidelet,
provided there’s no clash of bound variables.

S1; let B in S2 end� let B in S1;S2 end;

provided no name free inS1 is bound inB. There is a similar rule for trailing statements.

35

� Alpha-conversion oflet. Givenlet B in S end, we can rename bound variables inB andS.

� “The Trick” on Booleans.
S � if P then S elseS

� Constant folding.We partially evaluate with respect to constants as needed. For example,if
[[true]] then S1 elseS2 fi � S1.

� Dead-code elimination.Assignments to locations that are never read can be eliminated.

� Forward substitution (assignment).If exactly one write to a location reaches a read of that loca-
tion, we can substitute the expression written for the read from the location.

� Forward substitution (conditional).Given a statementif P then S1 elseS2 fi, we may substitute
[[true]] for P in S1, and[[false]] for P in S2, provided no conflicting change of state intervenes.

� Introduce assignment.If we know the value of a particular location at a particular program
point, we can introduce a redundant assignment to that location. For example, we can introduce
annul := annul .

� Function inlining.
name() � S, provided�f (name) = S

This rule, together with the preceding two rules, enables us to replace some calls toloop with
calls tostable.

In deriving a translator, we introduce acasestatement, to which we have applied the following
transformation.

� Interchanging the order of tests in anif statement and acasestatement.The order of tests of an
if statement and acasestatement that is nested within theif statement can be interchanged by
distributing one over all of the arms of the other.

if P then
caseF of
j E1 =) S1

: : :

j En =) Sn
end

else
Se

fi

�

caseF of
j E1 =) if P then S1 elseSe fi
: : :

j En =) if P then Sn elseSe fi
end

36

C Complete SPARC V8 translation algorithm

We document the full SPARC V8 algorithm after applying transformations as described inx4.2. Note
that for the cases whereloop() is derived, we emit anunroll loop(pc,nPC) call as per suggested
in x7.

hfinal sparc translatori�
fun trans(pcs; pct) =
codemap(pcs) � pct
let I as(bI� > nPC := targetI j annul := aI j Ic) = src[pcs]
in caseclass(I) of
j NCT =) = � :bIand:aI � =

pct := emit(pct; Ic);
trans(succs(pcs); pct)

j SKIP =) = � :bIandaI � =
pct := emit(pct; Ic);
trans(succs(succs(pcs)); pct)

j SU =) = � bIandaI � =
pct := emit(pct; Ic);
pct := emit(pct;PC := codemap(targetI));
queueForTranslation(target I ; codemap(target I))

j SD =) = � bIand:aI � =
j DD =) = � bIand:aI � =

let I 0 as(bI0� > nPC := target I0 j annul := aI0 j I 0

c) = src[succs(pcs)]
in caseclass(I 0) of
j NCT =) = � :bI0and:aI0 � =

pct := emit(pct; Ic);
pct := emit(pct; I

0

c);
pct := emit(pct;PC := codemap(targetI));
queueForTranslation(target I ; codemap(target I));

j SKIP =) = � :bI0andaI0 � =
pct := emit(pct; Ic);
pct := emit(pct; I

0

c);
pct := emit(pct;PC := codemap(succs(target I)));
queueForTranslation(succs(target I); codemap(succs(targetI)));

j SU =) = � bI0andaI0 � =
pct := emit(pct; Ic);
pct := emit(pct; I

0

c);
pct := emit(pct;PC := codemap(targetI0));

37

queueForTranslation(target I0; codemap(targetI0));

j SD =)
j DD =) = � bI0and:aI0 � =

pct := emit(pct; Ic);
unroll loop(pcs; nPC)= � I 00 � =

j SCD =) = � bI0and:aI0 � == � :bI0and:aI0 � =
local bb := newBlock();
pct := emit(pct; Ic);
pct := emit(pct; bI0� > PC := bb);
bb := emit(bb; "unroll loop(pc_s, nPC)");
pct := emit(pct; I

0

c);
pct := emit(pct;PC := codemap(targetI));
queueForTranslation(target I ; codemap(target I));

j SCDA =) = � bI0and:aI0 � == � :bI0andaI0 � =
local bb := newBlock();
pct := emit(pct; Ic);
pct := emit(pct; bI0� > PC := bb);
bb := emit(bb; "unroll loop(pc_s, nPC)");
pct := emit(pct; I

