
Copyright (c) 2022, Oracle and/or its affiliates. All rights reserved.

Scalable Static Analysis to Detect Security Vulnerabilities:
Challenges and Solutions

Nathan Keynes, François Gauthier, Nicholas Allen, Diane Corney, Padmanabhan
Krishnan, Cristina Cifuentes

{nathan.keynes, francois.gauthier, nicholas.allen, diane.corney, paddy.krishan,
cristina.cifuentes}@oracle.com

Oracle Labs

Scalable Static Analysis to Detect Security Vulnerabilities:
Challenges and Solutions

Nathan Keynes, François Gauthier, Nicholas Allen, Diane Corney, Padmanabhan
Krishnan, Cristina Cifuentes

{nathan.keynes, francois.gauthier, nicholas.allen, diane.corney, paddy.krishan,
cristina.cifuentes}@oracle.com

Oracle Labs

Abstract

Parfait [1] is a static analysis tool originally developed
to find defects in C/C++ systems code. It has since
been extended to detect injection attacks [3] in Java
and PL/SQL1 applications. Parfait has been deployed
at Oracle, is used by thousands of developers, and can
be integrated at commit- or build-time. This poster
presents some of the challenges we encountered while
extending Parfait from a defect analyser for C/C++ to
a security analyser for Java and PL/SQL, and the solu-
tions that enabled us to analyse a variety of commer-
cial enterprise applications in a fast and precise way.

1. Precision

Parfait’s focus has always been on mitigating risk and
generating true positive reports rather than achieving
soundness. For our C/C++ analysis, the key to preci-
sion was primarily a combination of path-sensitivity,
field-sensitivity, and precise tracking of concrete val-
ues. For Java applications, however, our experience
suggests that precise call-graphs and field-sensitive
analysis [2] are key to achieving > 90% overall pre-
cision. In practice, this means that Parfait will often
aggressively under-approximate call targets or field
aliases when it encounters constructs like reflection,
dependency injection, or network routing, and com-
plement its analysis with code models instead.

2. Multiple Languages

All languages supported by Parfait share the same IR,
and translators must generate meta-data (e.g. Java
class hierarchy) to enable analysis (see Fig. 1).

Fig. 1: All languages share the same IR (LLVM bitcode) in Parfait

3. Novelty: Incremental Analysis

Achieving commit-time analysis on monolithic Java
applications of ∼100MLOC is challenging. Because
these applications cannot be fully loaded into mem-
ory at once, Parfait first scans each function for type
and call information to generate a call graph. Our
bottom-up summarisation approach can then identify
and re-analyse changed methods only, and propagate
the new summaries up the call-stack (see: Fig. 2).

Fig. 2: Inter-module analysis in Parfait

Outcome and Open challenges

Parfait is used by 1000+ Oracle developers on a daily
basis. Deploying incremental analysis has brought
security closer to developers by enabling commit-time
feedback. We plan to address these challenges next:

Cross-language analysis: We are exploring heap ab-
stractions to capture common cross-language taint
flows (e.g. code→DB→code) in applications.
Codemodels: We are exploringML approaches to cre-
ate and maintain models of hard-to-analyse code and
reduce manual effort to a minimum.

References
[1] C. Cifuentes, N. Keynes, L. Li, N. Hawes, and M. Valdiviezo. Transitioning Parfait into a de-

velopment tool. IEEE Security and Privacy, 2012.

[2] J. Lerch, J. Späth, E. Bodden, andM.Mezini. Access-path abstraction: Scaling field-sensitive
data-flow analysis with unbounded access paths. In ASE, pages 619–629, 2015.

[3] OWASP. Owasp top ten project. https://owasp.org/www-project-top-ten/, Last ac-
cessed: 27 January 2022.

1Java and PL/SQL are registered trademarks of Oracle and/or its affiliates. Other
names may be trademarks of their respective owners.

https://owasp.org/www-project-top-ten/

