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Just-In-Time GPU Compilation of Interpreted
Programs with Profile-Driven Specialization

Abstract

Computer systems are increasingly featuring powerful par-
allel devices with the advent of manycore CPUs, GPUs
and FPGAs. This offers the opportunity to solve large
computationally-intensive problems at a fraction of the time
of traditional CPUs. However, exploiting this heterogeneous
hardware requires the use of low-level programming lan-
guages such as OpenCL, which is incredibly challenging,
even for advanced programmers.

On the application side, interpreted dynamic languages
are increasingly becoming popular in many emerging do-
mains for their simplicity, expressiveness and flexibility.
However, this creates a wide gap between the nice high-level
abstractions offered to non-expert programmers and the low-
level hardware-specific interface. Currently, programmers
have to rely on specialized high performance libraries or are
forced to write parts of their application in a low-level lan-
guage like OpenCL. Ideally, programmers should be able
to exploit heterogeneous hardware directly from their inter-
preted dynamic languages.

In this paper, we present a technique to transparently
and automatically offload computations from interpreted dy-
namic languages to heterogeneous devices. Using just-in-
time compilation, we automatically generate OpenCL code
at runtime which is specialized to the actual observed data
types using profiling information. We demonstrate our tech-
nique using R which is a popular interpreted dynamic lan-
guage predominately used in big data analytics. Our exper-
imental results show execution on a GPU yields speedups
of over 150x when compared to the sequential FastR im-
plementation and performance is competitive with manually
written GPU code. We also show that when taking into ac-
count startup time, large speedups are achievable, even when
the applications runs for as little as a few seconds.

[Copyright notice will appear here once *preprint’ option is removed. ]
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1. Introduction

Nowadays, most computer systems are equiped with pow-
erful parallel devices such as Graphics Processing Units
(GPUs). Many applications domains can benefit from these
devices, often achieving up to three orders of magnitude
speedup over parallel CPU code. However, exploiting this
hardware requires the knowledge of new computer architec-
tures and low-level languages such as OpenCL, CUDA, C
and Fortran. This is a very challenging task for non-expert
programmers.

Many non-computer scientists prefer using interpreted
dynamic languages such as Ruby, Python or R which are
hugely popular despite their reputation for poor perfor-
mance. They offer high-level functionality, simplicity of use
and the interpreter allows for fast software development.
However, exploiting a GPU from these languages is far from
trivial for programmers since they either have to write the
GPU kernels themselves or rely on third-party GPU acceler-
ated libraries.

Ideally, an interpreter for a dynamic programming lan-
guage would be able to parallelize the execution on the GPU
automatically and transparently. A possible solution is to
port the interpreter to the GPU and directly interpret the in-
put program on the GPU. Unfortunately, this naive solution
is not well suited for GPUs given that some parts of the in-
terpreter are hard to port such as method dispatch and object
representation. As a consequence, we can expect to pay a
large overhead for interpreting code on the GPU.

Recent developments in the area of improving inter-
preter’s performance on traditional CPUs have seen the
emergence of profile-driven specialization [20} [21]. Such
techniques specialize the interpreter to the application being
run by coupling partial evaluation with a JIT code generator.
The code produced, therefore, becomes specialized to the
actual observed types or to the hot path in the control-flow
as in a trace-based compiler [7]]. As a result, the interpreter
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is almost completely compiled away, leaving only the actual
application logic and computation.

In this work, we propose to extend these techniques to
GPUs. I think we should change this, according to the cur-
rent title We present an OpenCL JIT compiler framework
for dynamic programming languages based on profile-driven
specialization to accelerate interpreted programs with min-
imal effort for the language implementer. The main idea is
that if the code performing the interpreter can be completely
removed using specialization and partial evaluation, it is pos-
sible to produce efficient GPU code. As we will see, this is
almost possible with little effort and minor modification to
the existing interpreters.

Using R as a use case, we extend the recently developed
R interpreter FastR [17]] and the Graal JVM JIT compiler
to support the generation of OpenCL code from R source.
We achieve this using profile-driven specialization with only
minor modifications to the existing infrastructure. The R in-
terpreter is slightly modified to detect parallel operations
and represent them as parallel nodes in the Abstract Syn-
tax Tree (AST) interpreter. When a piece of R code is ex-
ecuted multiple times, the Truffle interpreter transforms the
AST of the program into the Graal Intermediate Representa-
tion (Graal IR) that is used for the compiler to machine code
something is missing here, generate?—. We then perform a
series of passes that simplify the IR as much as possible and
the code generator attempts to produce an OpenCL kernel. If
successful, the kernel is executed on the GPU. We currently
support a subset of the R language, therefore, if the JIT com-
pilation process fails due to unsupported features, controls
return to the interpreter automatically and safely using the
standard back guard (deoptimisation [9]) mechanism.

Our experimental results show that this approach is fea-
sible and that it is possible to accelerate R programs on the
GPU automatically. We achieve an average of 150x speed-up
at peak performance when using the GPU compared to the
runtime of the FastR interpreter on the CPU. Impressively,
we still achieve an average of 48x speed-up in a more realis-
tic scenario where we include the OpenCL compilation time
and OpenCL device initialization costs.

To summarize, the contributions of this paper are as fol-
low:

e We present an OpenCL JIT compiler framework for AST
interpreters using Truffle and Graal.

® We present a technique for simplifying the Graal inter-
mediate representation for OpenCL code generation.

e We present a performance evaluation for a set of R ap-
plications running on GPUs. We compare our imple-
mentation with the standard de-facto GNU-R, FastR and
OpenCL C++ implementations.
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2. Background

Truffle [21] is a framework for implementing programming
languages on top of a Java Virtual Machine (JVM). The
Truffle API contains various building blocks for a language’s
runtime environment and provides infrastructure for manag-
ing executable code, mainly in the form of abstract syntax
trees (ASTSs).

Interpreter engine AST interpreters are a simple and
straightforward technique to build an execution engine for
a programming language. The source code is transformed
into a tree of nodes, and the execute methods of each node
defines its behavior.