0

c);
pct := emit(pct;PC := codemap(succs(target I)));
queueForTranslation(succs(target I); codemap(succs(targetI)));

j SCD =) = � bIand:aI � =
let I 0 as(bI0� > nPC := target I0 j annul := aI0 j I 0

c) = src[succs(pcs)]
in caseclass(I 0) of
j NCT =) = � (:bI0and:aI0)or(:bIand:aI) � =

local bb := newBlock();
pct := emit(pct; Ic);
pct := emit(pct; bI� > PC := bb);
bb := emit(bb; I 0

c);
bb := emit(bb;PC := codemap(target I));
queueForTranslation(target I ; codemap(target I))
trans(succs(pcs); pct)

j SKIP =) = � :bI0andaI0or:bIand:aI � =
local bb := newBlock();
pct := emit(pct; Ic);
pct := emit(pct; bI� > PC := bb);
bb := emit(bb; I 0

c);
bb := emit(bb;PC := codemap(succs(target I)));

38

queueForTranslation(succs(target I); codemap(succs(targetI)))
trans(succs(pcs); pct)

j SU =) = � bI0andaI0or:bIand:aI � =
local bb := newBlock();
pct := emit(pct; Ic);
pct := emit(pct; bI� > PC := bb);
bb := emit(bb; I 0

c);
bb := emit(bb;PC := codemap(target I0));
queueForTranslation(target I0; codemap(targetI0))
trans(succs(pcs); pct)

j SD =)
j DD =) = � bI0and:aI0or:bIand:aI � =

local bb := newBlock();
pct := emit(pct; Ic);
pct := emit(pct; bI� > PC := bb);
bb := emit(bb; "unroll loop(pc_s, nPC)"); = � I 00 � =
trans(succs(pcs); pct)

j SCD =) = � bI0and:aI0or:bIand:aI � =
= � :bI0and:aI0 � =
local bb := newBlock();
local bb 0 := newBlock();
pct := emit(pct; Ic);
pct := emit(pct; bI� > PC := bb);
bb := emit(bb; bI0� > PC := bb 0);
bb 0 := emit(bb 0; "unroll loop(pc_s, nPC)");
bb := emit(bb; I 0

c);
bb := emit(bb;PC := codemap(target I));
queueForTranslation(target I ; codemap(target I))
trans(succs(pcs); pct)

j SCDA =) = � bI0and:aI0 � =
= � :bI0andaI0 � =
= � :bIand:aI � =
local bb := newBlock();
local bb 0 := newBlock();
pct := emit(pct; Ic);
pct := emit(pct; bI� > PC := bb);
pct := emit(pct; bI0� > PC := bb 0);
bb 0 := emit(bb 0; "unroll loop(pc_s, nPC)");
bb := emit(bb; I 0

c);

39

bb := emit(bb;PC := codemap(succs(target I)));
queueForTranslation(succs(target I); codemap(succs(targetI)));
trans(succs(pcs); pct)

end

j SCDA =) = � bIand:aI � =
let I 0 as(bI0� > nPC := target I0 j annul := aI0 j I 0

c) = src[succs(pcs)]
in caseclass(I 0) of
j NCT =) = � :bI0and:aI0 � == � :bIandaI � =

local bb := newBlock();
pct := emit(pct; Ic);
pct := emit(pct; bI� > PC := bb);
bb := emit(bb; I 0

c);
bb := emit(bb;PC := codemap(target I));
queueForTranslation(target I ; codemap(target I));
trans(succs(succs(pcs)); pct)

j SKIP =) = � :bI0andaI0 � == � :bIandaI � =
local bb := newBlock();
pct := emit(pct; Ic);
pct := emit(bI� > PC := bb);
bb := emit(bb; I 0

c);
bb := emit(bb;PC := codemap(succs(target I)));
queueForTranslation(succs(target I); codemap(succs(targetI)));
trans(succs(succs(pcs)); pct)

j SU =) = � bI0andaI0 � == � :bIandaI � =
local bb := newBlock();
pct := emit(pct; Ic);
pct := emit(pct; bb);
bb := emit(bb; I 0

c);
bb := emit(bb;PC := codemap(target I0));
queueForTranslation(target I0; codemap(targetI0));
trans(succs(succs(pcs)); pct)

j SD =)
j DD =) = � bI0and:aI0 � == � :bIandaI � =

local bb := newBlock();
pct := emit(pct; Ic);
pct := emit(pct; bI� > PC := bb);
bb := emit(bb; "unroll loop(pc_s, nPC)"); = � I 00 � =
trans(succs(succs(pcs)); pct)

