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Abstract
Language interoperability (e.g., calling Python methods from
Java programs) is a critical challenge in software develop-
ment, often leading to code inconsistencies, human errors,
and reduced readability. This paper presents awork-in-progress
project aimed at addressing this issue by providing a tool
that automates the generation of Java interfaces for accessing
data and methods written in other languages.
Using existing code analysis techniques the tool aims to

produce easy to use abstractions for interop, intended to
reduce human error and to improve code clarity. Although
the tool is not yet finished, it has already shown promising
results. Initial evaluations demonstrate its ability to identify
language-specific features and automatically generate equiv-
alent Java interfaces. This allows developers to efficiently
integrate code written in foreign languages into Java projects
while maintaining code readability and minimizing errors.
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1 Introduction
New programming languages are still emerging in great
numbers, all with their particular strengths and weaknesses,
and many of them tailored towards a particular domain.
Programmers also become more and more multi-lingual and
want to write code in the language that is most suited for
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their tasks. This calls for better interoperability between
programming languages.

GraalVM [5] [8] offers a polyglot execution environment
supportingmultiple languages such as Java, JavaScript, Python,
Ruby and others. It allows programmers to access objects
and methods written in a foreign language (the guest lan-
guage) from a host language. However, interoperability in
GraalVM still needs some boilerplate code, which is tedious
to write and error-prone.

Thus, the goal of our work was to simplify interoperability
by automatically generating interfaces for accessing objects
written in a guest language. As a first step, we generate Java
interfaces for Python classes, which can then be used to ac-
cess objects and to call methods as if they were Java methods.
Our results show that this is feasible in spite of possible dif-
ferences in the type systems, and it makes interoperability
simpler and more fail-safe.

The contributions of this work-in-progress paper are:
• A tool for leveraging programming language-specific
type information for generating Java interfaces.
• An approach for bridging the gap between Python’s and
Java’s type system.
• An evaluation showing that our approach does not add
any measurable runtime overhead.

We start with a motivation and a demonstrating example
in Section 2. In Section 3 we outline some background, in
particular the concepts of GraalVM, its Truffle language im-
plementation framework, and its support for interoperability.
Section 4 presents our approach. It explains how we gener-
ated Java interfaces from Python classes, what information
is necessary for that, and how we deal with differences in the
type systems. In Section 5 we evaluate our approach in terms
of performance and memory overhead and also point out
some limitations. Section 6 discusses related work, Section 7
points to possible future work, while Section 8 summarizes
the paper and draws some conclusions.

2 Motivation
Interfacing between programming languages is essential
for creating complex software systems that leverage the
strengths of different languages. In order to illustrate our
approach, we will start with a simple example.

The Python standard library contains a module called tur-
tle which provides a set of primitives to allow programmers
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class Turtle:

pos_x = 0

pos_y = 0

def move(self , x: int , y: int):
self.pos_x = x

self.pos_y = y

def init(x: int , y: int):
global turtle

turtle = Turtle ()

turtle.move(x, y)

Listing 1. A simplified version of the turtle library.

to create graphics using a turtle metaphor. For this paper, we
will use a simplified version that can be found in Listing 1. It
consists of a Python class Turtle which has a position and
a global function init which creates a new instance of that
class.

If we want to access this library from Java we quickly run
into an obvious issue: The Java compiler does not know how
to handle Python code and therefore cannot simply import
it. This means that we have to somehow create a wrapper
around the Python library that tells Java how the library is
supposed to be used. There are two ways for creating such a
wrapper:
• A generic interface that provides arbitrary access to
Python members.
• An interface specific to the library we want to target.
Each of these approaches has advantages and disadvan-

tages. With the generic approach it would be possible to:
• Reuse the wrapper for multiple libraries.
• Cover large amounts of functionality with little wrapper
code.
• Choose from one of several existing solutions.

However, this comes with the disadvantages of:
• Not being able to rely on tool support.
• Significantly poorer readability.
• Dealing with Python-specific language features in Java
code.