For dynamic programming languages, even seemingly
simple operations such as adding two values can perform
a multitude of different tasks, depending on the incoming
value types and the overall state of the runtime system. The
Truffle AST nodes start out in an uninitialized state and re-
place themselves with specialized versions geared towards
the specific input data that were encountered during execu-
tion. As new situations are encountered, the AST nodes are
progressively made more generic to incorporate the handling
of more inputs in their specialized behaviour. At any point in
time, the AST encodes the minimal amount of functionality
needed to run the program with the inputs encountered so
far. Most applications quickly reach a stable state where no
new input types are discovered.

Truffle DSL  Writing nodes that specialize themselves in-
volves a large amount of boilerplate code that is tedious to
write and hard to get right under all circumstances. The Truf-
fle DSL provides a small but powerful set of declarative an-
notations used to generate this code automatically.

Compilation The specialization of AST nodes together
with the Truffle DSL allow the interpreter to run efficiently,
e.g., to avoid boxing primitive values in certain situations.
However, the inherent overhead of an interpreter which dis-
patches execute calls to the AST nodes cannot be removed.

To address this, Truffe employs Graal [21] for generating
optimized machine code. Graal is a bytecode to native code
JIT compiler implemented in Java, which can replace the
client [10] and server [13]] compilers in the HotSpot JVM. It
transforms bytecode to the high-level GraallR [4] interme-
diate representation, optimizes the IR, and transforms it to a
low-level intermediate representation, before finally gener-
ating executable machine code for various platforms.

When Truffle detects that the number of times an AST
was executed exceeds a certain threshold, it will submit
the AST to Graal for compilation. Graal compiles the AST
using partial evaluation [6], which essentially inlines all
execute methods into one compilation unit and incorporates
the current state of the AST to generate a piece of native code
that works for all data types encountered so far. If new data
types are encountered, the compiled code will deoptimize [§]
and control will be transfered back to the interpreter which
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modifies the AST to accommodate the new data types. The
AST is then recompiled with the additional functionality.

3. Design and System Overview

This section presents an overview of our OpenCL JIT com-
piler framework for dynamic languages. We describe the
middle-ware software stack and we present our modifica-
tions to the existing Truffle and Graal projects.

3.1 Motivation Example in R

Modern programming languages normally have built-in
functions in their specifications for common operations.
Some of these intrinsics can be computed in parallel, such
as map, reduce, or filter. Although the compiler and the run-
times are free to implement those operations in parallel, they
do not usually provide a parallel implementation. Our idea
is to take those built-in functions as skeletons and generate
the corresponding parallel code for OpenCL.

We take the apply operations in R, like mapply, and rep-
resent them as a new node in the AST with parallel semantic.
The implementation of the parallel operations contain the
default sequential implementation with a few modifications
that enables the OpenCL compilation and execution.

Listingm shows an example in R with the mapply function
to compute Daxpy (a multiplication of a double for a vector
and an addition in double precision).

1 > x <- runif(size)
2 >y <- runif(size)
3 > mapply(function(x, y) 0.12 *x x +y, a, b)

Listing 1: R example to compute Daxpy

The mapply method showed in Listing|[T|takes three argu-
ments, the function and the input data. The mapply executes
the function passed as argument for every element in the in-
put data set.

If the user code is executed multiple times, we com-
pile the R code to OpenCL automatically. Listing [2] shows
the auto-generated OpenCL C code. Lines 1-4 show the
OpenCL code for the R function in the mapply built-in. Lines
5-12 correspond to the parallel skeleton for the mapply func-
tion (map parallel skeleton [3]).

1 double f(double p0, double pl) {

2 double rl = x0 * 0.12;

3 double x2 = x1 + x1; return x2;
4}

5 kernel void oclKernel(global double * p@,
6 global double * pl,

7 global double *p2) {
8 int idx = get_global id(0);

9 double x0 = p0O[idx];

10 double x1 = pl[idx];
11 double result = f(x0, x1);
12 p2[idx] = result; }
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Listing 2: OpenCL C code for the R code shown in
Listing|T]

3.2 Compiler framework overview

Figure [2] shows the middle-ware software stack of our sys-
tem. The light gray blocks represent the existing projects and
the dark gray blocks show our contributions.

> daxpy <- function(x,y) 0.12 *x +y;
> mapply(daxpy, 3, b);

M
1y

FastR R Languaig_i Parallel AST
Truffle Truffle Interpreter
ﬁ Accelerator API

1 L

4
ﬁ Accelerator Phases
Java HotSpot
‘ AMD ‘ ‘ NVIDIA ‘ InteIXSG‘ ’ Sparc ‘

Figure 2: Compilation process from R programming lan-
guage to OpenCL C code.

The top of the Listing shows an R application (daxpy)
representing the input to our system. The R program is ex-
ecuted within the Truffle R interpreter (FastR). First, FastR
builds an AST that represents the input program. If there are
calls to any parallel built-in like mapply, we represent the
operation in an AST node with parallel semantic.

Then we execute the R user function in the AST in-
terpreter. The interpreter collects profiling information and
rewrites the AST with the inferred types. If the R function
is executed multiple times and it exceeds a threshold, Truffle
marks the AST as candidate for compilation. The compila-
tion is first performed via partial evaluation in Graal.

The partial evaluator produces a CFG in the Graal-IR
form [4]. This graph is used by Graal to apply the optimiza-
tions and generate efficient machine code. We intercept the
CFG in one of the final steps in the high-level phases of
Graal and we optimize it for OpenCL. One of the biggest
challenges is to filter the compiler overhead to the real com-
putation. As Stefan et. al. [[12] explained, partial evaluation
does not solve to remove the overhead of the interpreter, but
the lowering phases. However, we do not wait until Graal
compiler applies the full lowering. Our code generator takes
the high-level Graal IR and generates OpenCL code. This
means that we can only generate OpenCL code from the
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R program
a < runif(size); b < runif(size);
mapply(function(x, y) { 0.12 *x + v}, a, b)

@ Parsing
——p{Rall rewm|

Truffle | FastR AST

Specialization

—

Add double
Mult double

RCall: return

Truffle | FastR AST

Add node interpreter implementation (Java code)

class AddDoubleNode {
@CompilationFinal boolean leftNa; // false
@CompilationFinal boolean rightNa; // false
double execute(double 1, double r) {

if (leftNa && isNa(l))

' transferToInterpreter();

/ if (rightNa && isNa(r))
transferToInterpreter();

return 1 + r;

Partial Evaluation

’,V“‘ p(0) (+ optimizations)

Figure 1: AST specialization in Truffle.

