
 

XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE 

ContainerStress: Autonomous Cloud-Node Scoping 

Framework for Big-Data ML Use Cases 

 

Guang Chao Wang  

Oracle Physical Sciences Research Center 

Oracle Corporation 

San Diego, CA 

guang.wang@oracle.com 

 

Kenny Gross  

Oracle Physical Sciences Research Center 

Oracle Corporation 

San Diego, CA 

kenny.gross@oracle.com  

 

Akshay Subramaniam 

AI Developer Technology Engineering, 

NVIDIA Corporation 

Santa Clara, CA 

asubramaniam@nvidia.com 

 

 

Abstract—Deploying big-data Machine Learning (ML) services 

in a cloud environment presents a challenge to the cloud vendor with 

respect to the cloud container configuration sizing for any given 

customer use cases. OracleLabs has developed an automated 

framework that uses nested-loop Monte Carlo simulation to 

autonomously scale any size customer ML use cases across the range 

of cloud CPU-GPU “Shapes” (configurations of CPUs and/or GPUs 

in Cloud containers available to end customers). Moreover, the 

OracleLabs and NVidia authors have collaborated on a ML 

benchmark study which analyzes the compute cost and GPU 

acceleration of any ML prognostic algorithm and assesses the 

reduction of compute cost in a cloud container comprising 

conventional CPUs and NVidia GPUs.  

Keywords—Cloud Container, ML Services, NVIDIA GPU 

Acceleration, Monte Carlo Simulation, Container Configuration 

Sizing. 

I. INTRODUCTION  

Cloud containers have seen increased use in the business 

world nowadays since they provide a separation of concerns, as 

end customers focus on their application logic and 

dependencies, while cloud vendors can focus on deployment, 

configuration, and security without bothering with application 

details. The technology enables businesses to access software on 

the internet as a service [1]. Cloud containers scale with the 

computing needs of the business, provide a high degree of 

customization, and reduce the Operations & Infrastructure costs 

for end customers (versus the huge overhead cost for customers 

operating their own datacenters). More importantly, major cloud 

vendors including Oracle, Google, Microsoft and Amazon 

charge cloud container services based on the specific use cases, 

number of users, storage space and compute costs across CPUs 

and GPUs in the customers’ cloud tenancies.  Hence, a company 

porting applications to a cloud environment will only pay for the 

services procured and choose a package that suits the customer’s 

budget.  

One challenge for deploying big-data ML services in a cloud 

environment wherein bare-metal containers and/or virtual 

machines (VMs) are populated with various “shapes” of CPUs 

and/or GPUs, is the appropriate container sizing.  For prognostic 

ML applications with  time-series sensor data (the focus of this 

paper), customer use cases vary all over the map, from a simple 

use case for monitoring one machine with 10 sensors and slow 

sampling rates, to huge Oil-and-Gas-size use cases with 

hundreds of thousands of high sampling rate sensors.  In general, 

for any given customer engagement it would take a lot of trial-

and-error runs by end customers guided by consultants with the 

cloud provider to discover optimal cloud configurations, which 

can vary enormously from customer-to-customer. Ideally, it 

would be nice to let a customer start small and autonomously 

grow their cloud container capabilities through “elasticity” as 

compute dynamics dictate. However, in practice that flexibility 

is not as smooth as cloud marketing teams might wish. The 

relationships between configuration resources (Memory, CPUs, 

GPUs) and cost estimates for ML use cases is not a simple “feeds 

and speeds” lookup table, because the compute cost for 

advanced ML prognostics use cases generally scale linearly with 

the number of observations (determined by sensor sampling 

rates), but (highly) nonlinearly with the number of sensors and 

the size of training dataset desired for training the ML algorithm. 

There is a steep nonlinear tradeoff between desired prognostic 

accuracy versus memory footprint and overhead compute cost. 

An example below illustrates a typical customer use case 

scenario of ML prognostic implemented in a cloud container: 

1) Customer A has a use case with only 20 signals, sampled 

at a slow rate of just once per hour, such that a typical year's 

worth of data is a couple of MB. 

2) Customer B has a fleet of Airbus 320's, each with 75000 

sensors onboard, sampled at once per second, such that every 

plane generates 20 TB of data per month. 