Writing specific interfaces solves all of the above disadvan-
tages by abstracting the generic part of the approach and
allows tools to extract and use meta-information. For ex-
ample, in Listing 2 we can see a possible Java interface for
the turtle library. It represents the Python class as a Java
interface, keeping Java’s common practices such as getter
and setter naming conventions. All Python members that
are not inside a class are collected in another ”Global” Java
interface.
Since this is literally a Java interface, any Java code that

uses it does not need to care about whether this is actually

interface Turtle {

int getPosX ();

void setPosX(int posX);

int getPosY ();

void setPosY(int posY);

void move(int x, int y);

}

interface Global {

Turtle newTurtle ();

Turtle getTurtle ();

void init(int x, int y);

}

Listing 2. Java interfaces for the turtle library.

a Python library or not and can be used like any other Java
code. This also means that full type checking support is
provided: If one where to misspell the name getTurtle as
getTrutle, the Java compiler would immediately catch that
mistake before even executing the resulting application.

Unfortunately, this approach comes with a downside: We
need to create and implement these interfaces. Writing such
interfaces for every library that is used may require thou-
sands of lines of code. This alone is a reason for not using this
approach but it becomes even worse: Every time the Python
library is changed the Java equivalent needs to reflect this.
This is not supported by current Java tooling since Java does
not know if the interface still matches the Python code.

This is exactly what wewant to improve. By providing tool
support for writing and maintaining Java interfaces based
on libraries written in other languages these issues can be
solved with a button click.

3 Background
We implemented our tool on top of GraalVM [5] [8] - a Java
virtual machine that allows polyglot programming. Section
3.1 introduced GraalVM in general and Section 3.2 describes
how interoperability works in GraalVM using our initial
example.

3.1 GraalVM
GraalVM is a high-performance polyglot virtual machine
developed by Oracle Labs and designed to accelerate the ex-
ecution of applications written in Java and other JVM-based
languages. The core component of GraalVM is the Graal
compiler, a modular, production-quality, high-performance
just-in-time (JIT) compiler written in Java that transforms
Java bytecode to machine code.
GraalVM’s polyglot capabilities make it possible to mix

multiple programming languages in a single application
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while eliminating foreign language call costs. GraalVM con-
tains runtimes for several languages as well as a debugger, a
profiler, andmany other development, debugging, or analysis
tools.
The modular design of the Graal compiler enables a va-

riety of use cases. In particular, this is leveraged to realize
GraalVM’s language implementation framework Truffle[4],
which basically is a special compiler phase. Truffle enables
the implementation of any programming language under
GraalVM, which is achieved by writing an abstract syntax
tree (AST) interpreter and by providing implementations for
certain generic language interfaces like the polyglot API.

To implement the AST interpreter, languages need to pro-
vide a parser that reads the source code and creates a Truffle
AST. Since it is almost impossible to provide an AST that
fits for all possible languages, the Truffle AST is mainly an
interface for AST nodes. This interface makes it possible
that the Truffle framework consumes any language-specific
AST. In addition to that, Truffle also provides some common
nodes for operations that apply to many languages. This, for
example, are nodes for representing call targets (functions),
for performing calls, for implementing control structures
like loops, for reading and writing object attributes, and for
many more operations [7].
One of the main goals of Truffle is that any language

implementation on top of Trufflewill be fast. Truffle does this
by consuming the language-specific AST and transforming
it to the Graal compiler’s intermediate representation. This
is then handed over to the Graal compiler, which performs
extensive optimizations to generate fast code.

3.2 Interoperability
Under GraalVM, Java and any other language implemented
with the Truffle framework can directly interoperate with
each other and pass data back and forth in the same mem-
ory space. At the time of writing, GraalVM provides im-
plementations for JavaScript, Ruby, Python, R, LLVM, and
WebAssembly.

The language interoperability on GraalVM is enabled by
the polyglot API that allows communication between objects
via a predefined set of messages. The language implementers
are responsible for implementing this polyglot interface re-
quired for language interoperability.

Listing 3 demonstrate a very small part of Truffle’s interop
API. Similar to Listing 2, the example first evaluates a Python
import statement to get an instance of the Turtle module. In
the next line, it invokes themodule function init to initialize
the global Turtle instance. The remaining lines fetch the x
coordinate and convert it to a Java integer.
This example demonstrates that any access to a foreign

object is done via a generic API which does not provide
any static typing; also, even converting primitive values is
already quite verbose.

