
Security Research: Program Analysis Meets
Security

Padmanabhan Krishnan

Oracle Labs, Brisbane, Australia, QLD 4000
paddy.krishnan@oracle.com

Abstract. In this paper we present the key features of some of the se-
curity analysis tools developed at Oracle, Labs. These include Parfait, a
static analyser, Affogato a dynamic analysis based on run-time instru-
mentation of Node.js applications and Gelato a dynamic analysis tool
that inspects only the client-side code written in JavaScript. We show
the how these tools can be integrated at different phases of the software
development life-cycle. This paper is based on the presentation at the
ICTAC school in 2021.

1 Motivation

Cloud-based execution of large applications enables consumers to buy services
as-and-when it is required without investing in expensive infrastructure. The
challenge of ensuring that such services are always secure and available is shifted
to the provider of the cloud services. There is no doubt that the attack surface
associated with cloud-based services is larger than that for on-premise based
execution. Cloud services can be sub-divided into infrastructure as a service
(IaaS), platform as a service (PaaS), and software as a service (SaaS).

From a SaaS or application security perspective, security breaches aim to
steal data. That is, the customers’ data (e.g., credit card information, health
records) is valuable. It is the cloud provider’s responsibility to protect customer’s
data. So information security is one of the main guarantees that the customer
is looking for. Secure information flow is one way to ensure that the customer’s
data-protection requirements are satisfied. Software security provides a variety
of mechanisms to ensure proper information flow is enforced. One can detect
improper information flows at different levels of the infrastructure and software
stack. For instance, firewalls can be used to detect and prevent improper flows
at the network level while RASP solutions can provide application specific pro-
tection.

The research questions our group addresses are as follows.

– What are the security issues that matter? Can we identify vulnerabilities
that when exploited have high impact? Can we detect and prevent 0-day
attacks?

– How can one leverage different program analysis concepts to detect security
vulnerabilities?



– What are the tradeoffs when handling industrial scale systems? For instance,
how can a single application that uses different technologies be analysed?

In this paper we discuss some of the solutions and challenges towards en-
suring applications are secure. That is, we describe techniques that check the
applications have the correct behaviour. This has to be linked with the desired
information-flow security. We focus only on integrity (i.e., is data coming from
untrusted sources deemed to be safe) and confidentiality (i.e., is data released
only to the proper entities) [1]. The analysis of other properties such as non-
repudiation, and availability is beyond the scope of this paper.

Ideally, we would like to mitigate all risks. Hence a defense-in-depth approach
is adopted. We check for a wide variety of potential security vulnerabilities (e.g.,
OWASP Top 10). We do not restrict our attention to only exploitable vulner-
abilities. For instance, SQL injection can be used to violate both integrity (by
inserting malicious values) and confidentiality (by exfiltrating sensitive values)
requirements. To prevent potential attacks, we check if user-controllable data is
sanitised and if any value returned by security-sensitive states is declassified.

In the next section we describe our tools based on a decomposition of the
structure of applications and the software development life-cycle.

2 Approach

All modern applications can be abstracted into client-side (i.e., behaviour seen
via the browser) and server-side (i.e., behaviour executed by servers which are
not directly accessible to the client) sub-systems. Most client-side behaviour is
written in JavaScript and executed by the browser. There is diversity in server-
side code and such code includes Java, Python, C, and C++. Towards deploying
our tool, we adopt a simplified software development process which is shown in
Figure 1.

Fig. 1. Simplified Software Development Process

Given the complexity of these systems, we support two main strategies to
detect potential security vulnerabilities. These are as follows.



– Static analysis (also called SAST or static application software testing) where
the source code is analysed. Here we do not need the entire working system
as the source code is not executed. Our approach also supports the analysis
of partial code; i.e., the entire codebase is not required.

– Dynamic analysis (also called DAST or dynamic application software test-
ing). If the source code is available, we can instrument it at a high-level
while if the source code is not available where we can perform low-level in-
strumentation. In both cases we can have monitors that can observe the
behaviour.

Various tools have been developed at Oracle Labs to improve automated
detection of security vulnerabilities. These include Parfait, Affogato and Gelato
and the key aspects of each of these tools is described below.