3) All other customers fall somewhere in the very wide use 

case range between A and B. 

What is needed is a realistic way of pre-assessing, or 

“scoping” the cloud capability specifications for those two 

extreme use cases (1) and (2), so that the end customer and the 

cloud provider are able to scope out the cloud containers that 

would be the most appropriate reference for any prospective use 

cases (3). 

mailto:guang.wang@oracle.com
file:///C:/Users/asubramaniam/Documents/2019_CSCI_MSET2_paper/kenny.gross@oracle.com
file:///C:/Users/asubramaniam/Documents/2019_CSCI_MSET2_paper/akshay.subramaniam@nvidia.com


 

 

OracleLabs has developed an Autonomous Cloud-Node 

Scoping Framework that fulfills an important function for 

customers interested in migrating ML applications from their 

on-prem data centers into cloud containers.  We extend our prior 

work [2] and present here a Monte Carlo based scoping 

tool/technique for Oracle cloud containers consisting of CPUs 

and NVidia GPUs, for automatic evaluation of the compute cost 

of any ML algorithm as a parametric function of number of 

signals, number of observations, and number of desired training 

vectors (denoted as “three conventional ML design parameters” 

in the rest of the paper). Note there are many classes of ML 

algorithmics use for “classification.”  This paper deals instead 

with an important class of “prognostic” ML pattern recognition 

defined as nonlinear nonparametric regression, used for 

anomaly discovery in big-data dense-sensor IoT streaming 

analytics and time-series databases.   The preferred ML service 

used in this paper is Oracle’s advanced pattern recognition 

technique, the Multivariate State Estimation Technique 

(MSET2) [3-5], but the framework can accommodate other 

forms of pluggable prognostic ML techniques, including neural 

nets and support vector machines.  

For this investigation, OracleLabs and our collaborators at 

NVidia have devised an automated ML compute cost 

benchmarking between CPUs and NVidia GPUs, which 

systematically and parametrically evaluates the compute cost of 

any ML algorithm and empirically assesses the non-linear 

relationships between the intensity of ML workload (customer 

use cases) and compute cost. We have performed a 

comprehensive compute cost evaluation and a GPU-speedup-

factor evaluation for prospective end-customer use cases, 

ranging from tiny applications with 10s of sensors with slow 

sampling rates, to truly Big Data use cases involving terabytes 

of data per month from large fleets of assets.  As such, the 

compute cost scoping framework presented herein benefits big 

data prognostic use cases for dense-sensor internet-of-things 

(IoT) use cases in such fields as Utilities, Oil and Gas, smart 

manufacturing, commercial aviation, and of course data center 

IT assets. 

The remainder of this paper is organized as follows. Section 

II presents the implementation of the ContainerStress 

Framework, Oracle’s MSET2 technique served as a pluggable 

ML technique, testing signals and the implementation of GPU 

algorithms. Section III.A introduces the 3D compute cost 

contours using CPU measured by the ContainerStress 

framework, and Section III.B illustrates the GPU accelerations 

of MSET2 over CPU executions. Section IV provides the 

conclusions. 

II. METHODOLOGY 

A. ContainerStress Framework Implmenetations 

The ContainerStress autonomous scoping framework 

assesses the compute costs of any prognostic ML technique 

employed in the cloud container.  This is achieved through a 

Monte Carlo based simulation as a parametric function of the 

three important ML scoping parameters. The goal is to perform 

setup/scoping estimation on the cloud container for different end 

customer use cases while adapting to any ML techniques in the 

category of statistical pattern recognition called nonlinear 

nonparametric regression. The output shows the computational 

overhead cost using 3D response-surface methodology 

(examples illustrated later) in terms of the compute cost for the 

conventional training process and streaming surveillance in ML 

techniques. Figure 1 illustrates the concept of the 

ContainerStress framework. 

Figure 1: Flowchart of ContainerStress framework for autonomous cloud 
container scoping. 

B. Pluggable ML Prognostic Alogirhtm 

The case study presented herein demonstrates the 

ContainerStress framework using MSET2, which is being used 

for prognostic surveillance of time series sensor signals for 

predictive maintenance applications.  MSET2 provides very 

high sensitivity for proactive warnings of incipient anomalies, 

and ultra-low false-alarm and missed-alarm probabilities.  

