

Electric[™], a VLSI CAD framework using the Java Technology

Gilda Garretón
Staff SW Engineer
Sun Microsystems Laboratories
©2005 Gilda Garretón

Outline

Sun Labs and Asynchronous Group

- VLSI design workflow
- Electric framework

Java framework

- What is next
- Summary
- Q&A

Sun Microsystems Laboratories

- Center for innovation
 - > Project focus
 - > What we do

& Collaboration

Advanced Development

- Technology transfer leadership
 - > Java, Sun Ray, JFluid, Electric, Proximity I/O

New Products

Micro-business Unit &

Asynchronous Group

- Asynchronous design
 - > Clockless systems
- Major benefits

- Major contributions
 - UltraSPARCIIIi, GasP, FLEET, Proximity Communication

Electric: VLSI Framework

Courtesy of Tom O'Neill, Async Group

sml2005-0278

Circuit design in Electric

- Transistor sizing in Electric
 - > Transistor sizes determine speed, power
 - > Logical effort theory => sizes

- Simulation
 - > IRSIM in Electric
- Netlist generation
 - > SPICE, others
- Textual Languages
 - > VHDL, Verilog

Layout in Electric

DRC, NCC, Annotation in Electric

Chip fabrication

- In-house chip testing
 - > Test software library written in Java

Chip repair using FIB

sml2005-0278

Electric Roadmap

- Steven M. Rubin, author and owner
 - > Development started in 1982
 - > Open source vision: GNU license
 - > ~50 contributors; >100 users, mainly in universities
- Original C code
 - > 460k lines, 25% GUI
 - > Ported to all platforms (v7.0 Sept 2004)
- Used since 2000 by Asynchronous Group
 - > "Customer-owned tool" for custom solutions
- Conjunction with Cadence tools

Electric Framework

- Scalable database
 - > Nodes and arcs made of layers
 - Instances and prototypes
 - > Hierarchical representation

Electric Framework

- Integrated circuit connectivity
 - > Ports on nodes; pins for arc bends
 - > Advantages
 - > One UI for layouts and schematics
 - > Topology-based tools are smarter
 - Can tolerate inaccurate geometry
 - > No node extraction
 - can do LVS before DRC
 - > Network information always available
 - > Disadvantages
 - > Extra work during layout (power tools help)
 - > Display not WYSIWYG

Electric Framework ...

- Layout constraints
 - > Built on topological representation
 - > Rigid wires, fixed-angle wires, outward propagation
 - > Enables "top-down" design
 - > Demo! 🚺

Electric Framework

- Extensible technologies
 - > Moore's Law, fast trend
 - > Encapsulates geometry, topology, and behavior
- Extensible tools
 - > Tightly-coupled in a single process
 - > Can run in parallel as appropriate
 - > Listeners for interactive tools
- Powerful database
 - Constraint propagation, undo/redo
- Plug-ins for proprietary and open source code sm/2005-02

Java Framework

- Standard libraries
 - > No need to re-invent the wheel
 - > Collections, geometry operators
 - > Code reduced by 2/3 over C
- UI and JFC/Swing
 - > Platform independent components
 - > C required many interface modules
- Interpreted environment enables faster development

JavaDoc simplifies internal documentation

Java Framework

- Multi threading
 - > Each task in a separate thread
 - > Isolation of code failures
 - > Enables multiprocessing
- Plug-ins via Reflection
 - > Dynamically determines if code is available
- Java 3D scene graph paradigm for rendering
 - > Serialization
 - > Demo! 🛂

What is Next

- What to read
 - Computer Aids for VLSI Design, Steven M. Rubin
 - > Effective Java, J. Bloch
 - Logical Effort, I. Sutherland, B. Sproull & D. Harris
- Challenges in Electric
 - > Transactional database
 - Collaborative environment
 - > More tools

Summary

- VLSI CAD tool for free
 - http://www.staticfreesoft.com
- Open source as valid option for technology development
- Java suitable for CAD applications
 - > More stable, better UI, faster than C version
 - > Ported useful subset in less than a year
 - > Ported entire system in less than two years
 - > Developers unfamiliar with Java at start

Gilda Garretón Gilda.Garreton@sun.com

Q&A