40

j SCD =) = � bI0and:aI0 � == � :bI0and:aI0 � =
= � :bIandaI � =
local bb := newBlock();
local bb 0 := newBlock();
pct := emit(pct; Ic);
pct := emit(pct; bb);
bb := emit(bb; bI0� > PC := bb 0);
bb 0 := emit(bb 0; "unroll loop(pc_s, nPC)");
bb := emit(bb; I 0

c);
bb := emit(bb;PC := codemap(target I));
queueForTranslation(target I ; codemap(target I));
trans(succs(succs(pcs)); pct)

j SCDA =) = � bI0and:aI0 � == � :bI0andaI0 � =
= � :bIandaI � =
local bb := newBlock();
local bb 0 := newBlock();
pct := emit(pct; Ic);
pct := emit(pct; bI� > PC := bb);
bb := emit(bb; bI0� > PC := bb 0);
bb 0 := emit(bb 0; "unroll loop(pc_s, nPC)");
bb := emit(bb; I 0

c);
bb := emit(bb;PC := codemap(succs(target I)));
queueForTranslation(succs(target I); codemap(succs(targetI)));
trans(succs(succs(pcs)); pct)

end
end

41

D Complete PA-RISC translation algorithm

We sketch the transformation steps followed in order to derive a translator for the removal of PA-RISC
delayed branches. Starting from the original translation algorithmtrans in x3.1, we instantiate it to
the classes of instructions of the PA-RISC V1.1 architecture, as documented inx5.2, leading to the
following initial algorithm.

hpa-risc translatori�
fun trans(pcs; pct) =
codemap(pcs) � pct
let I as(bI� > nPC := targetI j annul := aI j Ic) = src[pcs]
in caseclass(I) of
j NCT =) nonBranching; nonAnnulling

j NCTA =) if (cond) then
nonBranching; annulling

else
nonBranching; nonAnnulling

j SU =) branching; annulling

j DU =) branching; annulling

j SD =) branching; nonAnnulling

j DD =) branching; nonAnnulling

j SCD =) if (bI) then
branching; nonAnnulling

else
nonBranching; nonAnnulling

j SCDA =) if (bI) then
branching; nonAnnulling

else
nonBranching; annulling

j SCDA> =) if (bI) then
branching; annulling

else
nonBranching; nonAnnulling

end

42

expanding each of the arms of thecasestatement, we get:

hpa-risc translatori+�
fun trans(pcs; pct) =
codemap(pcs) � pct
let I as(bI� > nPC := targetI j annul := aI j Ic) = src[pcs]
in caseclass(I) of
j NCT =) = � :bIand:aI � =

pct := emit(pct; Ic);
trans(succs(pcs); pct)

j NCTA =) = � :bIandaI � =
if (cond) then
pct := emit(pct; Ic);
trans(succs(succs(pcs)); pct)

= � :bIand:aI � =
else
pct := emit(pct; Ic);
trans(succs(pcs); pct)

fi

j SU =) = � bIandaI � =
pct := emit(pct; Ic);
pct := emit(pct;PC := codemap(targetI));
queueForTranslation(target I ; codemap(target I))

j DU =) = � bIandaI � =
= � Same asSUonlythatthetargetaddresstarget Iisknown

dynamically � =

j SD =) = � bIand:aI � =
let I 0 as(bI0� > nPC := target I0 j annul := aI0 j I 0

c) = src[succs(pcs)]
in caseclass(I 0) of
j NCT =) = � :bI0and:aI0 � =

pct := emit(pct; Ic);
pct := emit(pct; I

0

c);
pct := emit(pct;PC := codemap(targetI));
queueForTranslation(target I ; codemap(target I))

j NCTA =) = � :bI0andaI0 � =
if (cond) then
pct := emit(pct; Ic);
pct := emit(pct; I

0

c);

43

pct := emit(pct;PC := codemap(succs(target I)));
queueForTranslation(succs(target I); codemap(succs(target I)))

= � :bI0and:aI0 � =
else
pct := emit(pct; Ic);
pct := emit(pct; I

0

c);
pct := emit(pct;PC := codemap(target I));
queueForTranslation(targetI ; codemap(target I))

fi

j SU =)
j DU =) = � bI0andaI0 � =

pct := emit(pct; Ic);
pct := emit(pct; I

0

c);
pct := emit(pct;PC := codemap(targetI0));
queueForTranslation(target I0; codemap(targetI0))

j SD =)
j DD =) = � bI0and:aI0 � =

pct := emit(pct; Ic);
unroll loop(pcs; nPC)= � I 00 � =

j SCD =) = � bI0and:aI0 � =
if (bI0) then
pct := emit(pct; Ic);
unroll loop(pcs; nPC)