Value turtleModule =

eval("python", "import␣turtle");

turtleModule.invokeMember("init", 0, 0);

Value turtleInstance =

turtleModule.getMember("turtle");

int x;

Value xObj = turtleInstance.getMember("x");

if (xObj.fitsInInt ()) {

x = xObj.asInt ();

} else {

// error

}

Listing 3. Using the turtle library with Truffle interop API.

4 Approach
To achieve our goal, we first need to extract meta information
from the code written in other languages. This can be done
in two ways: using dynamic analysis or static analysis.

For our first prototype we used dynamic analysis. In order
to extract the required meta information we simply ran the
target program and afterwards traversed the global scope for
any information we could find. For simple programs this ac-
tually worked well and produced satisfying results. However,
when trying to use this technique onmore complex examples
we quickly experienced the downsides of this approach:
• Dynamic analysis requires execution. This means that
if the target code relies on communication with the Java
code one would need to already have an interface that can
handle this, making the whole process superfluous. Even
if it does not, the program may access the file system, the
network or other systems that can influence the behavior
of future executions. Furthermore, executing all parts of a
complex program may even be impossible. For example,
if the program requires user input that is not available at
the time of development, there is no way to execute the
target.
• Inaccurate types. Only the state of the program that is
actually executed can be modeled. This is not an issue
in statically typed languages, but since many scripting
languages allow fields to change their type this leads to
much more restrictive and sometimes wrong types. If the
extracted meta information shows that a field is of type
int, but at run time it contains a string then this will
cause an exception when this field is accessed.
• Reduced type information. Some scripting languages al-
low developers to specify type information without actu-
ally needing it. If the run time of such languages decides
to completely discard the meta information, there is no
way to completely extract them using dynamic analysis.

Because of these issues we decided to switch to static analy-
sis. For that we need to analyze the target source code for
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relevant type information. This is not as easy as dynamic
analysis since every language has a different syntactic struc-
ture which needs to be analyzed. Furthermore, since some
languages do not need type information, some developers
completely omit them, making extracting type information
very difficult. It is possible to extract meta information with-
out explicit type information. However, that would be too
complex to include in a simple tool that is supposed to gener-
ate Java interfaces. We therefore decided to rely on existing
tools like mypy that already do type inference. These tools
usually write this information to separate, which we can
then use to generate our interfaces.
That said, the parsing of those files is not trivial either.

While they generally do not include much code, they do
require some sort of static analysis in order to get actual
meta information. For example, Python offers ”stub files”
which should only contain type information. However, this
information is stored in the form of Python code, which
means that one still needs to do static analysis of Python
code.

Because of this, we decided to take the bullet and write a
type extractor for each supported language. For this we can
also rely on existing tools, simplifying the entire process a
bit. For some languages such as TypeScript we were able to
get away with only very little work but for Python we ran
into some issues. There are some popular tools that do all the
static analysis but they either do not expose a documented
interface to access the type information or are not supported
by the GraalVM environment at the time of writing. At first,
we tried to use Python’s built-in AST module to create our
type extractor. This worked to some extent but failed when
we tried to apply it to real Python projects such as Numpy.

Because of this, we decided to use mypy, which is a static
type checker for Python and therefore already implements all
the features we need. Unfortunately, even though its Python
module provides a very nice way to extract the necessary
meta information, there is little to no documentation about
it other than the comments in the code itself.

Still, we managed to get all the data we need. Now we just
had to generate the Java interfaces. For simple targets that
is possible. However, most programming languages contain
features that cannot be accurately mapped to Java interfaces.

4.1 Language features
In order to transform these language-specific features into
something that Java can understand we look at some of these
features separately.

4.1.1 Fields. One of the most basic features that we need
to transform are object fields. We already hinted at this in
Listing 1 and Listing 2 where one can see that every field in
the Turtle class is actually represented by two methods: a
getter and a setter.

This also comes with some problems shared between all
of these transformation:

• Not all names are valid Java identifiers. As some lan-
guages are more permissive with their identifiers than
others, we need to avoid any identifier that would cause
the Java compiler to fail. This is especially true for key-
words. For example, Java does not allow identifiers to be
called ”import”, which is not the case in other languages.
• Other languages have different naming styles. For exam-
ple, in Listing 1 we have some identifiers using snake_case
while Java generally uses camelCase.
• Name clashes. Because identifiers are changed during
transformation, it is possible that different identifiers are
transformed to the same one. For example, ”foo_bar” and
”_foo_bar” both map to ”fooBar”.
Since there is no perfect solution to this issue, we decided
to implement some simple heuristics in the type extrac-
tor to prefer interface members we believe to be more
important and discard the others. For example, Python
identifiers that start with ”_” are supposed to be private
and as such less important than those without. This also
means that the generated interfaces do not cover all of the
functionality of the original code. However, the parts that
do get generated successfully can be used without issue.