Although this paper focuses on the performance of MSET2, we 

have architected ContainerStress to support pluggable ML 

algorithms so that other conventional forms of ML services such 

as Neural Nets, Support Vector Machines, Auto Associative 

Kernel Regression, which will also be easily evaluated in terms 

of cloud container configuration resources to meet different 

cloud customers’ requirements. 

C. Realistic Testing Signals 

The time-series signals used in the case study have been 

synthesized with a high-fidelity signal synthesis algorithm from 

real time series signatures across a variety of IoT industrial use 

cases. These signals are synthesized, not simulated, which match 

real IoT sensor signals in all statistical characteristics important 

to ML prognostics, including serial correlation content, cross 

correlation between/among signals, and stochastic content 

(variance, skewness, kurtosis), as real IoT sensor signals.  For 

the large scale database of synthesized signals used in this 

investigation, OracleLabs’ Telemetry Parameter Synthesis 

System (TPSS) has been employed [7-9].    



 

 

D. GPU Platform Algorithm Implementations 

GPU architectures differ from CPU ones mainly in the fact 

that GPUs work by leveraging massive fine-grained parallelism 

of the order of 10000 threads. A typical CPU has on the order 

of 10 threads and is better at performing coarse grained 

parallelism. The main challenge with porting an algorithm to a 

GPU platform is to extract fine-grained parallelism and also 

efficiently use the memory subsystem of the GPU. The 

computational routines for MSET2 were implemented for the 

GPU platform using the CUDA programming model [6] where 

individual threads are grouped into blocks, which are grouped 

into a grid as shown in Figure 2. Further, a group of 32 threads 

is called a warp and all threads in a warp can issue the same 

instruction in any given cycle. 

 

 
Figure 2: Organization of threads in the CUDA programming model. 

The most computationally intensive part of MSET2 is the 

similarity matrix kernel that is a non-linear matrix binary 

operation. This computational routine was implemented in 

CUDA by decomposing the algorithm into logical hierarchical 

decompositions corresponding to an individual block, warp and 

thread. Correspondingly, the right memory channels for each 

level of decomposition is used to yield the highest performance 

possible. As in the case for a matrix multiplication, the compute 

cost of the similarity matrix increases faster than the amount of 

memory accesses. Hence, close attention is paid to efficient 

reuse of memory as well. 

 

                                                           
1 https://developer.nvidia.com/cublas 

 
Figure 3: Hierarchical decomposition of the MSET2 similarity matrix 

algorithm into kernel level, block level, warp level and thread level 

computations. 

Apart from the similarity matrix routine, MSET2 requires 

other routines like matrix multiplication and Eigen 

decomposition (Figure 3). For these, the cuBLAS 1  and 

cuSOLVER2 libraries from NVIDIA are used. Custom kernels 

were written for all other routines required for the MSET2 

algorithm. 

III. EVALUATION AND DISCUSSIONS 

A. Three Dimentional Compute Cost Contours 

We demonstrate here the power and utility of our 

ContainerStress framework incorporating MSET2 in an Oracle 

cloud container and examine how compute cost varies with 

respect to the three ML parameters wherein MSET2 is employed 

as a cloud service. The compute cost measurements are 

presented by bars and the parametric cost function is represented 

by 3D response-surfaces, showing the real compute cost 

measurements and the observed trending to scope out the cloud 

implementation of MSET2 for prototypic advanced prognostic 

anomaly discovery applications with dense-sensor IoT industrial 

applications. 

(a) 

2 https://developer.nvidia.com/cusolver 

https://developer.nvidia.com/cublas
https://developer.nvidia.com/cusolver


 

 

 
(b) 

 
(c) 

(d) 

Figure 4: The 3D compute cost contours of cloud implementation of MSET2 
versus the number of memory vector, number of observations during Training 

process, and the number of signals is incremented by 10 at a time from (a) to 

(d). The blue and red color schemes represent the smallest and highest compute 

costs respectively. 

Figure 4 illustrates the parametric empirical relationships 

between compute cost and the three ML parameters in the 

Training process of MSET2. It can be concluded that the 

compute cost of Training process primary depends very 

sensitively on the number of memory vectors and number of 

signals. 