= � :bI0and:aI0 � =
else
pct := emit(pct; Ic);
pct := emit(pct; I

0

c);
pct := emit(pct;PC := codemap(target I));
queueForTranslation(targetI ; codemap(target I))

fi

j SCDA =) = � bI0and:aI0 � =
if (bI0) then
pct := emit(pct; Ic);
unroll loop(pcs; nPC)

= � :bI0andaI0 � =
else
pct := emit(pct; Ic);

44

pct := emit(pct; I
0

c);
pct := emit(pct;PC := codemap(succs(target I)));
queueForTranslation(succs(target I); codemap(succs(target I)));

fi

j SCDA> => = � bI0andaI0 � =
if (bI0) then
pct := emit(pct; Ic);
pct := emit(pct; I

0

c);
pct := emit(pct;PC := codemap(target I0));
queueForTranslation(targetI0 ; codemap(target I0))

= � :bI0and:aI0 � =
else
pct := emit(pct; Ic);
pct := emit(pct; I

0

c);
pct := emit(pct;PC := codemap(target I));
queueForTranslation(targetI ; codemap(target I))

fi
end

j DD =) = � bIand:aI � =
= � Same asSD caseonlythatthetargetaddresstarget Iis
knowndynamically � =

j SCD =) = � bIand:aI � =
if (bI) then

let I 0 as(bI0� > nPC := target I0 j annul := aI0 j I 0

c) = src[succs(pcs)]
in caseclass(I 0) of
j NCT =) = � :bI0and:aI0 � =

pct := emit(pct; Ic);
pct := emit(pct; I

0

c);
pct := emit(pct;PC := codemap(target I));
queueForTranslation(targetI ; codemap(target I))

j NCTA =) = � :bI0andaI0 � =
if (cond) then
pct := emit(pct; Ic);
pct := emit(pct; I

0

c);
pct := emit(pct;PC := codemap(succs(target I)));
queueForTranslation(succs(target I); codemap(succs(target I)))

= � :bI0and:aI0 � =
else

45

pct := emit(pct; Ic);
pct := emit(pct; I

0

c);
pct := emit(pct;PC := codemap(target I));
queueForTranslation(target I ; codemap(targetI))

fi

j SU =)
j DU =) = � bI0andaI0 � =

pct := emit(pct; Ic);
pct := emit(pct; I

0

c);
pct := emit(pct;PC := codemap(target I0));
queueForTranslation(targetI0 ; codemap(target I0))

j SD =)
j DD =) = � bI0and:aI0 � =

pct := emit(pct; Ic);
unroll loop(pcs; nPC)= � I 00 � =

j SCD =) = � bI0and:aI0 � =
if (bI0) then
pct := emit(pct; Ic);
unroll loop(pcs; nPC)

= � :bI0and:aI0 � =
else
pct := emit(pct; Ic);
pct := emit(pct; I

0

c);
pct := emit(pct;PC := codemap(target I));
queueForTranslation(target I ; codemap(targetI))

fi

j SCDA =) = � bI0and:aI0 � =
if (bI0) then
pct := emit(pct; Ic);
unroll loop(pcs; nPC)

= � :bI0andaI0 � =
else
pct := emit(pct; Ic);
pct := emit(pct; I

0

c);
pct := emit(pct;PC := codemap(succs(target I)));
queueForTranslation(succs(target I); codemap(succs(target I)));

fi

46

j SCDA> => = � bI0andaI0 � =
if (bI0) then
pct := emit(pct; Ic);
pct := emit(pct; I

0

c);
pct := emit(pct;PC := codemap(target I0));
queueForTranslation(target I0 ; codemap(target I0))