Graal high-level IR. The following sections explain how we
handle and clean the CFG for OpenCL code generation.

4. JIT Compiler for AST Interpreters

This section explains in detail all the extensions we imple-
ment on top of the FastR interpreter, Truffle and Graal that
allows OpenCL JIT compilation for R.

FastR OpenCL components Figure |3| shows how all the
components in the compiler and the runtime are connected.
The light gray squares show our extensions to the FastR and
Truffle/Graal compilers. FastR parses and builds an AST
for the input R code. Once the AST is built, we infer the
input and output data types for OpenCL. We also analyze
the lexical scope of the R function and obtain their types and
capture their values.

When the R code is running in the interpreter, we check if
the R function is marked as candidate for compilation. In that
case, we create a mapping between the AST and the com-
piled graph. Right after the partial evaluation we simplify
the CFG for OpenCL and perform the Graal lowering. This
allows us to reduce the compiler graph before the OpenCL
code generation.

Then we compile to OpenCL C code. We rely on the ex-
isting code generator back-end for OpenCL [5] with Graal.
When the OpenCL compilation finishes, we transform the
data from the R data types to OpenCL types (marshal), ex-
ecute the OpenCL program and un-marshal the data. Mar-
shalling the data, as we will see, is a very slow process.
Fumero et. al. [3]] presents a strategy to avoid the marshal
for Java and OpenCL programming by using a data structure
called PArray. We extend the concept of PArrays for Truf-
fle languages to avoid the data transformation completely. In
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Figure 3: JIT Compiler from R interpreter to OpenCL C
code. The white squares represent the existing components
in FastR and Graal compilers. The gray squares represent
our contributions.

the rest of this section we explain the extensions in the AST
interpreter.

4.1 Built-in redefinition for OpenCL

The parallelization to OpenCL is automatic. To do so, we
extend the FastR interpreter with a few parallel built-ins
based on the existing ones in the R language. We load a
new version of the built-in during the VM start-up. Listing
shows the modification for the mapply function. Lines
3-5 check if there is any OpenCL driver available in the
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local machine. If it is true, we call the new version and
we create a new node in the AST (OpenCLMApply) with
parallel semantic.

1 mapply <-function (FUN, ...) {

2 FUN <- match.fun(FUN)

3 if (fastR.oclEnabled())

4 return(.FastR(.NAME="mapplyOCL", FUN, ...))
5 #Default sequential implementation ...

6 }

Listing 3: Modification of the R MApply function for
OpenCL computation

The following sections describe how we translate from
the input R code to the output OpenCL C code at runtime.

4.2 Enabling OpenCL acceleration within FastR

With the built-in redefinition in the VM start-up, if the
mapply function is called, it will execute our updated ver-
sion for OpenCL. Listing[d]shows a sketch of our interpreter
for the OpenCL apply in the AST. Firstly we enable the
OpenCL execution in lines 2-3. Then we check if the R
function has been already compiled to OpenCL (line 6). If
it is that the case, we obtain the OpenCL binary from an
internal cache, and we execute it (line 7). If not we execute
the R function in the AST interpreter (lines 8-17).

The compilation normally happens in a background
thread in the VM. Therefore, the R code can be compiled
at any point after the VM detects the threshold. We add a
condition to know if the CFG after partial evaluation was
already inserted into an OpenCL compilation queue (lines
12-15). If it is that the case, we just compile the CFG to
OpenCL code and swap the execution to the GPU. This is
similar to the on stack replacement (OSR) technique cur-
rently implemented in the Oracle Hotspot.

1 Object run(RFunction function, RVector input) {
2 if (cache.lookup(function))

3 function.getRootNode()).enableOCL();

4 graph = cache.lookup(callTarget.getID());

5 oclUnit = cache.lookup(graph);

6 if (wasCompiled(graph))

7 return runWithOCL(input, oclUnit);

8 for (int i = 1; i < size; i++) {

9 Object value = function.call(args);

10 output.add(value);

11 graph = cache.get(callTarget);

12 if (graph != null && oclUnit == null) {

13 oclUnit = compile(callTarget, graph);
14 cache.insert(graph, oclUnit);

15 return runWithOpenCL(input, oclUnit); }
16 }

17 return output; }

Listing 4: Run method in the AST interpreter for
OpenCLMApply node.
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4.3 Own AST root node

Truffle is a self-optimizing AST interpreter. This means that
the AST is re-written itself and when it reaches a stable
point, it compiles to native code. The AST interpreter is
implemented in Java, therefore, for the JVM, the interpreter
is just another Java application. When the partial evaluator
compiles the AST, it compiles the interpreter (execution
engine) itself with the actual values and constants.

1 class FunctionDefinitionNode {

2 @Child private RNode body;

3 @CompilationFinal boolean openCLExecution;
4 private Object oclExecution(VirtualFrame vf) {
5 return body.execute(vf);

6 }

7 @Override

8 public Object execute(VirtualFrame frame) {
9 if (openCLExecution) {

10 return oclExecution(frame);

11 } else {

12 return fastRExecution(frame);

13 }

14 }

15 3}

Listing 5: Sketch of the execution engine for the AST
root node in our compiler

After partial evaluation there is still information about
the AST interpreter that we have to get rid of. Handling an
AST interpreter on GPUs will generate very irregular and
complex kernels that can kill the parallelism. We create a
kernel with the computation that was expressed in the guest
language. In FastR we can easily influence in the Graal-IR
generated after partial evaluation by simplifying the AST
interpreter.

We have our own representation of the AST root node.
Listing[5|shows a sketch of the logic for the execute method
in the AST root node for FastR.

