
Evaluating Quality of Security Testing of the JDK ∗

Padmanabhan Krishnan
Oracle Labs, Brisbane

paddy.krishnan@oracle.com

Jerome Loh
Oracle Labs, Brisbane1

zhengxiang.loh@uq.net.au

Rebecca O’Donoghue
Oracle Labs, Brisbane

rebecca.odonoghue@oracle.com

Larissa Meinicke
ITEE, The University of Queensland

l.meinicke@uq.edu.au

1. Introduction
The Java security model provides language-level access con-
trol to security-sensitive resources and actions. Proper use of
this model is the responsibility of the programmer, and errors
may arise in its use. As there is no formal model of the de-
sired security properties, techniques such as verification are
not directly applicable. So testing is the only practical way to
detect such errors. However, one wishes to have some guar-
antee that the tests themselves are thorough enough to catch
all errors in the use of the security model. So the first step is
to determine the quality of test suites that check for security
properties.

Mutation testing [7] can be used to measure the effective-
ness of a test suite. The general idea is to seed faults into
the original program to derive mutations and check whether
the test suite can distinguish the behaviour of each of the
mutations against the original program. The percentage of
mutations that a test suite can distinguish can be used as a
measure of effectiveness of the test suite. As a result, a tester
can determine the causes for not distinguishing a mutation
to improve the test suite.

As the number of potential faults in a program can be very
large, generating mutations that represent all the faults is not
useful in practice. For instance the mutation operators devel-
oped for object-oriented languages [1, 4] are too general. In
order to reduce the number of generated mutations, one usu-

∗ Java and JDK are registered trademarks of Oracle and/or its affiliates.
Other names may be trademarks of their respective owners.
1 Jerome Loh was enrolled at the University of Queensland

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

c© Copyright held by the owner/author(s). Publication rights licensed to ACM.
ISBN [to be supplied]. . . $15.00

ally assumes a competent programmer hypothesis where the
possible mutations are derived from a set of typical errors a
competent programmer can make. For instance, not all vari-
able replacement operators may be relevant in a given situa-
tion. Otherwise, mutations will, typically, not represent real
faults [6].

In this position paper, we outline the issues related to mu-
tation testing in the evaluation of test suites that are relevant
for security in the JDK. That is, we do not focus on user’s
applications but on the library. This is because any security
issue in the JDK has an impact on a large number of appli-
cations.

The key questions relate to identifying representative mu-
tation operators and ensuring that they can be used in an au-
tomated process that scales to industrial size code.

2. Mutation Operators
In a security context, mutation testing has been applied to
detect string formatting and buffer overflow vulnerabilities
in C programs [10, 11]. But these mutation operators are
not related to any security model. Martin and Xie [9] and
Traon et al. [12] have extended mutation testing to testing
access control policies. Both studies utilise a system based
on rules that either permit or deny sensitive actions based
on the caller’s identity, or role. Bertolino et al. [3] describe
mutation operators that are relevant for XACML. Conceptu-
ally, these mutation operators are similar to what is desired
for Java. However, we need operators that directly manipu-
late the constructs that deal with security. These include the
checkPermission and doPrivileged invocations [5]—the de-
tails of which are not discussed here.

Semantically, the basic mutation operators we consider
can be classified as either narrowing or widening the set of
permissions associated with the original code fragment. The
narrowing operators either check for more permissions or
remove permissions that are available to the code. One can
check for more permissions by replacing the permission in
a checkPermission call (say p) with permission q such that

q implies p. The widening operators either check for fewer
permissions or in effect grant more permissions to the code.
Replacing a permission p in a checkPermission call with a
permission q such that p implies q results in widening. Note
that it is possible to have mutation operators that widen a
narrowing (or narrow a widening). Similarly, the mutations
of a doPrivileged will involve changing the access control
contexts and permissions passed to it. Note that we do not
consider changing the privileged action as that represents a
behavioural change which is not security specific.

3. Open Issues
A number of challenges need to be addressed before a proper
evaluation can be performed. They include scalability and
the choice of mutation operators, and tool support.

The first is related to scalability and automation. The JDK
has more than 2 million lines of Java code. So the number
of mutations generated must be limited but if they do not
cover the relevant security properties the mutation operators
will not be useful. In principle, there are an unbounded
number of options when replacing permissions or access
control contexts. This is because, parameters to permissions
are strings. So exploring all potential replacements for a
given mutation operator is not practical.