= � :bI0and:aI0 � =
else
pct := emit(pct; Ic);
pct := emit(pct; I

0

c);
pct := emit(pct;PC := codemap(target I));
queueForTranslation(target I ; codemap(targetI))

fi
end

= � :bIand:aI � =
else
pct := emit(pct; Ic);
trans(succs(pcs); pct)

fi

j SCDA =) = � bIand:aI � =
if (bI) then

let I 0 as(bI0� > nPC := target I0 j annul := aI0 j I 0

c) = src[succs(pcs)]
in caseclass(I 0) of
j NCT =) = � :bI0and:aI0 � =

pct := emit(pct; Ic);
pct := emit(pct; I

0

c);
pct := emit(pct;PC := codemap(target I));
queueForTranslation(targetI ; codemap(target I))

j NCTA =) = � :bI0andaI0 � =
if (cond) then
pct := emit(pct; Ic);
pct := emit(pct; I

0

c);
pct := emit(pct;PC := codemap(succs(target I)));
queueForTranslation(succs(target I); codemap(succs(target I)))

= � :bI0and:aI0 � =
else
pct := emit(pct; Ic);
pct := emit(pct; I

0

c);

47

pct := emit(pct;PC := codemap(target I));
queueForTranslation(target I ; codemap(targetI))

fi

j SU =)
j DU =) = � bI0andaI0 � =

pct := emit(pct; Ic);
pct := emit(pct; I

0

c);
pct := emit(pct;PC := codemap(target I0));
queueForTranslation(targetI0 ; codemap(target I0))

j SD =)
j DD =) = � bI0and:aI0 � =

pct := emit(pct; Ic);
unroll loop(pcs; nPC)= � I 00 � =

j SCD =) = � bI0and:aI0 � =
if (bI0) then
pct := emit(pct; Ic);
unroll loop(pcs; nPC)

= � :bI0and:aI0 � =
else
pct := emit(pct; Ic);
pct := emit(pct; I

0

c);
pct := emit(pct;PC := codemap(target I));
queueForTranslation(target I ; codemap(targetI))

fi

j SCDA =) = � bI0and:aI0 � =
if (bI0) then
pct := emit(pct; Ic);
unroll loop(pcs; nPC)

= � :bI0andaI0 � =
else
pct := emit(pct; Ic);
pct := emit(pct; I

0

c);
pct := emit(pct;PC := codemap(succs(target I)));
queueForTranslation(succs(target I); codemap(succs(target I)));

fi

j SCDA> => = � bI0andaI0 � =

48

if (bI0) then
pct := emit(pct; Ic);
pct := emit(pct; I

0

c);
pct := emit(pct;PC := codemap(target I0));
queueForTranslation(target I0 ; codemap(target I0))

= � :bI0and:aI0 � =
else
pct := emit(pct; Ic);
pct := emit(pct; I

0

c);
pct := emit(pct;PC := codemap(target I));
queueForTranslation(target I ; codemap(targetI))

fi
end

= � :bIandaI � =
else
pct := emit(pct; Ic);
trans(succs(succs(pcs)); pct)

fi

j SCDA> => = � bI0andaI0 � =
if (bI0) then
pct := emit(pct; Ic);
pct := emit(pct; I

0

c);
pct := emit(pct;PC := codemap(target I0));
queueForTranslation(targetI0 ; codemap(target I0))

= � :bI0and:aI0 � =
else
pct := emit(pct; Ic);
pct := emit(pct; I

0

c);
pct := emit(pct;PC := codemap(target I));
queueForTranslation(targetI ; codemap(target I))

fi
end

49

We perform the following transformations on the code:

� For the (SD,SCD), (SD,SCDA) and (SD,SCDAgt) cases, we apply the distribution of sequential
composition overlet to the statementpct := emit(pct; Ic);

� For the (SD,SCD), (SD,SCDA) and (SD,SCDAgt) cases, we create a new memory address (de-
notedbb) to hold the code on one side of the branch and generate the code to support the branch,

� For the NCTA, SCD, SCDA and SCDAgt cases, we apply the distribution of sequential compo-
sition over conditional,

� For the SCD, SCDA and SCDAgt cases, we interchange the order of test in anif andcase
statement and we apply the inverse of the distribution of sequential composition overlet to the
statementpct := emit(pct; Ic);, and

� For the SCD, SCDA and SCDAgt cases, we create a new memory address (denotedbb andbb’)
and replace the conditional branch onbI with appropriate code for both branches.