The root node is called FunctionDefinitionNode in
FastR. We extend it with a simplified execution path for
OpenCL. If the function to be executed is not candidate for
OpenCL, it follows the default path for interpretation and
compilation. But, it is candidate for running with OpenCL, it
will execute a simplify version in the AST interpreter. This
simplifies the CFG after partial evaluation, and, therefore,
the OpenCL compilation.

4.4 Data types and type inference

We currently support the most common R data types: vectors
of primitive data types for integer, double and Boolean. We
also support sequences and R lists and NA (Not Available)
values.

Type Inference: input, output and scope OpenCL is a
static typed language which requires to infer the input/output
types and the size before compilation. Moreover, OpenCL
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does not allow null references. If we detect null references,
unknown types or sizes, we fall back (deoptimize) to the
normal FastR execution and we do not compile to OpenCL.
Therefore, the user application is always executed, but with
different strategy.

We infer the input data types via Truffle specializations in
the AST interpreter. We obtain the types and the size for all
the input variables. For OpenCL execution, we also have to
check that the input values are the same type and they do not
contain null references.

To infer the output data types, we first execute the R
function in the interpreter with only the first element from
the input data set. Based on this execution we build all the
meta-data needed for compiling to OpenCL.

We also support lexical scope variables automatically. We
explore the AST and we build an array of the lexical scope
variables for the function. Then, for each variable we infer its
type and size and we also pass this meta-data to the OpenCL
code generator.

Rlists Listsin R can handle a dynamic list of different data
types. The OpenCL programming model does not contain
lists or any dynamic data structure. We decide to map them
to a C struct of fixed size. We handle the R lists as a
collection of Tuples in our compiler framework. We can
safely do this because, at the partial evaluation time, we do
know the length of any array and lists. If the R function
returns a list, we build an internal Tuple with the number
of elements. For instance, if the function returns a list with
two elements list(a, b), we build a Tuple2(a, b).

NA values R is a languages designed for statistics. There-
fore, it is very common to have missing or not available val-
ues in a data set. NA values are internally implemented as an
integer in the interpreter. For instance, if the input vector is
an integer array, an NA value is represented as the minimum
value for the integers. This becomes an NA just as another
integer value for OpenCL.

This simple strategy allows us to work with NA values
coming from large input data sets. However, we still operate
with the NA values inside the OpenCL kernel. nm
sure what that means I want to say that, we manage NAs
values but, as they are just numbers for OpenCL, we operate with
them. I think a better strategy is to avoid the NA computation inside
the OpenCL kernel (if value != NA then compute;), but we do not
support this at the moment.

5. OpenCL Code Generation

This section shows the internal process of our code generator
and how we transform the AST to a valid OpenCL C code at
run-time.

5.1 Compilation example

Figure 4{shows in detail how our compiler translate from the
R to OpenCL C code and how the intermediate representa-
tion looks like. We use the same example showed in Listing
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The top of the Figure represents the input R code, which
is transformed to an AST in step 1. In this step, the AST is
rewritten itself with specialized type information.

If the R function is executed multiple times, Truffle com-
piles the AST with Graal via partial evaluation. The output
for the partial evaluation is a CFG in the Graal-IR form. The
CFG showed in step 2 of the figure represents the Graal-
IR for the daxpy function. The left side of the step 2 shows
the corresponding Java code in the AST interpreter that pro-
duces the Graal-IR shown in the right part.

Then we mark the CFG as candidate graph for OpenCL
compilation. We introduce annotations in our AST inter-
preter to deal with CFG filtering and clean up. This allows
us to remove unnecessary interpreter overhead in the compi-
lation step. We extend the partial evaluator with a few phases
for processing our custom OpenCL annotations. If the AST
interpreter contains our annotations, we safely remove the
guards nodes associated to the CFG. In this example, all the
inputs have the annotation @KnownType, which is required
for OpenCL compilation. Therefore, if an input field has this
annotation, we safely remove the condition and the guard
associated to it. il’s not clear here under what circum-
stances it is safe to use KnownType, and why the checks are there
in the first place,

However, we keep the rest of the checks in order to
preserve the semantic of the input language and deoptimise
if it is required. As a result, we produce the CFG showed
in step 3. Then we take this optimized CFG and generate
OpenCL code using the existing code generator for OpenCL.
The output of the code generator is showed in the step 4.
As a result, we have a R expression running on GPUs with
OpenCL.

5.2 Compiler information in the AST level

To identify the R function with the corresponding CFG to
be compiled, we extend Truffle and Graal to pass informa-
tion from the partial evaluator the to AST interpreter. The
compilation unit in Graal is called call target. The call target
includes the functions and methods to be compiled by Graal.
The Graal IR has a unique number to identify the CFG, and
we also extend the call target to include the same informa-
tion. Our OpenCL JIT compiler keeps track of the call target
and its CFG.

5.3 Simplifying overhead of the AST interpreter

Partial evaluation and self-optimizing interpreters help to
reduce the compilation overhead of the interpreter itself. But
the partial evaluation keeps the control flow of the interpreter
in the compilation unit [12f], which means that the partial
evaluator not only compiles the user code written in the guest
language, but also the interpreter itself. For instance, if we
want to add two variables, the partial evaluator does not just
compile the addition but also the logic in the interpreter to
perform the addition. this needs an example - what’s the

"logic to perform the addition" 7
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# R user code

a < 1:1000; b < 1:1000 typedef struct {
result < mapply(function(x, y) 0.12*x +vy, a, b int_1;
pply(fu x.y) Y. a, b) int 2,
} Tuple;

N
@ (o)

Add double

AST
+

Specialization

Read (y)
RCall: return

Partial Evaluation
+

Optimizations
Arguments (p)

Mult duble

Constant (0.12)

inline int _Tuplel(Tuple p) { return p._1;}
inline int _Tuple2(Tuple p) { return p._2;}

/I User function
double callRoot(Tuple input) {
int elem0 = _Tuplel(input);
int eleml = _Tuple2(input);
double cast_3 = (double) elem1;
double cast_4 = (double) elem0;
double result_5 = cast_4 *0.12; /111 *0.12
double result_6 = cast_3 + result_5; //i2 + result5
return result_6;

}

/I Mapply parallel skeleton
kernel void kernel (global int * pO,
global int * p1,
constant int *p1_index_data,
global double *p2) {
int idx = get_global_id(0);
int a0 = pO[idx]; // Load Index index0

AST Interpreter e plindex1] ‘e-@KnownType int al = pl[idx]; // Load Index index1
Tuple t;
_»r plindex0] @KnownType — a0-
] ) start |/ E_é - gg'
if (!/(p[index0] — ’ _ )
instanceOf Index0 J double resultO = callRoot(t);
Integer)) { A y p2[loop_1] = result0;
transferToInterpreter(); ~Loadindex ...