Fig. 2. High-level Architecture of Parfait

3 Parfait

Parfait [2, 3] is a static analysis tool that focuses on high precision (90% true
positive reports) and scalable (approximately 10 minutes per million lines of
code on a standard developer laptop). This is possible because it focuses only on
vulnerabilities that matter (e.g., SQL injection, cross-site scripting, XXE). These
vulnerabilities are identified by the owner of the codebase. Because they know
the functionality of the application, they can assess the impact if a vulnerability
is exploited. Parfait supports the analysis of programs written in C, C++, Java
and Python. It translates the source code into an LLVM IR [4] which is then
analysed using customisations of classic program analysis techniques [5]. Figure 2
shows Parfait’s architecture. Parfait has been deployed in the Build and static
scan phase as shown in Figure 1.

In summary, Parfait has a very high true positive rate and thus identifies ac-
tionable items. Parfait thus minimises developer effort in fixing issues reported
by Parfait. Being a static analysis tool it can handle incomplete code. The usual
challenges of static analysis (e.g., how to summarise the use of frameworks and



Fig. 3. High-level Architecture of Affogato

reflection) remain. We are also working on incremental (e.g., commit time) anal-
ysis which will improve the scalability [6].

4 Affogato

Affogato [7] is an instrumentation-based dynamic analysis tool for Node.js. Af-
fogato uses taint tracking and inference mechanisms to detect vulnerabilities.
The precision and overheads can be tuned by controlling the exact behaviour
of the taint analysis. As with any instrumentation-based analysis the overhead
amortises for long runs but is high for short running tests. The high-level archi-
tecture of Affogato is shown in Figure 3. Affogato can detect the usual injection
attacks (such as SQL injection) and other specific vulnerabilities such informa-
tion leakage. Affogato has been used in the Test and instrumented dynamic scan
phase as shown in Figure 1.

In summary, Affogato works on an running instance of the application. It
relies on test cases to exercise the behaviour. The runtime overheads for long-
running tests are acceptable. The main challenge is related to the effect of in-
strumentation. We need to ensure that the original semantics are preserved after
instrumentation. As with any dynamic analysis, we have to reduce the runtime
overheads introduced by extra code that has been introduced.

5 Gelato

Gelato [8] is a client-side analysis tool that does not rely on the availability
of the server-side source code. The client-side JavaScript code is analysed and
used to detect end-points exposed by the server. It also uses taint tracking and
hence can detect DOM-XSS and reflected XSS. Figure 4 shows the high-level



architecture of Gelato. Gelato is a state-aware crawler that uses a man-in-the-
middle proxy to intercept traffic between the browser and server. This traffic is
both instrumented and analysed to detect security issues. Gelato has been used
in the Deploy and dynamic scan phase as shown in Figure 1.

Fig. 4. High-level Architecture of Gelato

Gelato, like Affogato, works on a running instance. But unlike Affogato,
Gelato does not require test-cases. By analysing the client-side code, Gelato
mimics an external, real-world attacker. A key challenge is how to detect if Gelato
is making progress without access to the server code. Without such knowledge,
it is hard to estimate the coverage, say the percentage of endpoints that are
actually detected, of the analysis. While integrating fuzzers might help, it is still
difficult to get precise information.

6 Safe-PDF

Safe-PDF [9] uses the SAFE abstract-interpretation framework [10] to detect
malicious JavaScript code in PDF documents. While abstract-interpretation can,
in general, be expensive, it takes less than four seconds per document which
is acceptable, say when scanning e-mail attachments. While Safe-PDF uses a
static analysis technique, it can also be used when the application (say the mail
system) is executing. The delay introduced by the analysis is not noticeable in
a mail-delivery system.

Using abstract-interpretation allows Safe-PDF to go beyond detecting syn-
tactic patterns. By using the semantics of the JavaScript code, Safe-PDF has
very low false-positives. The main challenge is how to generalise this approach.
For instance, what techniques are needed for other types of documents, e.g.,
MS-Office documents.



7 Future Work

Thus far our research has focused on preventing security vulnerabilities being
introduced (at the coding level), check for potential violations of information-
flow policies at the testing phase, and preventing attacks at run time (at the
deployment and operations phases). Currently, our tools are run independent of
each other.