obtaining the following final version of the algorithm:

hfinal pa-risc translatori�
fun trans(pcs; pct) =
codemap(pcs) � pct
let I as(bI� > nPC := targetI j annul := aI j Ic) = src[pcs]
in caseclass(I) of
j NCT =) = � :bIand:aI � =

pct := emit(pct; Ic);
trans(succs(pcs); pct)

j NCTA =) = � :bIandaI � == � :bIand:aI � =
pct := emit(pct; Ic);
if (cond) then
trans(succs(succs(pcs)); pct)

else
trans(succs(pcs); pct)

j SU =) = � bIandaI � =
pct := emit(pct; Ic);
pct := emit(pct;PC := codemap(targetI));
queueForTranslation(target I ; codemap(target I))

j DU =) = � bIandaI � =
= � Same asSUonlythatthetargetaddresstarget Iisknown

dynamically � =

j SD =) = � bIand:aI � =

50

let I 0 as(bI0� > nPC := target I0 j annul := aI0 j I 0

c) = src[succs(pcs)]
in caseclass(I 0) of
j NCT =) = � :bI0and:aI0 � =

pct := emit(pct; Ic);
pct := emit(pct; I

0

c);
pct := emit(pct;PC := codemap(targetI));
queueForTranslation(target I ; codemap(target I))

j NCTA =) = � :bI0andaI0 � =
if (cond) then
pct := emit(pct; Ic);
pct := emit(pct; I

0

c);
pct := emit(pct;PC := codemap(succs(target I)));
queueForTranslation(succs(target I); codemap(succs(target I)))

= � :bI0and:aI0 � =
else
pct := emit(pct; Ic);
pct := emit(pct; I

0

c);
pct := emit(pct;PC := codemap(target I));
queueForTranslation(targetI ; codemap(target I))

fi

j SU =)
j DU =) = � bI0andaI0 � =

pct := emit(pct; Ic);
pct := emit(pct; I

0

c);
pct := emit(pct;PC := codemap(targetI0));
queueForTranslation(target I0; codemap(targetI0))

j SD =)
j DD =) = � bI0and:aI0 � =

pct := emit(pct; Ic);
unroll loop(pcs; nPC)= � I 00 � =

j SCD =) = � bI0and:aI0 � == � :bI0and:aI0 � =
local bb := newBlock();
pct := emit(pct; Ic);
pct := emit(pct; bI0� > PC := bb);
bb := emit(bb; "unroll loop(pc_s, nPC)");
pct := emit(pct; I

0

c);
pct := emit(pct;PC := codemap(target I));
queueForTranslation(targetI ; codemap(target I))

51

j SCDA =) = � bI0and:aI0 � == � :bI0andaI0 � =
local bb := newBlock();
pct := emit(pct; Ic);
pct := emit(pct; bI0� > PC := bb);
bb := emit(bb; "unroll loop(pc_s, nPC)");
pct := emit(pct; I

0

c);
pct := emit(pct;PC := codemap(succs(target I)));
queueForTranslation(succs(target I); codemap(succs(target I)));

j SCDA> => = � bI0andaI0 � == � :bI0and:aI0 � =
local bb := newBlock();
pct := emit(pct; Ic);
pct := emit(pct; bI0� > PC := bb);
bb := emit(bb; I 0

c);
bb := emit(bb;PC := codemap(target I0));
queueForTranslation(targetI0 ; codemap(target I0))
pct := emit(pct; I

0

c);
pct := emit(pct;PC := codemap(target I));
queueForTranslation(targetI ; codemap(target I))

end

j DD =) = � bIand:aI � =
= � Same asSD caseonlythatthetargetaddresstarget Iis
knowndynamically � =

j SCD =) = � bIand:aI � =
let I 0 as(bI0� > nPC := target I0 j annul := aI0 j I 0

c) = src[succs(pcs)]
in caseclass(I 0) of
j NCT =) = � (:bI0and:aI0)or(:bIand:aI) � =

local bb := newBlock();
pct := emit(pct; Ic);
pct := emit(pct; bI� > PC := bb);
bb := emit(bb; I 0

c);
bb := emit(bb;PC := codemap(target I));
queueForTranslation(targetI ; codemap(target I));
trans(succs(pcs); pct)

j NCTA =) = � (:bI0andaI0)or(:bI0and:aI0)or(:bIand:aI) � =
local bb := newBlock();
pct := emit(pct; Ic);
pct := emit(pct; bI� > PC := bb);
bb := emit(bb; I 0

c);
if (cond) then

52

bb := emit(bb;PC := codemap(succs(target I)));
queueForTranslation(succs(target I); codemap(succs(target I)))

else
bb := emit(bb;PC := codemap(targetI));
queueForTranslation(target I ; codemap(targetI))

fi
trans(succs(pcs); pct)