}
i1 = p[index0]

I InstanceOf#nteger I

I FixedGuard#TransferTolnterpreter I-"'- -----

OpenCL Code
Generation

Arguments (p)

Indeél plindex1] @KnownType
plindex0] | @KnownType
I InstanceOf#Integer I OpenCL
,,,,,,,,,,,,,,, Clean Up
Phase
. . I FixedGuard#TransferTolnterpreter
if (!/(p[index1] I Y
instanceOf .
\ transferTolnterpreter(); | [ 5 L.
S ) v 4 A S
12 = plindex1] [ Foacomer |
C(0.12) 4
Odouble val =i1*0.12 + i2 ; . < * o
»»»»»»»»»» » +
Return
Figure 4: JIT Compiler from R interpreter to OpenCL C code.
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This overhead can be partially removed by using node
specialization and lowering. lowcring doesn’t remove
anything, it may expose opportunities to remove things Graal
has different compilation levels for lowering. If we wait too
long to compile, we find architecture dependent optimiza-
tions in the CFG. If we optimize too early, we still find many
Graal nodes coming from the AST interpreter. | Lukas [this
needs to start at a higher level: Graal’s IR starts out in a form that is
close to bytecode. It is successively lowered toward more low-level
operations (e.g., from field load to memory read), and at each stage
various optimizations are performed. the OpenCL compiler needs
high-level operations, but still wants to take advantage of as many
optimizations as possible. ]

We analyze the different phases to generate code for
OpenCL. We intercept every compilation phase in the high-
tier to obtain a better approach to the real function computa-
tion in R. Based on an empirical evaluation, we see that after
the last phase in the high-tier (non architecture optimiza-
tions) we obtain a good approach to the lambda expression
we need to translate to OpenCL. this basically means:
inlining, escape analysis and high-level loop optimizations have
been applied, but no lowering of bytecode operations

The resulting CFG contains the computation and a bunch
of checks based on speculations and assumptions. As we
will see in the next subsection, some of the speculations can
be easily removed. R is a dynamic and interpreted language
which, to generate machine code, uses speculations and as-
sumptions. and in order to generate machine code,
FastR uses spec and ass] However, for some parts of the R
code we always know that the input data does not contain
null references and its type is resolved.

In order to simplify more the CFG, we introduce a set of
annotations to the methods and fields of the AST interpreter
that allows the partial evaluator to remove redundant infor-
mation. This technique is, in fact, generic for all the Truffle
languages.

Truffle annotations for OpenCL Truffle DSL provides an-
notations for the language implementer to give more infor-
mation to the compiler and produce better optimizations. We
extend the DSL with a few annotations for OpenCL.

® @NotNull: it tells the compiler not to check for null ref-
erences for a specific input value.

e @KnownType: it tells the compiler there is no need to check
the input data type and deoptimise if the type was not the
expected one.

® @ArrayComplete: it tells the compiler that the values are
present and no NA values are found. This annotation is
specific to the R semantic, however, other Truffle lan-
guages can benefit from it.

By annotating the AST interpreter with these annotations,
we can safely simplify the CFG after partial evaluation. For
instance, if a field is annotated with @NotNull as showed in
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Listing [6] the partial evaluator will remove the if condition
(line 3) and the deoptimization (line 4) in the CFG.

@NotNull Object[] field;

1

2 .

3 if (field == null) {
4 deoptimize();
5

}

Listing 6: Example of field annotation in the AST
interpreter

We process these new annotations during the partial eval-
uation. If those annotations are present and the OpenCL
mode is enabled, we clean the graph according to the se-
mantics of the annotations.

6. Optimisations

This section presents the optimizations we implement in our
compiler for an efficient management of vectors. We also
present how our compiler framework handle the deoptimiza-
tions on GPUs.

6.1 R sequences

A sequence is an ordered collections of elements. Sequences
are, in fact, an optimized data structure in FastR for vectors.
Sequences do not store any value. Instead, they are computed
by the following computation: start + stride * index. We
take the same approach for OpenCL. If any input to the R
function is a sequence, we in-line the formula in the OpenCL
C code.

Listing [7] shows the effect of the optimization for the
Daxpy application showed in Listing [I] This OpenCL code
corresponds to the R computation 1 : size. We know type of
sequence and how to compute it at compiled, therefore we
can in-line the access to the array by computing the same
formula in OpenCL.

1 dint x1 =1+ (1 % idx);
2 int x2 =1 + (1 % idx);

Listing 7: Sketch of OpenCL C code for R sequences

This technique has two clear advantages: a) OpenCL
buffers and data transfers between the OpenCL host and
device are completely avoided. We just create the buffer for
the two elements we need (start, stride) independently of the
input array size; b) accesses to the OpenCL device global
memory for these arrays are totally removed. This has a
clear positive effect in performance as we will see in the
next section.

6.2 PArray for R vectors

PArray (Portable Array) is a data structure presented in [S]]
for avoiding marshaling and unmarshalling of arrays be-
tween Java and OpenCL. We extend the Parrays data struc-
ture for the R programming language. The PArray logic is
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very straightforward. When a PArray is created, there is an
internal buffer in the target architecture format (OpenCL in
this case).