But security analysis is like a game where the attacker has to find only one
exploit while the defenders (e.g., the cloud service providers) have to protect
against all possible attacks.

Real systems consist of different technologies including the use of many third
party libraries. It is unrealistic to expect that a single tool that can handle
all these technologies. Tools that focus on specific aspects are more effective
in practice. Therefore, different tools are required to cover all security aspects.
These tools generate different signals and it is important to combine them to have
a single security view. This is what we call the Intelligent Application Security
(IAS) [11]. It is our vision for the future. We envisage IAS as providing the
necessary infrastructure that enables different security-analysis tools to share
information and refine their analyses based on the input received from other
tools. An initial step in this vision is described in [12] which combines the features
of Affogato, Gelato and a fuzzing tool.

Fig. 5. DevSecOps Cycle

Our future research will address the tools needed to address all aspects within
the DevSecOps [13] (see Figure 5) process. DevSecOps is a continuous process
designed to overcome silos in the development of large systems [14]. The challenge
is that security needs to be considered at every stage. The role of various tools
is shown in Figure 5. While the tools presented in this paper address some of



these phases (e.g., develop, build, test), we need to develop tools and techniques
for other aspects such as security configuration, patching, audit etc.

Acknowledgements

This paper is reporting the work done by the entire team at Oracle Labs, Aus-
tralia over many years. The author is thankful for their support in developing
this paper.

References

1. Krishnan, P., Lu, Y., Raghavendra, K.R.: Detecting unauthorised information
flows using points-to analysis. Engineering and Technology Reference (2016)

2. Cifuentes, C., Keynes, N., Li, L., Hawes, N., Valdiviezo, M.: Transitioning Parfait
into a development tool. IEEE Security and Privacy 10(3) (May/June 2012) 16–23

3. Gauthier, F., Keynes, N., Allen, N., Corney, D., Krishnan, P.: Scalable static
analysis to detect security vulnerabilities: Challenges and solutions. In: IEEE
SecDev. (2018)

4. Lattner, C., Adve, V.: The LLVM compiler framework and infrastructure tutorial.
In: LCPC: Mini Workshop on Compiler Research Infrastructures. (2004)

5. Nielson, F., Nielson, H.R., Hankin, C.: Principles of Program Analysis. 2 edn.
Springer (2005)

6. Krishnan, P., O’Donoghue, R., Allen, N., Lu, Y.: Commit-time incremental anal-
ysis. In: SOAP, ACM (2019)

7. Gauthier, F., Hassanshahi, B., Jordan, A.: AFFOGATO: runtime detection of
injection attacks for node.js. In: Companion Proceedings for the ISSTA/ECOOP
Workshops, ACM (2018) 94–99

8. Hassanshahi, B., Lee, H., Krishnan, P.: Gelato: Feedback-driven and guided secu-
rity analysis of client-side web applications. In: SANER. (2022)

9. Jordan, A., Gauthier, F., Hassanshahi, B., Zhao, D.: SAFE-PDF: robust detection
of javascript PDF malware using abstract interpretation. Technical report, CoRR
(2018)

10. Park, J., Ryou, Y., Park, J., Ryu, S.: Analysis of javascript web applications using
SAFE 2.0. In: ICSE, IEEE Computer Society (2017) 59–62

11. Cifuentes, C.: Towards intelligent application security (invited talk). In: SOAP.
(2021)

12. Gauthier, F., Hassanshahi, B., Selwyn-Smith, B., Mai, T.N., Schlüter, M.,
Williams, M.: Experience: Model-Based, Feedback-Driven, Greybox Web Fuzzing
with BackREST. In: European Conference on Object-Oriented Programming,
ECOOP. Volume 222 of LIPIcs., Schloss Dagstuhl - Leibniz-Zentrum für Infor-
matik (2022) 29:1–29:30

13. DoD Chief Information Officer: DoD enterprise devsecops reference design. Tech-
nical report, Department of Defense (2019)

14. Rajapakse, R.N., Zahedi, M., Babar, M.A., Shen, H.: Challenges and solutions
when adopting devsecops: A systematic review. Information and Software Tech-
nology 141 (2022)