4.1.2 Overloading. Overloading is a feature that Java in-
terfaces do support. However, there are still some differences
to other languages. In Java, an overloaded method must have:

• A different number of arguments or
• datatypes of the arguments arranged in a different order
or
• one sequence of data types being more specific than any
other.

Furthermore, all generic types are handled as ”Object” due
to type erasure.
These rules made our work quite a bit harder, especially

since scripting languages that rely on dynamic typing gen-
erally do not enforce most of these rules. This often leads
developers to use types that reflect their program’s logic but
do not conform to Java’s type rules. This would not be a
problem if these types were to be used only by the applica-
tion written in the guest language. However, since the Java
compiler checks all of these rules at compile time we need
to make sure that types are always conform to Java’s type
rules.
Furthermore, Python and other languages support using

literals for overloads. This means that if a function takes a
string parameter there can be overloaded versions for the
argument values ”foo” and ”bar”.

To solve this, we had to combine these kinds of overloads
and use their more general type instead. In some cases we
found it more suitable to discard them completely.
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4.1.3 Operators. One difference between Python and Java
is that Python allows the developer to overload operators.
This is especially useful for math-related tasks, since code
that uses these overloaded operators resemble the mathemat-
ical operations more closely. Unfortunately, Java does not
support this, so we had to work with appropriately named
methods. For example, in order to overload the operator ”+”
we generate an add method instead.

4.1.4 Inheritance. One of the features that Java interfaces
do support is inheritance. This is very useful because it al-
lows us to generate interfaces that closely resemble the class
structures of the target. If we could not use inheritance we
would have to include the members of all super classes in
ever interface, which could grow very quickly.

Another feature we can make use of is Java’s instanceof
check: Because we generate an interface for every class, one
can check if an object is an instance of a guest class by simply
checking if it is an instance of the generated interface.

One major downside to using interface inheritance is that
just like with overloads, overriding a method is also inconsis-
tent between Python and Java. While testing our generator
on real projects we found that often the child classes had
members that were more general than their parents, which
is not allowed in Java. The only way for us to solve this was
to adjust the super interface so that it could handle any child
type we could find.

4.1.5 Multiple inheritance. Python’s type system ismore
permissive than the one from Java. One such example is
multiple inheritance which allows one class to inherit from
multiple others. Java classes cannot do that. However, they
can implement multiple interfaces. This is the primary rea-
son why we chose to generate Java interfaces and not Java
classes.

4.1.6 Constructors. Most languages, including Python,
offer some form of constructors. While Java also has an
equivalent feature for classes, it does not have it for interfaces.
It is possible to nest subclasses in interfaces, e.g. allowing
developers to create a new instance of Global.Turtle, but
this is not sufficient because such classes will always be
considered to be static. In Python a constructor is itself an
object which can be assigned to a variable at run time. This
means that the constructor can be attached to the instance
of that interface, is not static and may change at run time.
Because of this we decided to generate interface method
whose the names start with ”new” instead.

5 Evaluation
While our tool itself is still work-in-progress, we are already
at a point where we can generate some working examples.
However, since the interface generator is intended to prevent
human error and improve developer experience, there is no
simple metric that shows how well the tool is doing its job.

Name Type Lines of code ops/s StdDev
Game of Life Generated 12 15.959 ±0.977

Manual 18 16.843 ±1.648
Calculator Generated 12 1.407 ±0.126

Manual 18 1.420 ±0.147
Hello World Generated 7 7.355 ±0.208

x10000 Manual 9 9.217 ±0.809
Table 1. Comparison between generated interfaces and man-
ual implementation.

Instead, we will focus on two other aspects: We will show
that using generated interfaces does not have significant
negative effects and reduces the complexity of the code.

5.1 Performance
One of the most obvious aspects of the interface generator
is whether or not it slows down programs. In order to test
this, we took some examples and compared their perfor-
mance when using generated interfaces against when using
manually implemented interop code.