A more precise formulation of the competent program-
mer hypothesis will help in identifying the set of relevant
permissions or ACCs. One could find the minimal set of dis-
tinct mutations [2] and thus eliminate mutations which are
themselves equivalent or subsumed by other mutations. The
problem of reducing the set of mutations is NP-complete and
thus approximations of the minimal set will be required.

The second challenge is to integrate jtreg, the testing
infrastructure used for the JDK, with our mutation process.
For this we need to identify a suitable mutation testing tool.
Although there are tools such as muJava2, [8] Jumble3 and
PIT4, none of these can be used directly. Based on some
initial experimentation, we are exploring adapting PIT to suit
our requirements. A related challenge arises because PIT and
jtreg are written in Java. As we are mutating the JDK, we
have to ensure that the behaviour of PIT and jtreg are not
altered by the mutation process. We would need an isolation
mechanism to effect this.

4. Summary
In this note we have outlined the need for security-specific
mutation operators and their categorisation into impact
classes. While we have described in the context of the JDK,
this would be required for any programming language that
supports security. We also have described the engineering

2 https://cs.gmu.edu/ offutt/mujava/
3 http://jumble.sourceforge.net/
4 http://pitest.org/

challenges related to scalability, existing infrastructures and
tool support. To summarise, the general questions are

• What are language specific security mutation operators
that are applicable to libraries that provide security ser-
vices?

• How to ensure these mutation operators can be used for
large programs?

• How to overcome some of the engineering challenges so
that these mutation operators are used in practice?

A more long-term goal is to use the results of the evalua-
tion to generate the required tests to improve security cover-
age.

References
[1] R.T. Alexander, J.M. Bieman, S. Ghosh, and B. Ji. Mutation

of Java objects. In 13th International Symposium on Software
Reliability Engineering (ISSRE), pages 341–351, 2002.

[2] P. Ammann, M. E. Delamaro, and J. Offutt. Establishing
theoretical minimal sets of mutants. In IEEE International
Conference on Software Testing, Verification and Validation
(ICST), pages 21–30, 2014.

[3] A. Bertolino, S. Daoudagh, F. Lonetti, and E. Marchetti.
XACMUT: XACML 2.0 mutants generator. In Proc. of 8th
International Workshop on Mutation Analysis, pages 28–33.
IEEE, 2013.

[4] P. Chevalley and P. Thévenod-Fosse. A mutation analysis tool
for Java programs. International Journal on Software Tools
for Technology Transfer, 5(1):90–103, 2003.

[5] L. Gong, G. Ellison, and M. Dageforde. Inside Java 2 Plat-
form Security. The Java Series. Addison Wesley, 2003.

[6] R. Gopinath, C. Jensen, and A. Groce. Mutations: How close
are they to real faults? In Proceedings of the IEEE 25th In-
ternational Symposium on Software Reliability Engineering,
2014 (ISSRE’14), pages 189–200, 2014.

[7] Y. Jia and M. Harman. An analysis and survey of the devel-
opment of mutation testing. IEEE Transactions on Software
Engineering, 37(5):649–678, 2011.

[8] Y-S. Ma, J. Offutt, and Y-R. Kwon. MuJava : An automated
class mutation system. Journal of Software Testing, Verifica-
tion and Reliability, 15(2):97–133, 2005.

[9] E. Martin and T. Xie. A fault model and mutation testing of
access control policies. In Proceedings of the 16th Interna-
tional Conference on World Wide Web, pages 667–676, 2007.

[10] H. Shahriar and M. Zulkernine. Mutation-based testing of
buffer overflow vulnerabilities. In Computer Software and
Applications (COMPSAC), pages 979–984, 2008.

[11] H. Shahriar and M. Zulkernine. Mutation-based testing of
format string bugs. In High Assurance Systems Engineering
Symposium (HASE), pages 229–238, 2008.

[12] Y. L. Traon, T. Mouelhi, and B. Baudry. Testing security poli-
cies: Going beyond functional testing. In 18th IEEE Inter-
national Symposium on Software Reliability (ISSRE), pages
93–102, 2007.

	Introduction
	Mutation Operators
	Open Issues
	Summary

