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ABSTRACT
This paper introduces smart arrays, an abstraction for providing
adaptive and efficient language-independent data storage. Their
smart functionalities include NUMA-aware data placement across
sockets and bit compression. We show how our single C++ im-
plementation can be used efficiently from both native C++ and
compiled Java code. We experimentally evaluate smart arrays on a
diverse set of C++ and Java analytics workloads. Further, we show
how their smart functionalities affect performance and lead to dif-
ferences in hardware resource demands on multicore machines,
motivating the need for adaptivity. We observe that smart arrays
can significantly decrease the memory space requirements of ana-
lytics workloads, and improve their performance by up to 4×. Smart
arrays are the first step towards general smart collections with vari-
ous smart functionalities that enable the consumption of hardware
resources to be traded-off against one another.

CCS CONCEPTS
• Theory of computation→Data structures design and anal-
ysis; Shared memory algorithms; • Software and its engineering
→ General programming languages; Virtual machines; • Com-
puting methodologies→ Parallel computing methodologies;
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Figure 1: Smart arrays with replication improve PGX’s
PageRank performance &memory bandwidth utilization by
more than 2× on a 2-socketmachinewith 8-core XeonCPUs.

1 INTRODUCTION
Early implementations of big-data analytics frameworks had a rep-
utation for being slow. Recurring issues included costly transfers
of data between disk and main memory, inefficient data representa-
tions during processing, and excessive garbage collection activity in
managed languages. Many of these issues have been addressed, e.g.,
keeping data in memory [41, 44, 65], and using compact data repre-
sentations with storage outside the garbage collected heap [40, 64].
A consequence of this progress is that analytics workloads are in-
creasingly limited by simple bottlenecks within the machine, e.g.,
saturating the rate at which data can be transferred from memory
into a CPU, saturating the interconnect between CPUs, or saturat-
ing a core’s functional units [4, 10, 25, 45].

The challenge in achieving further performance improvements is
to identify the bottleneck resources and use themmore productively.
In this paper, we introduce smart arrays as a way to tackle this
challenge. Different implementations, or smart functionalities, of the
same smart array interface provide different trade-offs between the
use of different resources. Selecting between these functionalities,
either manually or automatically, allows a given workload to be
mapped to hardware with different resource characteristics.

We showcase the real-world effect of a smart functionality in
Figure 1, where we evaluate a popular graph analytics algorithm,
PageRank, with PGX on a NUMA machine.1 The performance of
the original implementation is limited by the interconnect’s band-
width. The smart functionality of replicating smart arrays across
the sockets of the machine can fully exploit the memory bandwidth
of the sockets and localize accesses to memory to reduce pressure

1We introduce PGX and NUMA in §2, and describe the full experiments and machine
details in §5.

https://doi.org/10.1145/3190508.3190514
https://doi.org/10.1145/3190508.3190514
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Figure 2: Parallel array aggregationwith various smart func-
tionalities on a 2-socket machine with 18-core Xeon CPUs.

on the interconnect. This improves the overall performance by
more than 2×.

Our implementation of smart arrays supports additional smart
functionalities to express resource trade-offs: multiple data place-
ment options within a NUMA machine and bit compression of the
array’s contents. Figure 2 illustrates these smart functionalities for
a parallel summation of an array on a 2-socket NUMA machine.
When the array is placed on a single socket with accesses com-
ing from threads on both sockets (Figure 2a), the bottleneck is the
socket’s memory bandwidth. When the array is interleaved across
the machine’s sockets (Figure 2b), we use both sockets’ memory
bandwidth to decrease the execution time, and the bottleneck is the
interconnect. If the array is replicated across sockets using more
memory space (Figure 2c), we localize memory access and hence
remove the interconnect as a bottleneck to further decrease the
execution time. Finally, we can use memory bandwidth more pro-
ductively by compressing the array’s contents (Figure 2d) to pass
more elements through the same memory bandwidth, achieving
the best performance.

Moreover, our smart arrays provide language-independent ac-
cess to their contents and smart functionalities. Our prototype is
implemented in C++, but can be accessed from workloads written
in C++ or in Java. Even without exploiting the smart functionali-
ties, the performance achieved from Java workloads is competitive
with Java’s built-in array types. Figure 3 illustrates the performance
of a simple single-threaded workload. The top two bars show the
array aggregation implemented natively in C++ and Java using
their built-in array types. Then, we use arrays allocated in C++
and accessed via Java Native Interface (JNI) [30, 34] calls, using
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Figure 3: Single-threaded aggregation with C++, Java, Java
accessing the native arrays via JNI, unsafe, and smart arrays.

sun.misc.Unsafe [36], and using our smart arrays. JNI is interop-
erable, meaning that we would not need to re-implement our smart
functionalities for Java, but the performance is poor. Unsafe is fast
but would require us to re-implement our smart functionalities
in Java. Finally, our smart arrays are both fast and interoperable,
letting us make the different smart functionalities implemented in
C++ available to Java without re-implementation.

Contributions. Our main contributions are:
• Language interoperability. Smart arrays are implemented
once in C++ and can be used efficiently in multiple program-
ming languages, e.g., C++ and Java (see §3).
• Smart functionalities. Smart arrays support different trade-
offs between the use of hardware resources, e.g., different
NUMA-aware data placements and bit compression (see §4).
We experimentally show how these smart functionalities
can significantly decrease the memory space requirements
of analytics workloads, and improve their performance by
up to 4× (see §5).
• Adaptivity. Our analysis motivates the need for dynamically
adapting smart functionalities to the system and the work-
load. We show an algorithm for this (see §6).

Finally, we consider smart arrays as the first fundamental building
step towards general smart collections. We envision smart collec-
tions that are accessible through interfaces, such as arrays, sets,
maps, by multiple programming languages without needing re-
implementation, and their smart functionalities can be automati-
cally selected at runtime (see §7).

2 BACKGROUND
In this section, we give a brief overview of modern NUMA ma-
chines (see §2.1) and the frameworks that we use for our implemen-
tation: the Callisto run-time system we build upon (see §2.2), the
PGX graph analytics system used for our evaluation (see §2.3), and
the GraalVM compilation framework (see §2.4).

2.1 Modern NUMA Machines
Modern machines consist of interconnected sockets of multi-core
processors. Memory is decentralized, and attached to each socket
in a cache-coherent non-uniform memory access (ccNUMA) archi-
tecture [28, 44]. Figure 4 shows a typical machine with two sockets,
each containing an 8-core Xeon CPU with two hyper-threads per
core. Each core has a L1-I/D and L2 cache. Each CPU has a shared
L3 last-level cache. Each socket has four 32 GB DDR4 DIMMs, and
the two sockets are connected with Intel QuickPath Interconnect
(QPI) 16 GB/s links [23].
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Figure 4: A 2 socket machine using 8-core Xeon CPUs.
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Although NUMA topologies can vary, e.g., by the number of
sockets, processors, memory, and interconnects, there are a few
common fundamental performance characteristics [4, 45]: (i) remote
memory accesses are slower than local accesses, (ii) the bandwidth
to a socket’s memory and interconnect can be separately saturated,
and (iii) the bandwidth of an interconnect is often much lower than
a socket’s local memory bandwidth.