We extend the PArray for the Truffle languages. The ar-
rays in R are stored in primitive type arrays. We extend the
PArray API to pass those primitive arrays to the OpenCL
device. Therefore, we map the arrays to a reference that the
OpenCL Java wrapper can read and write directly. This strat-
egy completely avoids the data type transformation between
R and OpenCL C. We will see in the evaluation section the
impact of this optimization in the total performance of the R
application.

6.3 Deoptimizations

Truffle speculates over the types and branches based on run-
time profiler information. The partial evaluator introduces
guards or check points for the speculations. Those guards are
useful because the profiler information might not be com-
plete at compilation time, therefore a deoptimization will be
performed.

Deoptimization process in OpenCL  We keep those guards
in the OpenCL code. Listing 8| shows an example in R of an
application with a branch that depends on an input value. If
the input value is less than 1, it returns 0, otherwise it returns
1.

1  mapply(input, function(x) {
2 if (x < 1) return(0)
3 else return(l) })

Listing 8: Simple R function with a branch for
speculation

Let’s assume an input array of 1000 values, with all zeros
except the last position, with 1. Let’s also assume that the
code is going to be compiled after 999 iterations in the AST
and, during the computation in the last iteration, the AST
is compiled to OpenCL. This means that the profiler never
registered an execution of the false condition at compilation
time during the AST interpretation. Consequently, the partial
evaluator produces a CFG with the true condition plus a
condition to check if the false condition was reached.

1 double callRoot(double p0O,__global intx
<~ deoptFlag) {

2 bool condl = p0 < 1.0;

3 if(!condl) deoptFlag[0] = get_global_id(0);
4 return 0.0;

5 1

Listing 9: OpenCL C code generated for the R
program in Listing 8]

The generated OpenCL code for the R function in Listing
is showed in Listing [0] Note that the entire block in the
false condition is removed and it is substituted by a check
and a flag. Line 4 sets the deoptFlag.
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GPUs are parallel hardware with no control for excep-
tions or hardware traps. Therefore, we have to wait until
the kernel execution finishes. When it is finished, we check
the deopt flag. If there is no deoptimizations (not equal to -
1), the speculations are correct. Otherwise, we invalidate the
OpenCL binary and we execute the application in the AST
interpreter again. If the application keeps running in the in-
terpreter, it follows the normal procedure for compilation but
this time with better profiling information.

We register the last identifier (thread ID in OpenCL)
that provokes the deoptimization. Note that these buffers are
shared among the all threads, therefore is not thread safe.
However, we are interested in knowing one of the threads
that provokes the deoptimization. Then we re-execute the R
program in the AST interpreter with the ID that provokes
the deoptimization in order to register profiler information
in all the branches affected. Then, the code is recompiled to
OpenCL with the updated profiling information. The kernel
we finally generate is showed in Listing[I0]

1 double callRoot(double p0O,__global intx
<~ deoptFlag) {

2 bool condl = p0 < 1.0;

3 if (condl) return (0.0);
4 else return (1.0);

5 }

Listing 10: OpenCL C code generated for the R
program in Listing @ after re-profiling

Our technique is a very simple strategy to deoptimise with
minimal overhead in the OpenCL kernel.

Deoptimization Evaluation We execute the R program de-
scribed in Listing[8] We set-up the compile threshold to 1000
to compile to OpenCL. We create an array of 1000 elements,
all set to zeros with the exception of the last element (to one).
Note that when the R code is partially evaluated, there is no
profiler information associated to the false condition.

Figure [5] shows the time in milliseconds to execute the
described R program. The total time is 320 milliseconds.
During the first 90 milliseconds the R program runs on the
AST interpreter. Then, the R function starts to compile to
OpenCL, taking 70 milliseconds. We then execute the kernel
and check if deoptimization flag is enabled. In this case,
this flag is enabled because it should have taken the branch
that was not generated. We run the R program again in the
AST interpreter to re-profile and rewrite the AST (another
80 milliseconds), and the we see that the new version is re-
compile and executed with OpenCL.

7. Evaluation

This Section presents the performance evaluation of our
OpenCL JIT compiler framework the R language on the
AMD and NVIDIA GPUs. We first describe our set-up and
the benchmarks we use. Then we show our performance
results and analysis.
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Figure 5: Total time breakdown in seconds of an R applica-
tion when performing a deoptimization.

7.1 Evaluation set-up

We evaluate our compiler infrastructure on two different
platforms. Both have a four core Intel 17 4770K @ 3.50GHz
with 16GB of DDR3 RAM. The first platform contains a
GPU AMD Radeon R9 295X2 with 8GB of GDDRS5 mem-
ory. The second platform has a GPU GeForce GTX TI-
TAN Black with 6GB of GDDRS memory. We use the GPU
drivers AMD 1598.5 and Nvidia 367.35.

Virtual Machines We compile FastR with Java 1.8. We
compile our R interpreter with Graal 0.9. We provide a
comparison between FastR, GNU R and OpenCL C++ and
our VM infrastructure. It is hard to make a fair comparison
between GNU R because and FastR because it is a different
VM and JIT compiler. We compare each version with GNU
R 3.3.1 with enableJIT level 3.

Measurements We execute each benchmark 10 times for
all the benchmarks and we report the peak performance with
the median time. We execute FastR as well as our R exten-
sion for OpenCL with 12GB of Java heap memory. We mea-
sure our R benchmarks using a custom built-in, nanotime,
which internally calls to the System.nanotime() for FastR
and our compiler (we extended FastR with this call). For the
GNU R, we measure by calling the proc.time() function.
All the timers reported are end-to-end.

7.2 Benchmarks

To evaluate our JIT compiler and execution enviroment we
ported a set of benchmarks from Rodinia [1]], AMD OpenCL
SDK! and programming language benchmarks® to R. We
choose the benchmarks that represent most data and comput-
ing intensive. We take 8 benchmarks for different domains:
Daxpy, Black-scholes, NBody, DFT, Mandelbrot, Kmeans,
Hilbert Matrix and Spectral Norm.

We execute each benchmark with the data sizes showed
in Table 1| We choose a representative input size for FastR,
big enough for OpenCL GPU computation. However, these
data sizes are still very small for the GPUs. As we will see
in the analysis section, even with this moderate data size on
GPUs, we obtain large speedups.