Similarly, Figure 5 (a)-(d) illustrate the parametric empirical 

relationships between compute cost and the three ML 

parameters for streaming surveillance process. It can be 

observed that the compute cost of streaming surveillance 

primary depends on the number of observations and signals. 

 
(a)

 
(b) 



 

 

 
(c) 

 
(d) 

Figure 5: The 3D compute cost contours of cloud implementation of MSET2 

versus the number of memory vector, number of observations during 

surveillance streaming process, and the number of signals is incremented by 10 
at a time from (a) to (d). The blue and red color schemes represent the smallest 

and highest compute costs respectively. 

 

With the 3D response-surface of compute cost above, we 

are able to quickly and efficiently scope out the appropriate 

configurations of the cloud container(s) for big-data customer 

applications with MSET as a service integrated for any given 

customer use cases. 

B. GPU Speedup Factor 

In addition, we also deployed the ContainerStress 

framework on an Oracle cloud container, on which both CPU 

and GPU implementation of MSET2 were executed and 

benchmarked. One outstanding discovery made during the 

course of this investigation is the tremendous speedup factors 

(which is defined as the ratio of the compute cost for CPU-only 

and CPU+GPU cloud configurations) that are attained for any 

Oracle Cloud containers/VMs containing one or more NVidia 

GPUs for big-data ML use cases. Figures 6-8 show measured 

compute cost and GPU speedup-factors for a broad range of ML 

prognostic use cases with the latest CPUs (Intel Xeon Platinum) 

and NVidia GPUs (Tesla V100), where we have evaluated 

overhead compute costs and GPU speedup factors 

parametrically as a function of the three ML parameters. The 

relative influences of each ML parameter on the compute cost 

and attainable GPU speedup factors are also thoroughly 

investigated. Specifically, Figure 6 presents the speedup factor 

starts from 200x and can reach up to 1500x in the training 

process when number of signals varies from 25 to 210 and 

number of memory vectors varies from 27 to 213. Note that the 

missing parts in the training surface result from the ML training 

constraint that the number of memory vectors is at least twice 

the number of signals required by MSET2. Hence outputs are 

included only for these use cases meeting this required training 

constraint. 

 
Figure 6: The 3D training cost contours in term of speed factor as a function 
of number of signals and number of memory vectors. The X, Y axis are in log 

scale. The blue and red color schemes represent the smallest and highest 

compute costs respectively. 
 

Figure 7 illustrates the speedup factor in the surveillance 

part of MSET2 as a function of number of observations and 

number of memory vectors for the prognostic user cases 

consisting of 64 signals. It can be observed that even with a 

small IoT use case, the speedup factor still grows non-linearly 

and can exceed 5000x during the surveillance streaming 

process. 

 

 
Figure 7: The 3D surveillance cost contours in term of speed factor as a 

function of number of observations and number of memory vectors for 64-signal 



 

 

use case. The X, Y axis are in log scale. The blue and red color schemes 
represent the smallest and highest compute costs respectively. 

 

Similarly, Figure 8 illustrates the speedup factor in the 

surveillance portion of MSET2 for the prognostic use cases 

consisting of 1024 signals. It can be concluded that with a larger 

IoT use case, the speedup factor further increases and can 

exceed 9000x during the surveillance streaming process. 
 

 

 
Figure 8: The 3D surveillance cost contours in term of speed factor as a 
function of number of observations and number of memory vectors for 1024-

signal use case. The X, Y axis are in log scale. The blue and red color schemes 

represent the smallest and highest compute costs respectively. 

 

 

In sum, the new ContainerStress framework incorporating 

NVidia GPU acceleration provides a robust and highly scalable 

approach for evaluating the deployability of a given ML 

prognostic technique in cloud containers/VMs comprising 

mixes of CPUs and NVidia GPUs.  While we showcase in this 

paper that for a simple ML prognostic use case consisting of 

just 64 signals, a speedup factor of up to 1500 and 5000 is 

attained respectively for the training and the surveillance 

streaming process, the compute cost reduction is expected to be 

even much greater for larger scale use cases. 