Performance-critical applications need to be NUMA-aware by
using OS facilities to control the placement of data and of threads [4,
45]. On Linux, the default data placement policy is to physically allo-
cate a virtual memory page on the socket on which the thread that
first touches it is running on (after raising a page-fault) [28]. Other
policies include explicitly pinning pages on sockets and interleaving
pages in a round-robin fashion across sockets (see Figure 2).

2.2 Callisto-RTS
The Callisto runtime system (RTS) [22] is a C++ runtime system
that supports parallel loops with dynamic distribution of loop itera-
tions between worker threads. This provides a similar programming
model to dynamically scheduled loops in OpenMP, with the differ-
ence that thework distribution techniques permit more fine-grained
scalable distribution of work, even on an 8-socket machine with
1024 hardware threads [22].

In this paper, we use a prototype of Callisto-RTS which includes
a basic Java library to express loops. The loop body is written as a
Java lambda function. Each such loop executes over a pool of Java
worker threads which make JNI calls from Java to C++ each time
the worker requires a new batch of loop iterations; the fast-path
distribution of work between threads occurs in C++, and the use of
JNI is designed to pass only scalar values, avoiding cases which are
typically costly with JNI.

2.3 PGX
PGX [38, 50] is a fast, parallel, in-memory graph analytics frame-
work written in Java. For this paper and our evaluation of smart
arrays, we use a prototype of PGX. The inner loops of graph an-
alytics algorithms such as PageRank are written in parallel loops
and scheduled using Callisto-RTS.

PGX serves as a main use-case for our work. In in-memory graph
analytics systems, main memory is typically a precious resource
given the large memory consumption of graphs. Further, the per-
formance of graph analytics queries is often limited by memory
bandwidth, motivating the need to optimize its use.

2.4 GraalVM
The Graal Virtual Machine (GraalVM) is an environment for com-
piling and running multi-language applications. It is a modified ver-
sion of the Java HotSpot VM [35] and reuses all its components in-
cluding the garbage collectors and the interpreter. However, it adds
Graal [12, 13, 52], a novel dynamic compiler implemented in Java,
and Truffle [61–63], a framework for building high-performance
language implementations (see Figure 5). A Truffle language im-
plementation is an interpreter, e.g., of an abstract syntax tree or
bytecode, that uses Graal to dynamically compile guest language
applications to optimized machine code.

Graal Compiler
Java HotSpot Runtime JNI & unsafe

Truffle
Sulong Truffle NFI

Java bytecode LLVM bitcode *.so

...

Figure 5: The GraalVM for multi-language applications.

The GraalVM consists of Truffle language implementations for
JavaScript, Python, R, and Ruby. Pertinent to our work in this paper,
GraalVM also includes Sulong, a Truffle implementation of LLVM
bitcode [47]. Sulong uses LLVM front ends such as clang [54], to
compile source languages, e.g., C/C++, to LLVM bitcode and inter-
prets it on the GraalVM.

GraalVM guest languages can use Truffle’s Native Function Inter-
face (NFI) to access native libraries. When Sulong uses NFI, it aligns
data allocations using the same layout as in executables produced
by static compilers such as GCC [17], so that the native function can
directly operate on allocations provided by Sulong as they match
the platform’s application binary interface.

The GraalVM features cross-language interoperability that en-
ables efficient interaction between code in different languages [20].
The compiler can optimize applications across language boundaries
without overhead. In this work, we show how to use the GraalVM to
create language-independent smart arrays and execute their smart
functionalities efficiently across languages.

3 LANGUAGE INTEROPERABILITY
We introduce smart arrays and explain our approach to language-
independent data structures. The motivating example of Figure 2
illustrates the main problems we address: different implementa-
tions of the same abstract data type can have significantly different
performance characteristics. There are trade-offs involving the con-
sumption of various hardware resources, e.g., memory bandwidth
and space. Programmers need to choose the specific implementa-
tion that fits the target hardware, workload, inputs, and system
activity. Moreover, different scenarios may require these trade-offs
to be made in different programming languages. Smart arrays aim
to solve these problems. In this section, we focus on how we sup-
port access to smart arrays from C++ and from Java. Then, we
turn to the implementation of smart functionalities that provide the
different trade-offs between hardware resources (see §4), perform
an experimental evaluation (see §5), present how to adaptively se-
lect smart functionalities (see §6), and finally discuss expanding to
additional smart collections and functionalities (see §7).

Figure 6 illustrates our overall approach: the underlying data
structure and trade-offs are implemented once in C++ (right-hand
side), and exposed to different languages via thin per-language
wrappers (left-hand side). In this section, we describe the underlying
implementation in C++ (see §3.1), and then the techniques we use
to make this available efficiently to Java (see §3.2).

3.1 Smart Arrays in C++
We implement the core functionality of smart arrays and their
smart functionalities in C++ within Callisto-RTS. This approach
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Figure 6: Access to a smart array.

provides a number of advantages: (i) in C++ we can control the
memory layout of the smart arrays by interfacing with the OS (e.g.,
by making system calls for NUMA-aware data placement), (ii) by
careful design of the Java-C++ interface, we can use GraalVM to
inline the C++ implementation into other languages and to optimize
it alongside user code, and (iii) by having a single implementation
we avoid re-implementing functionality for multiple languages
while still enabling multi-language workloads.

3.2 Exposing Smart Arrays to Java
Figure 7 shows conceptually how we expose the C++ implementa-
tion to Java. In addition, the figure depicts the three different ways
in which the native world of Callisto-RTS (see §2.2) interacts with
the managed world of Java.

The first interoperability path is central to the efficient interop-
erability between C++ smart arrays and Java. This is the fastest
interoperability path, and is made available by the GraalVM to
enable access to our smart arrays for any GraalVM guest language,
including Java. Through this path, we exploit the ability of the
GraalVM to optimize and compile the LLVM bitcode of our smart
functionalities together with the code of the guest language. More
specifically, we expose entry point functions to the unified API
of smart arrays (see §4.3). The entry points are compiled with
clang into LLVM bitcode. Sulong executes the bitcode on top of the
GraalVM (see §2.4). These entry points can be seamlessly used by
guest languages running on top of GraalVM.

For a more user-friendly experience, we provide a per-language
thin API layer that mirrors our unified API. This is shown in Figure 7
for the case of Java with a simplified example. The purpose is to
hide the GraalVM API and make accessing our entry points more
convenient. Note that no smart functionality is re-implemented in
Java. E.g., the SmartArray::get() function incorporates our C++
logic for potential replicas and bit decompression. The function is

Shared memory

Java HotSpot 
Runtime

GraalVM

Callisto-RTS

0 1 2 3
smart 
array Truffle

NFI

interoperability paths 1

JNI & 
unsafe

Loops & thread 
management librts.sorts

.jar

Java thin API for smart arrays
class SmartArray {
 long sa; // native pointer
 long get(idx) {
  return Truffle.execute(   
   Sulong.importSymbol(
    @smartArrayGet ),sa,idx);
 }

}

SmartArray.h
long SmartArray::get(idx) 

{ /* see Function 1 */ }

EntryPoints.cpp (as LLVM bitcode)
long smartArrayGet(sa, idx) { 
  return reinterpret_cast
  <SmartArray*>(sa)->get(idx);

}

2

3

Figure 7: Smart arrays in C++ exposed to Java.

exposed as an entry point that is compiled into LLVM bitcode and
finally executed by Sulong. The GraalVM executes the user’s Java
code, the Java thin API, including the smart array functionality (C++
code running with Sulong), and eventually dynamically optimizes
and compiles this multi-language application.