j SU =)
j DU =) = � (bI0andaI0)or(:bIand:aI) � =

local bb := newBlock();
pct := emit(pct; Ic);
pct := emit(pct; bI� > PC := bb);
bb := emit(bb; I 0

c);
bb := emit(bb;PC := codemap(target I0));
queueForTranslation(targetI0 ; codemap(target I0))
trans(succs(pcs); pct)

j SD =)
j DD =) = � (bI0and:aI0)or(:bIand:aI) � =

local bb := newBlock();
pct := emit(pct; Ic);
pct := emit(pct; bI� > PC := bb);
unroll loop(pcs; nPC)= � I 00 � =
trans(succs(pcs); pct)

j SCD =) = � (bI0and:aI0)or(:bI0and:aI0)or(:bIand:aI) � =
local bb := newBlock();
local bb 0 := newBlock();
pct := emit(pct; Ic);
pct := emit(pct; bI� > PC := bb);
bb := emit(bb; bI0� > PC := bb 0);
bb 0 := emit(bb 0; "unroll loop(pc_s, nPC)");
bb := emit(bb; I 0

c);
bb := emit(bb;PC := codemap(target I));
queueForTranslation(targetI ; codemap(target I))
trans(succs(pcs); pct)

j SCDA =) = � (bI0and:aI0)or(:bI0andaI0)or(:bIand:aI) � =
local bb := newBlock();
local bb 0 := newBlock();
pct := emit(pct; Ic);
pct := emit(pct; bI� > PC := bb);

53

bb := emit(bb; bI0� > PC := bb 0);
bb 0 := emit(bb 0; "unroll loop(pc_s, nPC)");
bb := emit(bb; I 0

c);
bb := emit(bb;PC := codemap(succs(target I)));
queueForTranslation(succs(target I); codemap(succs(target I)));
trans(succs(pcs); pct)

j SCDA> => = � (bI0andaI0)or(:bI0and:aI0)or(:bIand:aI) � =
local bb := newBlock();
local bb 0 := newBlock();
pct := emit(pct; Ic);
pct := emit(pct; bI� > PC := bb);
bb := emit(bb; I 0

c);
bb := emit(bb; bI0� > PC := bb 0);
bb 0 := emit(bb 0;PC := codemap(target I0));
queueForTranslation(targetI0 ; codemap(target I0))
bb := emit(bb;PC := codemap(target I));
queueForTranslation(targetI ; codemap(target I))
trans(succs(pcs); pct)

end

j SCDA =) = � bIand:aI � =
let I 0 as(bI0� > nPC := target I0 j annul := aI0 j I 0

c) = src[succs(pcs)]
in caseclass(I 0) of
j NCT =) = � (:bI0and:aI0)or(:bIandaI) � =

local bb := newBlock();
pct := emit(pct; Ic);
pct := emit(pct; bI� > PC := bb);
bb := emit(bb; I 0

c);
bb := emit(bb;PC := codemap(target I));
queueForTranslation(targetI ; codemap(target I));
trans(succs(succs(pcs)); pct)

j NCTA =) = � (:bI0andaI0)or(:bI0and:aI0)or(:bIandaI) � =
local bb := newBlock();
pct := emit(pct; Ic);
pct := emit(pct; bI� > PC := bb);
bb := emit(bb; I 0

c);
if (cond) then
bb := emit(bb;PC := codemap(succs(target I)));
queueForTranslation(succs(target I); codemap(succs(target I)))

else
bb := emit(bb;PC := codemap(targetI));

54

queueForTranslation(target I ; codemap(targetI))
fi
trans(succs(succs(pcs)); pct)

j SU =)
j DU =) = � (bI0andaI0)or(:bIandaI) � =

local bb := newBlock();
pct := emit(pct; Ic);
pct := emit(pct; bI� > PC := bb);
bb := emit(bb; I 0

c);
bb := emit(bb;PC := codemap(target I0));
queueForTranslation(targetI0 ; codemap(target I0));
trans(succs(succs(pcs)); pct)

j SD =)
j DD =) = � (bI0and:aI0)or(:bIandaI) � =

local bb := newBlock();
pct := emit(pct; Ic);
pct := emit(pct; bI� > PC := bb);
bb := emit(bb; "unroll loop(pc_s, nPC)"); = � I 00 � =
trans(succs(succs(pcs)); pct)