7.3 Performance Results

We now analyse the performance results we obtain for all the
benchmarks in R and OpenCL. We first compare the effect

1300.g1/28AAUY
2http://benchmarksgame.alio‘ch.debian.org/
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OCL Execution

350

Benchmark | Input (MB) | Output (MB) |

Daxpy 128 64
Black-Scholes 8 16
NBody 5 3
DFT 0.156 0.156
Mandelbrot 16 8
Kmeans 64 16
Hilbert 128 128
Spectral Norm 0.256 0.256

Table 1: Benchmarks and sizes we use to evaluate our
OpenCL JIT compiler framework for R.

of our optimisations. Then we compare our compiler and
runtime with the related work and native implementations.
We conclude by a showing a comparison that imitates a real
scenario for the R programmers, where the application is
executed just once.

Optimisations impact In this section we analyse the effect
of our optimisations presented in section [6] Figure [6] shows
our three configuration on the two GPUs. The top of the Fig-
ure shows the speedup over our basic GPU version on AMD.
The bottom shows the speedups for the NVIDIA GPU. The
leftmost shows the full version where we marshal and un-
marshal the data. In this case we pay the cost of transform-
ing the data between R and OpenCL. The second bar shows
the speedup we obtain when we represent the RVector in the
GPU representation as described in the previous section. The
last bar shows the speedup when the input data can be also
represented as a sequence. It the case of DFT, mandelbrot,
hilbert and spectral norm.

Using the PArray we obtain 3x speedup over the baseline
and, by adding the sequences, we obtain 3.8x in avarage.
Sequences are specially beneficial for 2D kernels. That is the
case of mandelbrot and hilbert, where we obtain higher
speedups.

Comparison with FastR, GNU-R and native OpenCL C++
Figure[7shows the performance results for each benchmark.
The leftmost bar of each benchmark represents the speedup
of GNU R over FastR. The second bar represents our base-
line, FastR. The third bar shows the speedup with our best
version for OpenCL executed on the AMD and NVIDIA
GPUs. The last bar corresponds to the speedup of the native
implementation implemented in OpenCL C++.

FastR is 10 to 100 times faster than GNU R for these
data computing intensive benchmarks, being in average 10x
faster than GNU-R in peak performance.

On the GPUs, our approach is 150x times faster than
FastR, and it is 1000x faster than GNU R on AMD GPU and
1300x faster on NVIDIA GPU. Note that the R input code
is exactly the same compared to FastR. When comparing to
the native version, our compiler and execution environment
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Figure 7: Speedup over Oracle FastR of our R compiler and VM framework for OpenCL compared against GNU-R, FastR,

Java and OpenCL C++. The higher, the better.

is 1.8x slower than OpenCL C++ in peak performance on
AMD GPU and NVIDIA GPU.

For the nbody, dft and spectralNorm benchmarks we
obtain similar performance. For hilbert, our approach is
faster than OpenCL C++ because we use the optimisation
sequence to index the input data, saving, therefore, the data
transfers.

Although we can easily execute run applications on the
GPU, the OpenCL kernels can be optimized. The kernel
we generate is a generic OpenCL kernel directly from the
Graal-IR and we do not currently explore OpenCL optimi-
sations. For managed languages like R, the bottleneck is in
the data management rather than the kernel itself. Moreover,
in most of the benchmarks, the generic OpenCL kernel is
close enough to the OpenCL C++. In fact, in comparison
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with FastR, the speedup of our approach is in the same order
of magnitude than OpenCL C++.

Cold-run The typical scenario for the R users is to write
the R program and execute it only once. Figure [§]shows the
speedup of our OpenCL-R execution framework over FastR
for ten different sizes representing this execution mode. This
Figure does not show peak performance. We report the time,
end-to-end, that takes to execute the full R application. We
named it cold-run, because we start with a fresh VM. The
Figure shows two lines: the blue line shows the speedup
on AMD GPU and the red line on NVIDIA GPU. The x-
axis shows the time, in seconds, that takes the R application
for the FastR version (no GPU). The y-axis represents the
speedup for each GPU architecture over the FastR version.
As we see, after 3 seconds of execution within the R code,
it starts to obtain speedup with our approach. Both GPUs

2016/11/25

AMD GPU

NVIDIA GPU



show similar performance in cold-run mode with an average
speedup of 57x on AMD GPU and 47x on NVIDIA GPU,
ranging from 17x to 120x.

Compilation time During the cold-run, most of the time
is spending in the interpreter and OpenCL JIT compilation.
The execution time in the AST interpreter, partial evaluation
and OpenCL code generation ranges from 100 milliseconds
up to 2 seconds. The OpenCL code generation takes, in
average, 600ms. If the execution is, in fact, less than 0.6
seconds, there is no benefit to execute on GPU.

8. Related Work

This section reviews the most relevant R projects as well as
related work in other programming languages.

8.1 Parallel built-ins

Haichuan Wang et. al. [19] have a similar idea of vectorizing
the R apply functions. Wang shows an algorithm to vector-
ize the R and transform the looping-over data functions for
the apply methods in the R interpreter. Wang argues that his
framework focuses in the apply operations for similarity and
compatibility to map-reduce frameworks and big data. How-
ever, we show that the JIT compilation to OpenCL is worth,
and has more impact in performance when the R application
runs in the interpreter for more than 3 seconds.

8.2 R JIT Compilers Implementations

Good performance is crucial for data analytic where a lot of
data can be processed in parallel. The way of achieving good
performance is through specialization and JIT compilation.

As there is no formal specification of the R language, the
reference implementation (GNU R) is the de-facto specifica-
tion. However, GNU R interpreter is slow.

There are a few projects that either modified the existing
GNU R compiler. Orbit VM [20] optimizes the byte-code
interpreter. Revolution R?, pgR* and TIBCO R? improve the
vector type operations and native libraries. Rho® is a reim-
plementation of the R interpreter on top of LLVM. RLLVM’
is an R interface for LLVM, allowing to optimize and com-
pile R code thought the LLVM IR.