There are two additional interoperability paths that we use for
accessing preexisting components used by our smart arrays. The
second interoperability path is via JNI and unsafe methods. This
path exists for any Java application but JNI is slow for array accesses
and unsafe is not interoperable (see §1). We use this path to access
Callisto-RTS’s native functionality for parallel loop scheduling (see
§2.2). The third interoperability path is Truffle’s NFI. This is the
slowest path as NFI, similar to JNI, needs pre- and post-processing.
It is used to call into precompiled native libraries.

4 SMART FUNCTIONALITIES
In this section, we describe the smart functionalities our smart
arrays currently support: NUMA-aware data placement and bit
compression. We then describe our unified API for allocating and
accessing smart arrays.

4.1 NUMA-aware Data Placement
Smart arrays support various NUMA-aware placements that, as
we show in our experiments (see §5), need to be adapted to the
workload and system (see §6):
• OS default. For NUMA-agnostic applications, or applica-
tions that do not need to specify a data placement, we sup-
port the default OS data placement policy. Depending on
how the array is initialized, its physical location may vary
from one socket, e.g., if one thread initializes the array, to
random distribution across sockets, e.g., if multiple threads
initialize the array.
• Single socket. The array’s memory pages are physically
allocated on a specified socket. This placement can be bene-
ficial or detrimental depending on the relative bandwidths,
and maximum compute capability of the processors. In some
cases the speedup of the threads local to the data can out-
weigh the slow down of the remote threads.
• Interleaved. The array’s memory pages are physically allo-
cated across the sockets in a round-robin fashion. This can
be a good default option to distribute memory space and
local/remote memory accesses across sockets, but there can
be a bandwidth bottleneck on interconnects.
• Replicated. One replica placed on each socket. A concep-
tual example is shown in Figure 8a. This placement can be
the most performant solution for read-only or read-mostly
workloads, such as analytics, since each thread has fast local
accesses to an array’s replica, but replication comes at the
cost of a higher memory footprint and additional initializa-
tion time for replicas.

4.2 Bit Compression
Bit compression is a light-weight compression technique that is
popular for many analytics workloads such as column-store data-
base systems [43, 59]. Bit compression uses less than 64 bits for
storing integers that require fewer bits. By packing the required bits
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Figure 8: Examples of (a) a smart array replicated across
sockets, and (b) bit compressing a smart array with 33 bits.

consecutively across 64-bit words, bit compression can pack the
same number of integers into a smaller memory space than the one
required for storing the uncompressed 64-bit integers. Figure 8b
shows an example of compressing an array with two elements into
a bit-compressed array using 33 bits per element. The number of
bits used per element is the minimum number of bits required to
store the largest element in the array. In future we plan to explore
additional compression techniques and the ability to dynamically
select the correct technique (see §7).

The primary advantages of bit compression are that it decreases
the dataset’s memory space requirements, and increases the num-
ber of values per second that can be loaded through a given band-
width. The disadvantage is that it increases the CPU instruction
footprint since each processed element needs to be compressed
when initialized and be decompressed to 64 bits before the CPU
is able to work with it. The additional instructions may hurt per-
formance in comparison to using uncompressed elements (see §5).
This additional work can be hidden when iterating sequentially
over a bit-compressed array that has a memory bandwidth bot-
tleneck, resulting in faster performance for the compressed array
(see Figure 2 and §5). The performance improvement of these scan
operations comes from needing to transfer less data through the
same bandwidth-restricted memory channel.

Our implementation is based on logically chunking the elements
of a bit-compressed array into chunks of 64 numbers. This ensures
that the beginning of the first and the end of the last number of the
chunk are aligned to 64-bit words for all cases of bit compression
from 1 bit to 64 bits. As such, we can effortlessly execute the same
compression and decompression logic across chunks. For the sake of
simplicity, we focus on unsigned integers, but the concept and our
unified API (see §4.3) can be extended to support signed integers.

Function 1 shows the logic of the getter of a smart array com-
pressed with BITS number of bits. BITS is a C++ class template

Function 1 BitCompressedArray::get(index, replica)

1: chunk ← index / 64
2: wordsPerChunk ← BITS
3: chunkStart ← chunk * wordsPerChunk
4: bitInChunk ← (index % 64) * BITS
5: bitInWord ← bitInChunk % 64
6: word ← chunkStart + (bitInChunk / 64)
7: mask ← (1 << BITS) - 1
8: if bitInWord + BITS <= 64 then
9: return (replica[word] >> bitInWord) & mask

10: else
11: return ((replica[word] >> bitInWord) |

(replica[word+1] << (64-bitInWord))) & mask

Function 2 BitCompressedArray::init(index, value)

1: /* ... same as lines 2-8 of Function 1 ... */
2: word2 ← chunkStart + ((bitInChunk + BITS) / 64)
3: for replica = 0 to replicas do
4: data[replica][word] = (data[replica][word] &

˜(mask<<bitInWord))|(value<<bitInWord)
5: if word != word2 then
6: data[replica][word2] = (data[replica][word] &

˜(mask>>(64-bitInWord)))|(value>>(64-bitInWord))

parameter, so there are 64 classes (see §4.3) allowing much of the
arithmetic operations to be evaluated at compile time. The function
does preparatory work to find the correct chunk index (line 1), the
chunk’s starting word in the array (lines 2-3), the corresponding
chunk’s starting bit and word (lines 4-5), the requested index’s
starting word in the array (line 6), and the mask to be used for
extraction (line 7). If the requested element lies wholly in a 64-bit
word (line 8), it is extracted with a shift and a mask (line 9). If the
element lies between two words (line 10), its two parts are extracted
and are combined to return the element (line 11). Our functions
assume little-endian encoding, as used by Intel processors.

Function 2 shows the initialization logic. After the same prepara-
tory work as the getter, the function calculates whether the element
needs to be split across two words (line 2). The function initializes
the element for each replica if the array is replicated (line 3). If the
element wholly fits in the first word, its value is set (line 4). If it
spills over to the next word (line 5), its second part is set in the next
word (line 6).

A thread-safe variant of the function can be implemented using
atomic compare-and-swap instructions or using locks, e.g., one per
chunk. As we focus on read-only analytics workloads, we do not
introduce these synchronization overheads for array accesses in
our functions. In cases of concurrent read and write accesses the
user of the smart arrays needs to synchronize the accesses.