In Table 1 one can see somemetrics for 3 of these examples.
One can see that the lines of code for each example is less if
one excludes all automatically generated code. It turns out
that most functions that are automatically generated only
contain a single line of code, but the initialization code makes
up for a few lines as well.
For operations per second the table shows the result of a

benchmark.We also included the standard deviation between
these runs to show that the difference between the values is
actually negligible. The GraalVM Community Edition com-
piler is capable of properly optimizing the interfaces except
for the Hello World example. In that case the additional ab-
straction is just enough to make a difference. Fortunately,
this only happens for very few examples.

5.2 Complexity
One of our goals was to reduce the amount of hard-coded
names of classes and methods required by GraalVM’s interop
framework for accessing Python elements. Thanks to the
generated interfaces, hard-coded names are now no longer
string literals in the implementation of these interfaces. This
also makes the code more readable and reduces its perceived
complexity.

6 Related Work
There are numerous projects that enable interoperability
between Java and other languages. We therefore concentrate
on work that aims at using foreign languages from Java.
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6.1 Transpilers
Transpilers are translating source code from one program-
ming language into another. There are transpilers that trans-
form JavaScript or Python code to Java code and are therefore
implicitly generating Java interfaces from foreign language
types. For example, DukeScript [3] is able to translate from
JavaScript to Java. Another example is VOC [1], which tran-
spiles Python code to Java code. Since transpilers are pro-
cessing source code, they also do not need to execute the
application to obtain meta information about types, which
is preferable as we have argued in a previous section. In con-
trast to our work, transpilers convert the foreign code parts
to Java and thus make the program a single-language ap-
plication. We generate interfaces to access the foreign code
parts without transforming them.

6.2 Java embedded Python (JEP)
JEP [6] embeds a full CPython runtime into the Java process
and communicates via JNI. JEP is basically a cross-language
runtime with Java and Python and provides a generic lan-
guage interoperability API verymuch like Truffle’s InteropLi-
brary. In order to improve usability with NumPy, JEP comes
with a few manually written Java interfaces representing
certain Python classes. However, JEP does not provide any
mechanism to automatically generate Java interfaces.

6.3 Jython
Jython [2] is an implementation of the Python language that
runs on a Java VM. It parses Python source code and emits
Java byte code. Jython provides a Java API for accessing
Python objects but this API was written manually and only
represents built-in types and objects. Since, it is possible to
statically compile Python applications and distribute them as
Java archives (JARs), it might also be possible to extract Java
interface from the byte code. However, there is no documen-
tation about that. Also, Jython does not consume any Python
type information to improve Java signatures. Furthermore,
Jython is discontinued and only supports Python 2.

7 Future Work
One of the biggest issues of our interface generator is that
it does not target all possible languages and their features.
However, this also means that there will always be oppor-
tunities to extend the tool by adding new languages and
features. This can be done by simply implementing type
extractors for new languages.

In order to evaluate the effectiveness of our interface gen-
erator, it is necessary to gather real-life data through empir-
ical studies and user feedback. By conducting user testing
and collecting objective metrics, we can assess whether or
not it actually reduces the amount of programming errors
and improves developer experience.

Currently our tool uses the GraalVM for interop between
languages, however, it could probably also be implemented
with a similar framework. We could even go one step further
and generate interfaces that can be used by languages that
are similar to Java.

8 Conclusion
In this paper, we argued that it is essential to have accurate
interfaces in complex multi-language software systems.
We presented a tool that addresses the challenge of gen-

erating interfaces by leveraging language-specific metadata.
We successfully developed a solution that extracts metadata
from various programming languages and transforms it so
that it is compatible with Java. By doing so, we were able to
automatically generate Java interfaces for accessing Python
classes, saving developers valuable time and effort.

Our prototype demonstrates the feasibility of our approach.
By automating the interface generation process, we help de-
velopers to enhance code maintainability and reusability.
Moreover, our solution promotes inter-language interoper-
ability, enabling developers to bridge the gap between differ-
ent programming languages.

Looking ahead, further improvements can be made to en-
hance the tool’s coverage of language features. By expanding
the range of supported programming languages and incor-
porating more advanced static analysis techniques, we can
continue to help developers with efficient code generation
capabilities.
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