IV. CONCLUSION 

Advanced statistical ML algorithms are being developed, 

trained, tuned, optimized, and validated in a cloud environment 

for dense-sensor IoT prognostics applications in the fields of 

Oil-and-Gas, manufacturing, transportation (including 

aviation), utilities, and datacenters. The present challenge with 

offering prognostic ML pattern recognition in a cloud 

environment is sizing the customer container appropriately to 

ensure the customer has good performance, high throughputs, 

and low latencies, for real time streaming prognostics. 

OracleLabs has developed an autonomous cloud configuration-

scoping framework called ContainerStress, which 

systematically evaluates the compute cost and the GPU 

acceleration factors, for a given ML technique as a parametric 

function of number of signals, number of observations, and 

number of training vectors, for scalable streaming prognostics 

in a cloud environment, and displays the compute cost results 

in with the aid of 3D response-surface methodology. In addition 

OracleLabs and NVidia have demonstrated the substantial 

acceleration power (upwards of 200x) on Oracle’s advanced 

machine learning pattern recognition technique by using Nvidia 

GPUs. This work will enable customers in dense-sensor IoT 

industries to harness vast amounts of data from sensors, 

processes, and physical assets to gain valuable prognostic 

insights and to proactively terminate or avoid system 

degradation events that could challenge overall asset 

availability goals or diminish safety margins for life-critical 

industrial settings, and, when Oracle’s MSET2 is the ML 

algorithm employed, achieve the foregoing prognostic goals 

with ultra-low false-alarm probabilities. 
 

REFERENCES 

[1] Pahl, C., Brogi, A., Soldani, J., & Jamshidi, P. (2017). “Cloud container 
technologies: a state-of-the-art review,” IEEE Transactions on Cloud 
Computing. 

[2] More, A. R., & Gross, K. C. (2016, December). “SimML framework: 
Monte Carlo simulation of statistical machine learning algorithms for IoT 
prognostic applications,” In 2016 International Conference on 
Computational Science and Computational Intelligence (CSCI) (pp. 174-
179). IEEE. 

[3] Singer, R. M., Gross, K. C., Herzog, J. P., King, R. W., & Wegerich, S. 
(1997). “Model-based nuclear power plant monitoring and fault detection: 
Theoretical foundations,” Proc. 9th Intnl. Conf. On Intelligent Systems 
Applications to Power Systems, pp. 60-65, Seoul, Korea (July 6-10, 
1997).  

[4] Gross, K. C., Singer, R. M., Wegerich, S. W., Herzog, J. P., VanAlstine, 
R., & Bockhorst, F. (1997). “Application of a model-based fault detection 
system to nuclear plant signals,” Proc. 9th Intnl. Conf. On Intelligent 
Systems Applications to Power Systems, pp. 66-70, Seoul, Korea (July 6-
10, 1997). 

[5] Mueller, R., Brandt, C., Gawlick, D., Ghoneimy, A., Gross, K. C., Liu., 
Z. H. (2019). “A Modern Approach to Situation Awareness: The Ultimate 
Challenge for Event Processing,” 2019 Intn’l Conf. on Distributed and 
Event-Based Systems (DEBS-2019), Darmstadt, Germany (Jun 24-28, 
2019). 

[6] CUDA Programming guide. Retrieved from 
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html. 
Last Access: Nov. 2019. 

[7] Wang, G. C. and Gross., K. C. (Dec., 2018). “Telemetry Parameter 
Synthesis System for Enhanced Tuning and Validation of Machine 
Learning Algorithmics,”  IEEE 2018 Intn'l Symposium on Internet of 
Things & Internet of Everything (CSCI-ISOT), Las Vegas, NV. 

[8] Dhanekula., R. C. and Gross, K. C. (Jul., 2012). “High Fidelity Telemetry 
Signal Synthesis for Improved Electronic Prognostics,” IEEE World 
Congress in Computer Science, Computer Engineering, and Applied 
Computing (WorldComp2012), Las Vegas, NV. 

[9] Gross, K. C., & Schuster, E. (2005). “Spectral Decomposition and 
Reconstruction of Telemetry Signals from Enterprise Computing 
Systems,” In CDES (pp. 240-246).  

your paper may result in your paper not being 

 

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html