Function 3 BitCompressedArray::unpack(chunk,replica,out)

1: chunkStart ← chunk * wordsPerChunk
2: word ← chunkStart
3: value ← replica[word]
4: bitInWord ← 0
5: for i = 0 to 64 do
6: if bitInWord + BITS < 64 then
7: out[i] = (value >> bitInWord) & mask
8: bitInWord += BITS
9: else if bitInWord + BITS == 64 then

10: out[i] = (value >> bitInWord) & mask
11: bitInWord = 0
12: word++
13: value = replica[word]
14: else
15: nextWord = word + 1
16: nextWordValue = replica[nextWord]
17: out[i] = mask & ((value >> bitInWord) |

(nextWordValue << (64-bitInWord)))
18: bitInWord = (bitInWord + BITS) - 64
19: word = nextWord
20: value = nextWordValue
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Additionally, in order to optimize scans, which are significant
operations in analytics workloads, we support a function that can
unpack a whole chunk [43, 59]. Function 3 shows the unpack logic,
which condenses consecutive getter operations for a complete
chunk of a replica and outputs the 64 numbers of the chunk to
a given output buffer. After a similar preparatory work (lines 1-4)
as in Function 1, we start iterating over the chunk’s elements (line
5). For every element, we decide if it is wholly within the current
word (line 6). If it is, we output it (line 7) and continue to the next
element (line 8). If the current element also finishes the current
word (line 9), we again output it (line 10), reset the bit index in the
current word (line 11), and continue to the next word (lines 12-13).
If the current element crosses over to the next word (line 14), we
make up the element from its two parts across the words and output
it (lines 15-17), continuing on to the next element (lines 18-20). The
main loop of the function can be manually or automatically (by the
compiler) unrolled to avoid the branches and permit compile-time
derivation of the constants used.

4.3 Unified API
Figure 9 shows the smart arrays’ C++ classes and their API. The
SmartArray class is an abstract class holding the basic properties
that signify whether the smart array is replicated, interleaved or
pinned to a single socket (data placements cannot be combined),
and the number of bits with which it is bit compressed. If the
SmartArray is replicated, the replicas array holds a pointer
per socket. Each pointer points to the replica allocated on the cor-
responding socket. If replication is not enabled, there is a single
replica in the replicas array. The allocate() static function cre-
ates a new smart array using the concrete sub-classes depending
on the bit compression, and allocates the replica(s) considering
the given data placement parameters. The getReplica() function
returns the replica corresponding to the socket of the calling thread.
The remaining functions correspond to the pseudo code shown in
Functions 1-3.

The concrete sub-classes of SmartArray correspond to all cases
of bit compression with a number of bits 1-64, as explained in see
§4.2. We specialize the cases of bit compression with 32 and 64 bits
as they directly map to native integers. Consequently, they can
be implemented with simplified getter, initialization, and unpack
functions that do not require shifting and masking.

Iterator model. In addition to the random access API of the smart
array class, we create a forward iterator for efficient scans (shown in
Figure 9 as well). This makes it possible to hide replica selection and
the unpacking of the compressed elements. SmartArrayIterator
is an abstract class holding a pointer to the referenced smart array,
the target replica, and the current index of the iterator. A new iter-
ator can be created by calling the allocate() static function. The
allocate() function sets the target replica by calling the given
SmartArray’s getReplica() function to get the replica that corre-
sponds to the socket of the calling thread, and finally constructs
and returns one of the concrete sub-classes depending on the bit
compression of the underlying smart array. In C++ the iterator is
allocated slightly differently when compiled into LLVM bitcode
for use from GraalVM: we use Sulong’s API to allocate the itera-
tor transparently in GraalVM’s heap, to give GraalVM the chance

SmartArray

replicated : bool
interleaved : bool
pinned : int

::allocate(length, replicated, 
interleaved, pinned, bits)

bits : uint8
replicas : uint64**

.getReplica() : uint64*

.init(index, value) = 0

.get(index, replica) : uint64 = 0

.unpack(int chunk, replica, 
uint64* out) = 0

BitCompressedArray<BITS>

.init(index, value)

.get(index, replica) : uint64

.unpack(chunk, replica, out)

BitCompressed
Array<32>

.init(index, 
value)
.get(index, 
replica): uint64

BitCompressed
Array<64>

.init(index, 
value)
.get(index, 
replica): uint64

SmartArrayIterator

.array : SmartArray*

.replica : uint64*

.index : uint64

::allocate(array, index)
.reset(index)
.next() = 0
.get() : uint64 = 0

abstract abstract

Uncompressed64
Iterator

.data : uint64*

.next()

.get() : uint64

Uncompressed32
Iterator

.data : uint32*

.next()

.get() : uint64

CompressedIterator

.data[64] : uint64

.next()

.get() : uint64

.dataIndex : uint8

length : uint64

.getLength() : uint64

.getBits() : uint8

Figure 9: UML diagram of the smart array and iterator API.

to additionally optimize the allocation when compiling the user’s
code that uses our iterator API. The reset() function resets the
current index to what is given as the argument. The next() func-
tion moves to the next index. The get() function gets the element
corresponding to the current index.

The SmartArrayIterator has three concrete subclasses. Two
correspond to the uncompressed cases with 32 and 64 bits per
element, for which we have specialized versions using 32-bit and
64-bit integers directly. The third corresponds to all other cases
of bit compression. The CompressedIterator holds a buffer for
unpacking elements. When the next() function moves to the next
chunk, it calls the smart array’s unpack() function to fetch the
next 64 elements into the buffer. The get() function returns the
element from the buffer corresponding to the current index.

Java thin API. As explained in §3.2, we provide a thin API to
hide the GraalVM API calls to the entry points of our unified API.
Figure 6 shows a simplified example of our Java wrapper class for
the SmartArray. The wrapper class stores the pointer to the native
object of the SmartArray. The native pointer is given to the entry
point functions.

We provide entry points and wrapper classes only for the two
abstract classes of our unified API: SmartArray and SmartArray-
Iterator. Furthermore, the entry points and wrapper functions
have an additional version where the user can pass the number of
bits with which the smart array is bit-compressed. Depending on
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Function 4 aggregate() example in both C++ and Java
1: // C++
2: it = SmartArrayIterator::allocate(smartArray, 0);
3: for (long i=0; i < smartArray.getLength(); i++) {
4: sum += it->get();
5: it->next();
6: }

7: // Java
8: it = new SmartArrayIterator(smartArray, 0);
9: long bits = GraalVM.profile(smartArray.getBits());

10: for (long i=0; i < smartArray.getLength(); i++) {
11: sum += it.get(bits);
12: it.next(bits);
13: }

the number of bits, the entry point branches off and redirects to
the function of the correct sub-class, thus avoiding the overhead
of the virtual dispatch and dispensing us from the need to provide
separate entry points to the sub-classes. Moreover, GraalVM can
avoid the branching in the entry points by profiling the number of
bits during the interpreted runs and considering it as fixed during
optimization and when applying just-in-time compilation [61].

Example. Function 4 shows what the final experience looks like
for a programmer with a simple example of an aggregation of a
smart array in C++ and Java. The example uses an iterator since
the aggregation scans the smart array.

The C++ example uses the abstract SmartArrayIterator class, but
can immediately use a concrete sub-class depending on the number
of bits with which the smart array is bit-compressed in order to
avoid any virtual dispatch overhead.