There are other projects that build a new R VM with the
purpose of taking advantage of the JIT compilation. Renjin®,
Riposte [18] and FastR [17] compile R user code to an
efficient native machine code. As far as we know, none of
these implementations provides an OpenCL or CUDA JIT
compiler as we present in this paper.

3https://www.microsoft.com/en-us/cloud-platform/r-server
4http://www.pqr—project.org/

Shttps://tap.tibco.com

6https://github.com/rho—devel/rho
7https://github.com/duncantl/Rllvm
8http://www.renjin.org/
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8.3 R libraries for GPUs

There are many R projects that offer CUDA and OpenCL
execution. However, there is no OpenCL or CUDA JIT com-
pilers for R yet. If R programmers want to execute heteroge-
neous applications they have to call to native and statically
compiled libraries or provide the kernels as a wrapper for
OpenCL or CUDA.

GPUR’ is a library for GPU programming. It provides
native functions for vector and matrix operations in CUDA
and OpenCL. Internally it uses ViennaCL [16], a library
for GPU programming based on parallel skeletons. There is
no code generation and there are direct calls to the native
C libraries for CUDA and OpenCL. Programmers require
to know concepts such as OpenCL platform and OpenCL
device. We believe that, although R users can benefit from
the GPU speedups, this approach still remains very low-level
for most of the R programmers.

GMatrix'® and GPU Tools" are libraries for accelerat-
ing R matrix operations with CUDA. It implements com-
mon vector and matrix operations such as matrix multiplica-
tion, addition, subtraction, sorting and trigonometric func-
tions. With GMatrix, the programmer explicitly creates and
manipulates GPU objects in R.

Rth'? is an interesting project which provides an R inter-
face for CUDA Thrust. The package executes parallel code
for three different back-ends for the same interface: Cuda,
OpenMP and Intel TBB.

OpenCL for R' is a wrapper that exposes the OpenCL
API to R. However, it changed the standard OpenCL API
compared to the OpenCL standard. Thus programmers need
to learn a new non-standard API. The user also provides the
OpenCL kernel as a string in R that will be compiled by the
OpenCL driver. This is, in fact, a very low-level approach
where the parallelism is fully exposed to the R programmers.
Moreover, because of the OpenCL kernel is expressed in C
as an R string, it increases the complexity and manageability
of the code.

There are other projects specialized for statistic computa-
tion on GPUs. RPUD and RPUDPLUS' are open source
R packages for performing statistical computation using
CUDA. RPUD implements vector operations and Bayesian
classification algorithms. In this case, the R programmer im-
ports the library and uses the GPU with predefined functions.
Those functions call directly to the GPU.

8.4 Other languages

There are a few compilers for OpenCL available for lan-
guages such as LINQ, Python, Java and Javascript.

ghttps://cran.r-project.org/web/packages/gpuR/index.html
10https://cran. r-project.org/web/packages/gmatrix/index.html
Whttps://github.com/nullsatz/gputools
12http://heather.cs.ucdavis.edu/~matloff/rth.html
13https://cran.r—project.org/web/packages/OpenCL/
14https://cran.r-project.org/src/contrib/Archive/rpud/
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Figure 8: Speedup of the first run over FastR for all the benchmarks running on AMD and NVIDIA GPUs with our compiler

infrastructure. The higher the better.

Bytespresso [2]] is a DSL on top of Java language for het-
erogeneous computing. It uses an AST to as an intermediate
representation. Bytespresso uses annotations for extracting
the parallelism for CUDA applications. Our approach is lan-
guage agnostic, and our annotations are generic to other truf-
fle languages independently of OpenCL.

Numba [11]] is a CUDA JIT compiler for python. Numba
GPU compilation is based on annotations. The programmer
annotates the functions to tell the compiler which code can
be parallelized. With our approach we do not use any anno-
tation, just the default built-ins in the language.

LINQ Cuda JIT from Quant Alea'” is a very promising
approach that allows data base applications to use heteroge-
neous hardware. However, programmers still have to adapt
the code by using explicit GPU data structures and control
in which device to execute the application. Although it of-
fers to the programmer a fine control about the architecture,
we believe programmers does not have to know necessary
hardware details.

There are a few OpenCL/CUDA JIT compilers for Java
such as AMD Aparapi'®, Rootbeer [13], and JaBBE [22].
However, in all of these cases, the programmers need to
modify the base code by implementing a GPU class and
creating an execute method. This approach still remains
low-level even though the user applications are implemented
in high-level programming languages. Sumatra is a very
promising project in OpenJDK to automatically generate
HSAIL code at runtime for Java 8 Streams. As far as we
know, Sumatra project is no longer maintainable. Harlan-

15http://quantalea.azurewebsites.net/

16http://aparapi.github.io/
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J [14] is an OpenCL JIT compiler for Javascript. It is based
on Harlan-J language, a Javascript extension for data paral-
lelism.

None of these approaches provide a fully automatic het-
erogeneous JIT compiler for high-level languages. Program-
mers always need to change the code base and adapt it to the
new technologies. Our approach is totally agnostic about the
technology, and all the code transformations happen auto-
matically at runtime without the programmer intervention.

9. Conclusions

We have presented an OpenCL JIT compiler for optimizing
AST interpreters in Truffle. We implemented our technique
for the R language. To the best of our knowledge, this is the
first OpenCL JIT compiler for R. We have shown the issues
for generating high performance OpenCL code from man-
aged languages. We show that, the combination of special-
ization, compiler lowering and annotations in the language,
help to reduce the compiler overhead. We also present some
opportunities for optimizations such as RSequences with no
array copy and how to handle speculation failures on GPUs
through deoptimizations. We showed that our OpenCL JIT
compiler is, in average, 150x times faster than FastR and 1.8
slowdown compared to best OpenCL C++.

We currently support a subset of the R language into the
GPU. We plan to support more features for the R program-
ming language such as dealing with data frames and formu-
las. We plan to introduce other Truffle languages such as
Ruby or JavaScript for OpenCL by using the same compiler
techniques presented in this paper.
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