j SCD =) = � (bI0and:aI0)or(:bI0and:aI0)or(:bIandaI) � =
local bb := newBlock();
local bb 0 := newBlock();
pct := emit(pct; Ic);
pct := emit(pct; bI� > PC := bb);
bb := emit(bb; bI0� > PC := bb 0);
bb 0 := emit(bb 0; "unroll loop(pc_s, nPC)");
bb := emit(bb; I 0

c);
bb := emit(bb;PC := codemap(target I));
queueForTranslation(targetI ; codemap(target I));
trans(succs(succs(pcs)); pct)

j SCDA =) = � (bI0and:aI0)or(:bI0andaI0)or(:bIandaI) � =
local bb := newBlock();
local bb 0 := newBlock();
pct := emit(pct; Ic);
pct := emit(pct; bI� > PC := bb);
bb := emit(bb; bI0� > PC := bb 0);
bb 0 := emit(bb 0; "unroll loop(pc_s, nPC)");
bb := emit(bb; I 0

c);
bb := emit(bb;PC := codemap(succs(target I)));

55

queueForTranslation(succs(target I); codemap(succs(target I)));
trans(succs(succs(pcs)); pct)

j SCDA> => = � (bI0andaI0)or(:bI0and:aI0)or(:bIandaI) � =
local bb := newBlock();
local bb 0 := newBlock();
pct := emit(pct; Ic);
bb := emit(bb; bI0� > PC := bb 0);
bb := emit(bb; I 0

c);
bb := emit(bb; bI0� > PC := bb 0);
bb 0 := emit(bb 0;PC := codemap(target I0));
queueForTranslation(targetI0 ; codemap(target I0))
bb := emit(bb;PC := codemap(target I));
queueForTranslation(targetI ; codemap(target I))
trans(succs(succs(pcs)); pct)

end

j SCDA> => = � (bI0andaI0)or(:bI0and:aI0) � =
local bb := newBlock();
pct := emit(pct; Ic);
pct := emit(pct; I

0

c);
pct := emit(pct; bI0� > PC := bb);
bb := emit(bb;PC := codemap(target I0));
queueForTranslation(target I0; codemap(target I0))
pct := emit(pct;PC := codemap(targetI));
queueForTranslation(target I ; codemap(target I))

end

56

About the Authors

Cristina Cifuentesis a Senior Staff Engineer at Sun Microsytems Laboratories in Mountain View, Cal-
ifornia, where she investigates techniques and applications of binary translation. Cristina has published
in the areas of binary translation, program comprehension, software maintenance, compiler construc-
tion, reverse engineering, decompilation, copyright and legal aspects of computing. She has co-edited
two books, given invited lectures worldwide on various topics, and has served in the program committee
of numerous conferences and workshops. Cristina was principal investigator of the Walkabout, UQBT,
and the dcc projects. Prior to joining Sun Microsystems Laboratories in July 2000, she held academic
positions at The University of Queensland and The University of Tasmania, Australia. Cristina obtained
a Ph.D. from the Queensland University of Technology, Australia, in 1995.

Norman Ramseybegan his research career in physics, a field in which he spent several years before
deciding that engineering was more fun than science. After earning his PhD from Princeton in 1993,
he spent several years in “industrial research” before returning to academia. He is currently Assistant
Professor of Computer Science at Harvard University. His research interests lie in compilers, languages,
and tools for programmers. He has worked on a significant number of software tools, most recently the
Quick C-- compiler, but he may be best known for his literate-programming tool “Noweb.”

57

	A Transformational Approach to Binary Translation of Delayed Branches with Applications to SPARC® and PA-RISC Instructions Sets
	Abstract
	Copyright
	1 Introduction
	2 Semantic framework
	2.1 Register transfer lists
	2.2 Processor state for delayed branches
	2.3 A canonical form of RTLs
	2.4 Instruction decoding and execution on two platforms
	2.5 Strategy for translating delayed branches

	3 Transforming the execution loop
	3.1 Derivation of a translator

	4 Application to the SPARC instruction set
	4.1 Classification of SPARC instructions
	4.2 Translations of SPARC instructions
	4.3 Simplified translation of many branch instructions

	5 Application to the PA-RISC instruction set
	5.1 Modelling PA-RISC instruction address queues
	5.2 Classification of PA-RISC instructions
	5.3 Derivation of a translator

	6 Proving correctness
	7 Experience
	References
	A Formal models
	B Transformations
	C Complete SPARC V8 translation algorithm
	D Complete PA-RISC translation algorithm
	About the Authors