The Java function is very similar to the C++ function. It is ex-
ecuted with the GraalVM. We use the versions of the thin API’s
functions that receive the number of bits. We explicitly profile the
number of bits to ensure that GraalVM considers the number of
bits fixed during compilation, and incorporate the final code of the
get() and next() functions of the concrete sub-class, avoiding any
virtual dispatch or branching overhead. E.g., if the smart array is bit-
compressed with 33 bits, the next() function unpacks every 64 ele-
ments immediately with the code of the BitCompressedArray<33>
::unpack() function. If the smart array is uncompressed with 64
bits, then the get() and next() functions are so simple that com-
piled code simply increases a pointer at every iteration of the loop
without needing to allocate anything for the iterator.

Our aggregation experiments (see §5.1) parallelize the example
running multiple instances of the single-threaded code through
Callisto-RTS’s parallel for (see §2.2). Each thread in Callisto-RTS
executes a batch of work represented as a range of array indices.
The index argument of the iterator’s contructor is used to initialize
the starting element of each thread’s batch, and then the iterator’s
index is incremented using next() inside the loop batch.

5 EXPERIMENTAL EVALUATION
First, we describe our experimental configuration. Then, we present
several experiments with simple aggregations that show various

aspects of our smart arrays (see §5.1). Finally, we experiment with
graph analytics workloads (see §5.2).

Experimental configuration. We use a prototype built on top of
Callisto-RTS for loop parallelism and scheduling, where we add
our smart arrays and expose our unified API for C++ and Java. By
default, threads used by Callisto-RTS are pinned and do not move
during execution. In all experiments, we use all available hardware
thread contexts.

For all experiments, we perform 5 warm-up iterations and we
ensure that Java code is compiled. Performance metrics are gath-
ered from Linux and hardware counters via Intel PCM [58]. Results
are averages of 10 iterations. Standard deviation is always <5%.
Measured time does not include initialization time, as it is not the
focus of this paper. Moreover, in many cases, e.g., in PGX, initial-
ization time can be hidden behind the data loading’s I/O bottleneck
(see §6). Table 1 shows the used machines’ characteristics. NUMA
performance characteristics, such as local and inter-socket laten-
cies and peak memory bandwidths, are measured with the Intel
MLC [56]. We disable Linux’s AutoNUMA [8, 49] page migration
facility, as we are interested in evaluating data placements (see §4.1)
separately and AutoNUMA requires several iterations to stabilize
its final data placement.

Table 1: Oracle X5-2 machines’ characteristics [39]. Note the
difference in the remote memory bandwidth between the
sockets of the machines.

Machine 2×8-core Xeon 2×18-core Xeon
CPU E5-2630v3 (Haswell) E5-2699v3 (Haswell)

Clock rate 2.4 GHz 2.3 GHz
Memory/socket 128 GB 192 GB

Local latency 77 ns 85 ns
Remote latency 130 ns 132 ns

Local B/W 49.3 GB/s 43.8 GB/s
Remote B/W 8 GB/s 26.8 GB/s

Total local B/W 98.6 GB/s 87.6 GB/s

5.1 Aggregations
The aggregation experiments are a custom benchmark implemented
both in C++ (compiled with GCC [17]) and in Java. The dataset con-
sists of two 4 GB arrays of 64-bit integers (∼500 million elements).
The workload is a parallel aggregation of the two arrays: sum +=
a1[i] + a2[i]. This workload is motivated by database analytics
workloads, as it can represent the summation of two columns, and
by the popular STREAM benchmark [32] that involves aggregat-
ing two arrays, to saturate memory bandwidth. The aggregation is
expressed as a parallel for with Callisto-RTS, each thread calculat-
ing a local sum and atomically incrementing a global sum variable
at the end of each loop batch. We evaluate different cases of bit
compression. For each case, the arrays are initialized with inte-
gers using the following formula: a[i] = (i+random(0,1,2)) &
((1<<bits)-1). This formula makes sure the integers are slightly
random and in the [0, 2bits ) range. Due to the single-thread initial-
ization, the “first-touch” OS default policy results in a single socket
placement. Figure 10 shows the results of the experiments.
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8-coremachine. Due to the linear scans, the hardware prefetchers
can saturate the memory bandwidth. We first focus on the 32-bit
and 64-bit cases. The single socket placement exploits the socket’s
memory bandwidth. The interleaved placement is worse, since the
limited memory bandwidth of the interconnect, which consists of
a single QPI, is lower than a socket’s bandwidth. The replicated
placement is the best, as it can exploit the memory bandwidth of
both sockets, reducing the time by 2×.

On this machine, bit compression is advantageous for interleaved
placements where the compression allows more data to be passed
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Figure 10: Aggregating two arrays with different cases of bit
compression (10, 31, 32, 33, 50, 63, 64), different data place-
ments (OS default / single socket, interleaved, replicated),
for C++ and Java, on the 8- and 18-core NUMAmachines.

through the low bandwidth QPI link. For the single socket and repli-
cated cases compression hurts performance because the processors
cannot saturate the sockets’ memory bandwidth any more due to
the additional CPU load needed for unpacking.

18-core machine. The are two main differences on this machine.
First, this machine has a much higher interconnect bandwidth as
it has 3 QPI links [24]. This renders interleaving better than the
single socket placement. Replication only slightly improves the
performance of interleaving.

The second difference is that the 18 cores benefit from compres-
sion for all memory placements despite the additional CPU load.
Bit compression performs as well as, or slightly better than, the
32-bit case, and much better than the typical 64-bit uncompressed
case. The reason is that a smaller volume of memory needs to be
passed through the same memory bandwidth, thus execution time
is reduced. Bit compression can reduce the time by up to 4× for the
default OS data placement, or by up to around 2× for the other data
placements, compared to the 64-bit uncompressed case. What is
more, at the same time it achieves to reduce the datasets’ memory
space requirements.

Language interoperability. An important achievement is that
the performance of the Java application is generally as good as that
of the C++ application. This means that we can practically use our
smart arrays efficiently across programming languages without
re-implementing the core smart functionalities. Naturally there
are still small performance differences between the C++ and Java
applications due to the different environments and compilers.

5.2 Graph Analytics Workloads
We use a prototype based on PGX (see §2.3). Graph data is stored
in compressed sparse row (CSR) format [37, 51]. Each vertex has
a 32-bit ID. A 32-bit edge array concatenates the neighborhood
lists of all vertices, i.e., their edges (forward edges in case of di-
rected graphs), using vertex IDs, in ascending order. Another 64-bit
array begin holds array indices which point to the beginning of
the neighborhood list of the vertices. Edges have 64-bit IDs. Two
other similar arrays redge and rbegin hold the reverse edges for
directed graphs. Additional arrays may be needed to store vertex
and edge properties, as well as for some analytics algorithms and
their output [50]. Arrays that may require more than Java’s 32-bit
maximum array length, including edges and their properties, are
stored off-heap [36, 37].

In the following graphs, the “original” data placement refers
to the algorithms using the initial on-heap and off-heap arrays,
without any smart arrays. The remaining data placements use our
smart arrays. We note that arrays are initialized in a multi-threaded
way, and thus the execution time of the original and OS default
placements varies between the execution time of the single socket
and the interleaved data placements.

Degree Centrality. The degree centrality algorithm sums up the
out- and in-degrees, i.e., the number of forward and reverse edges,
respectively, for each vertex. For each vertex, the algorithm sub-
tracts two consecutive values from the begin and rbegin arrays to
calculate the degrees [50], and stores the sum of the degrees in the
output array. We use a large custom graph of 1.5 billion vertices and
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3 random edges per vertex. This is a good case for our approach as
in the case of bit compression, 33 bits are required to encode edge
IDs. The results of our evaluation are shown in Figure 11.

The implications are similar to the aggregation experiments, as
the algorithm has also a highly streaming behaviour. On the 8-core
machine, replication outperforms other placements as it can exploit
the local memory bandwidth of both sockets. Note that the memory
bandwidth is not as saturated as in the aggregation experiments,
since the algorithm also writes intensively to the output array,
which we interleave across sockets in all experiments to ensure a
fair comparison. With replication, bit compression is slightly worse
than the uncompressed case, but provides a performance boost for
all other placements. On the 18-core machine, the implications are
also similar to the aggregation experiments. Interleaving is better
than the original, OS default, and single socket variations, while
replication gives a slight further improvement in performance. Bit
compression can still exploit the memory bandwidth sufficiently
and further improves performance.
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Figure 11: The degree centrality algorithm with different
cases of bit compression (“U”/uncompressed, 33 bits) and
data placements (original, OS default, single socket, inter-
leaved, replicated), on the 8- and 18-core NUMAmachines.

PageRank. Here, we evaluate a more complex and real-world
graph analytics algorithm: PageRank [50], which consists of several
iterations that calculate and refine the ranks of the vertices until
a convergence condition is satisfied. In an iteration, the algorithm
loops over the vertices. For each vertex, it loops over the reverse
edges to incorporate the neighbours’ ranks into the vertex’s rank.
The algorithm uses the rbegin and redge arrays, plus two addi-
tional vertex property 64-bit arrays: one for the ranks, represented
as double-precision floating point numbers, and one for the vertices’
out-degrees. By default, the vertex properties are allocated off-heap
and are interleaved. The data placement variations apply to all
arrays except for the output array, which is always interleaved.

We evaluate PageRank on a graph representing Twitter users
and their followers [27], consisting of around 42 million vertices
and 1.5 billion edges. PageRank is executed with a damping factor
of 0.85 and it converges when the sum of the rank differences
from the previous iteration is less than 10−3; it takes the algorithm
15 iterations to meet this requirement. The results are shown in
Figure 12 for different cases of bit compression. “U” signifies that
we use uncompressed 64-bit and 32-bit arrays as their bits were
originally. “V” signifies that we compress the begin and rbegin
arrays with the least number of bits required (31 bits), and the
out-degrees vertex property array with 22 bits. “V+E” signifies that
we additionally compress the edge and redge arrays with the least
number of bits required (26 bits).
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Figure 12: The PageRank algorithm with different cases of
bit compression & data placements on the NUMAmachines.

The implications are similar to previous experiments. On the
8-core machine, the single socket bandwidth is higher than the
bandwidth of the original, OS default, and interleaved data place-
ments, which are constrained by the limited interconnect band-
width, while on the 18-core machine the interconnect does not
limit the achieved bandwidth substantially. As far as replication
is concerned, on the 8-core machine it can improve performance
by up to 2× compared to the other data placements, while on the
18-core machine it is marginally better than the other data place-
ments. Bit compressing the vertex and vertex property arrays does
not have a significant impact on performance, as shown by the
measured time and instructions, because PageRank is dominated
by the loop over the edges, which accounts for the majority of
the runtime and accesses. Thus, we see the real effect of bit com-
pression when we further bit compress the edges. Bit compressing
the edges significantly increases the CPU load and generally in-
creases the runtime on the 8-core machine. On the 18-core machine
the impact on time can be minimal, e.g., with replicated arrays.
Bit compression does not improve performance since the memory
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bandwidth bottleneck cannot hide the increased CPU load for de-
compression. By calculating the memory space using the formula:
2·bitsedдes ·V + 2·bitsver t ices ·E + bitsdeдr ees ·V + 64·V , where we
capture the sizes of begin, rbegin, edge, redge, and the vertex
property arrays for out-degrees and ranks, we can calculate that
variation “V+E” reduces memory space requirements by around
21% over the uncompressed case.

6 ADAPTIVITY
As we observe in the experimental evaluation, depending on the
machine, the algorithm, and the input data, the cost, benefit, and
availability of the optimizations can vary. For example in the ag-
gregation experiments (see §5.1), for some workloads and data
placements on the 18-core machine, there is enough spare compute
to benefit from bit compression while on the 8-core machine there
is not. Table 2 describes the trade-offs we are seeking to balance.

In this section, we describe and evaluate our approach towards
automating the decision about which configuration to use. We
show that for our current test set we succeeded in picking the best
configuration in 94% of cases, we are within 0.2% of the optimum
configuration on average, and we are 11.7% better than the best
statically chosen configuration.

To develop this technique we followed the approach we used in
Pandia [18], where from a small number of workloadmeasurements,
the different configurations’ resource needs can be predicted, and
select the best configuration for each scenario.

The selection is based on three inputs. First, a specification of
the machine containing the size of the system memory, the maxi-
mum bandwidth between components and the maximum compute
available on each core. Second, a specification of performance char-
acteristics of the arrays such as the costs of accessing a compressed
data item. This is derived from performance counters and is specific
to the array and the machine, but not the workload. Finally, infor-
mation collected from hardware performance counters describing
the memory, bandwidth, and processor utilization of the workload.
We collect the latter information from previous runs from repeated
invocation of the same workload, or from previous iterations of an

Table 2: Trade-offs of smart functionalities.

Technique Advantages Disadvantages

Bit Compre-
ssion

• Smaller memory footprint.
• Less memory bandwidth.

• Extra CPU load per access.

Replication
• Less interconnect traffic.
• Spreads load evenly across
• all memory channels.

•More memory footprint.
• Time initializing replicas.
• Only for read-only data.

Interleaved

• Effective use of bidirect-
• ional interconnect.
• Load on memory approxi-
• mately equal across banks.

•May leave memory band-
• width unused as threads
• stall on interconnect
• transfers.

Single
socket

• Increase in speed on the
• local socket can outweigh
• the loss of performance
• elsewhere.

• Only advantageous if the
• memory bandwidth is
• much higher than the
• interconnect bandwidth.

iterative workload, e.g., PageRank iterating to convergence. Alter-
natively, one could collect workload information from early batches
of a loop over the array, and restructure the array on the fly.

The configuration selection is broken into 2 steps. First, we
use the decision diagrams of Figure 13 to select a candidate for
uncompressed data placement and, if possible, for compressed data
placement (see §6.1). Then, we use analytics based on ideas explored
in Pandia [18] to determine which candidates to use (see §6.2).

The configuration used when collecting the initial workload in-
formation is flexible. Here, we use an uncompressed interleaved
placement with an equal number of threads on each core. Interleav-
ing both provides symmetry in the execution, and as the intercon-
nect links on many processors are independent in each direction,
the bandwidth available to perform the restructuring of the mem-
ory is effectively doubled, so reducing the time to change data
placement if restructuring on the fly is implemented.

6.1 Step 1: Select Placement Candidates
To select the placements we use the flow diagrams shown in Fig-
ure 13. The key difference between the two decision diagrams is
the use of compression. Choosing a placement for compression re-
quires some of the tests to be moved forward in order to determine
if compression is possible before considering which data placement
to use. For example, every access requires a number of words to be
loaded, making random accesses more expensive than with uncom-
pressed data. While most of the elements in the decision diagram
are self-explanatory, we will consider some of them before looking
at how to decide between the two candidates. Decisions are split
into two categories, “software characteristics”, that are based on
information provided by the programmer such as numbers of itera-
tions or if the accesses are read-only, and “runtime characteristics”
which are based on measurements of the workload.

Space for replication. Replicating arrays, or single socket alloca-
tion, requires enough memory on each socket. There are versions
of this test for both the compressed and uncompressed data as com-
pression can make replication possible where uncompressed data
would not fit otherwise.

Multiple accesses per element. There is a time cost to initialize
replicated data and sufficient accesses are required to amortize this
cost. The bounds for this are machine-specific and vary depending
on whether the accesses are random or linear. In certain cases, e.g.,
in PGX or databases, the initialization cost can be hidden behind
the data loading’s I/O bottleneck [19, 25].

Significant random accesses. If a loop contains many random
accesses, then the additional latency cost may affect the point at
which replication is worthwhile. This is a machine-specific bound.

All local speedup > all remote slowdown. For some workloads
on some architectures, it is better to keep all data on a single socket.
This strategy works when the ratio between remote and local access
bandwidth is very high. In this case, the speedup for some threads
performing only local accesses may outweigh the slowdown of the
threads performing remote accesses. To determine if this is the case
on a two-socket machine, we perform the following calculations:
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Figure 13: Flow diagrams to select configuration candidates.

First, we calculate how quickly a socket could compute if re-
lieved of any memory limitations. We use the notion of execution
rate (exec) to represent the instructions executed per time unit. Fre-
quency scaling makes instructions per cycle (IPC) an inappropriate
metric. We define:

improvementexec = execmax/execcurrent

Second, we use the used and available bandwidth (bw) between
sockets and to main memory to calculate how fast the local socket
could compute with all local accesses assuming that the remote
socket is saturating the interconnect link. To account for band-
width lost due to latency, the bandwidth values taken from the
machine description are scaled to the maximum bandwidth used
by the workload during measurement. For example, if we achieved
90% utilization of the link that is a bottleneck, the maximum perfor-
mance of all links are scaled to 90% to reflect the maximum possible
utilization. We define:

improvementbw =
bwmax memory − bwmax interconnect

bwcurrent memory

We take the minimum of these two improvements as the maximum
speedup of the local socket, speeduplocal.

Finally, we calculate the maximum speedup of the remote socket
with all remote accesses. We would expect this value to be less than
1, indicating a slowdown.

speedupremote = bwmax interconnect/bwcurrent memory

If the average of the local and remote speedup is greater than 1,
then having the data on a single socket it beneficial.

6.2 Step 2: Whether to Use Bit Compression
After selecting our placement candidates in see §6.1, the first step in
deciding whether to use the candidate with compression or the can-
didate without, is to add to the profile of the compression candidate
the additional compute that is required to perform the compres-
sion. In addition to the current compute rate, we need to know the
number of accesses per second (#accesses), and the cost per access
resulting from the extra CPU load that need to be executed (cost).
The cost of decompression varies with the compression ratio, since
the number of values that can be extracted per instruction changes.

execcompressed = execcurrent + #accesses · cost

The reduction in bandwidth is calculated in a similar fashion, us-
ing the compression ratio (r) (0 . . . 1] of the compressed and the
uncompressed size of the elements (elemsize).

bwcompressed = bwcurrent memory − #accesses · (1 − r) · elemsize

Using these computed values for the compressed case and the mea-
sured values for the uncompressed case, we estimate each place-
ment’s speedup. For each placement, we compute the ratio of the
maximum compute rate relative to the current rate. This way, we
obtain each candidate’s speedup if the workload is not memory-
bound. Next, for each socket we compute the ratio of the maximum
memory bandwidth for each candidate placement relative to the
current bandwidth. This gives the socket speedup assuming the
workload is not compute-bound. Finally, for each socket, we take
the minimum of their two ratios as the socket’s estimated speedup
and average these for the configurations’ estimated speedup. We
then choose the configuration predicted to be the fastest.

6.3 Evaluation
We evaluate our adaptivity for the aggregation and degree centrality
experiments (see §5). We evaluate the two steps separately before
looking at overall accuracy. With step 1, we follow the decision
diagram for every bit count, benchmark, and hardware combina-
tion to determine that both the compressed and uncompressed data
placements are correct. We also do this under the assumption that
there is insufficient memory for uncompressed replication and fi-
nally assuming insufficient memory for the compressed replication.
The correct placements were chosen in 62 of the 64 cases. The
two failures were for 10 bit aggregations with compression in Java.
These were slightly faster with interleaving than with replication.

For the second step, for every placement, benchmark, bit count,
and hardware combination we evaluate if compression should be
used. This results in 96 combinations. The selection was correct
in 86 of the combinations. When an incorrect decision was made,
the average performance was 4.8% worse than the best choice, the
median performance was 1.6% worse, and overall the performance
was 6.4% better than the best static configuration.
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Finally comparing the complete process the correct placement
was chosen 30 times out of 32. The average performance of the
selected configuration for each benchmark and hardware configu-
ration pairing was 0.2% worse than the optimal configuration for
that pairing, and 11.7% better than the best static configuration.
Fixing the configuration on a per machine basis matches the adap-
tivity choice on the 8-core machine, but on the 18-core machine
the adaptive choice is 1% better than a static choice.

Limitations. The first limitation of our adaptivity is that hardware
is complex and the counters only provide an overview of the sys-
tem state. For most workloads the metrics are acceptable, but it is
possible to construct a workload that concentrates on less well pro-
visioned instructions such as square root. Such workloads would
appear to have lots of spare CPU so would speed up from extra
bandwidth, but in reality would quickly hit the CPU limit. Further-
more, we only take into account latency by preferentially picking
the lowest latency data placement. However if the workload is not
only limited by bandwidth, but by the round trip time for memory
access, we may not get the expected speedup. Finally, our adaptivity
is not yet extended to multiple smart arrays, such as those used
in our PageRank experiments. Despite these limitations, because
hardware is designed to work well in the general case and because
we are looking for the best configuration, not a prediction of how
good that configuration is, we believe the metrics presented here
can be effective.

7 EXTENDING TO SMART COLLECTIONS
Smart arrays are the first step towards more general smart collec-
tions with various adaptive smart functionalities, that are acces-
sible through simple interfaces, such as arrays, sets, or maps by
multiple programming languages without re-implementation. Our
envisioned smart collections are depicted in Figure 14. The figure is
a superset of the smart arrays depicted in Figure 6, as smart collec-
tions are an extension of the capabilities already demonstrated with
smart arrays in this paper. In the rest of this section, we describe
how each capability of the smart arrays will be extended to support
smart collections.

Language interoperability. Similar to smart arrays, smart collec-
tions are implemented once in C++ and are accessible via Sulong by
the GraalVM’s guest languages such as C++, Java, R, JavaScript etc.
To support each additional language, a per-language thin interface
is needed, similar to our implemented thin interface for Java (see
Figure 7), to connect to the entry points of the unified API.

Collections. Smart collections include sets, bags, and maps. For
each smart collection, there is a simple interface to access it in the
unified API. For example, a map has an interface to access the keys
and a key’s associated values. A smart collection can have different
data layout implementations.

Similar to smart functionalities, different data layouts support
different trade-offs between the use of hardware resources and
performance. For example, we can readily use smart arrays to im-
plement data layouts for sets, bags, and maps, by encoding binary
trees into arrays, where accessing individual elements can require
up to log2 n non-local accesses (where n is the size of the collection).
To trade size against performance we can use hashing instead of
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Figure 14: Smart collections.

trees to index the smart arrays. This provides O(1) access times on
average and data locality on hash collisions [9, 11].

Smart functionalities.We plan to explore more smart function-
alities in addition to NUMA-aware data placement and bit com-
pression. In the context of NUMA machines, we plan to support
randomization, a fine-grained index-remapping of a collection’s
elements’. This kind of permutation ensures that “hot” nearby data
items are mapped to storage on different locations served by dif-
ferent memory channels, thus reducing hot-spots in the memory
systems if one memory channel becomes saturated before others.

We also intend to extend data placement techniques with parti-
tioning data across the available threads based on domain specific
knowledge, similar to [25, 45]. Moreover, we can investigate alterna-
tive compression techniques that can achieve higher compression
rates on different categories of data [9], such as dictionary encoding,
run-length encoding, etc. Furthermore, we can add synchronization
support to smart collections in order to support both read and write
concurrent workloads.

Alternative unified API. In the case of bit compression, the iter-
ator API has to test whether a new chunk needs unpacking. This
generates a large number of branch stalls, which are not evaluated
speculatively and increase CPU load (see §5). We plan an alternative
unified API for languages that support user-defined lambdas. This
API will provide a bounded map() interface accepting a lambda
and a range to apply it over. In comparison to the iterator API, the
map interface can further improve performance as it does not stall
on the branches because it is able to remove many of them, and to
speculatively execute the lambda in the remaining cases.

Adaptivity. Our adaptivity mechanism will be extended to enable
a more dynamic adaptation between alternative implementations
at runtime, e.g., by considering the changes in the system load as
other workloads start and finish, or the changes in utilization of
main memory. It will re-apply its adaptivity workflow to select a
potentially new set of smart functionalities and data layouts for
multiple smart collections. This process can consider the concurrent
workloads of all supported languages on each smart collection.

8 RELATEDWORK

Cross-language interoperability. For Java, the most prominent
Foreign Function Interfaces (FFIs) are JNI [30], Native Access [55],
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or Compiled Native Interface[16]. To ease integration of native code
in Java, some code generators [2, 46] use annotations to generate
FFI code from C/C++ so that programmers avoid writing this code.
However, classic FFI approaches define a specific interface between
only two languages. With GraalVM, we support transparent and
efficient interoperability across all of its supported languages.

Furthermore FFIs often treat the native code as a black box in-
troducing a compilation barrier that can hurt performance. To
overcome this, Stepanian et al. [53] inline native functions in Java
using a just-in-time compiler, which substantially reduces the over-
head of JNI calls. Loading native code into the GraalVM via Sulong
removes this compilation boundary [20, 21], so the compiler can
inline the complete application including our Java thin API and
smart functionalities.

NUMA replication and placement. Optimizations to data place-
ment, including replication, have been proposed to increase cache
and NUMA locality, or optimize the use of interconnects. Calciu et
al. [6] propose a way to turn regular data structures into concurrent
NUMA data structures with per-node replication. Their main focus
is providing linearizable and fast concurrent access. For graphs,
Wei et al. [57] improve cache locality by storing vertices that will
be frequently accessed close to each other. Dashti et al. [10] use
a combination of page co-location, interleaving, replication and
thread clustering to avoid interconnect bandwidth saturation. We
similarly support replication, but without requiring modifications
to the OS. Lepers et al. [29] optimize placement on asymmetric
NUMA architectures. AutoNUMA [8, 49] tries to run threads close
to memory pages they access, by moving threads and migrating
pages, but does not provide replication.

Bit compression and approximation. In-memory databases are
known to use bit compression similar to ours, combined with
dictionary encoding. Wilhalm et al. [59, 60] use SIMD for fast
scanning of bit-compressed tables in SAP HANA. Polychroniou
et al. [42, 43] show how to use SIMD to efficiently interleave bits
of bit-compressed data to speed up selection scans. SIMD can be
applied to our bit compression as well, however, previous related
work is not straightforward to apply efficiently as their focus is on
values smaller than 32 bits. Other compression schemes are feasi-
ble as well, e.g., to drop some least-significant bits in applications
where full precision for floats is not needed. This has been done at
the cache level to reduce the physical size of data caches [33].

Compression of large graphs. Boldi et al. [5] propose compres-
sion algorithms for large Web graphs. Khandelwal et al. [26] pro-
pose ZipG, a distributed, memory-efficient graph store capable of
executing queries directly on a compressed representation of the
graph. Maass et al.[31] propose Mosaic, a graph-processing en-
gine that uses a space-efficient representation, Hilbert-ordered tiles,
which has a good compression ratio while avoiding the overhead
of decoding edge sets at runtime. Such graph-specific compression
techniques use domain-specific knowledge and can be typically
combined with the generic bit compression.

Adaptivity and self-tuning. Kaestle et al. [25] optimize data place-
ment and selectively enable replication at compile-time, based on
annotations or static code analysis. In contrast, our adaptivity uses

runtime profiling and avoids overheads from replication if the work-
load does not benefit from it. Psaroudakis et al. [44, 45] adaptively
move or repartition database tables, and selectively enable task
stealing, but do not consider replication. Eastep et al. use machine
learning to pick implementations for algorithms [14], and adapt
lock algorithms at runtime [15]. We focus on adapting data, e.g.,
their placement and compression, at runtime.

PetaBricks [1] propose a programming language whose com-
piler automatically picks algorithms, parallelization techniques
and data distributions. Our approach does not require a specific
programming language. Self-tuning configuration parameters of
databases [7] and frameworks such as Hadoop [3, 48] have also
been proposed. Nevertheless, self-tuning work focuses on indexes,
query optimization and execution rather than on NUMA-aware
data placements.

9 CONCLUSIONS
In the era of big data, analytics workloads need to identify the
hardware resource bottlenecks in modern machines and use the
trade-offs between the hardware resources more productively. We
introduce smart arrays as a novel language-independent abstrac-
tion that adaptively enables various smart functionalities to toggle
the trade-offs between the use of hardware resources. Smart arrays
are implemented once in C++ and are accessible by both C++ and
compiled Java code efficiently. We implement smart functionalities
for NUMA-aware data placement and bit compression of the smart
arrays. We experimentally evaluate smart arrays with various ana-
lytics workloads, including real-world graph analytics workloads.
We observe that smart arrays can significantly decrease the mem-
ory space requirements of analytics workloads, and improve their
performance by up to 4×. Finally, smart arrays are the first step
towards our envisioned general smart collections that are accessi-
ble through simple interfaces by multiple programming languages
without re-implementation, and their smart functionalities can be
adapted at runtime.
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