
Reviewers: Please see the “Note to Reviewers” on page 14.

Toward a More Carefully Specified Metanotation

author information omitted
for double-blind reviewing

omitted.email.address@nodomain

Abstract
POPL is known for, among other things, papers that present formal
descriptions and rigorous analyses of programming languages. But
an important language has been neglected: the metanotation of
inference rules and BNF that has been used in over 40% of all
POPL papers to describe all the other programming languages. This
metanotation is not completely described in any one place; rather, it
is a folk language that has grown over the years, as paper after paper
tries out variations and extensions. We believe that it is high time
that the tools of the POPL trade be applied to the tools themselves.

Examination of many POPL papers suggests that as the meta-
notation has grown, it has diversified to the point that problems are
surfacing: different notations are in use for the same operation (sub-
stitution); the same notation is in use for different operations; and
in some cases, notations for repetition are ambiguous, or require the
reader to apply knowledge of semantics to interpret the syntax. All
three problems present substantial potential for confusion. No indi-
vidual paper is at fault; rather, this is the natural result of language
growth in a community, producing incompatible dialects.

We back these claims by presenting statistics from a survey of
all past POPL papers, 1973–2016, and examples drawn from those
papers. We propose a set of design principles for metanotation,
and then propose a specific version of the metanotation that can be
always interpreted in a purely formal, syntactic manner and yet is
reasonably compatible with past use. Our goal is to lay a foundation
for complete formalization and mechanization of the metanotation.

Categories and Subject Descriptors D.3.1 [Formal Definitions
and Theory]: Syntax; F.3.1 [Specifying and Verifying and Reason-
ing about Programs]: Assertions; F.4.3 [Formal Languages]

Keywords assertion, BNF, context-free grammar, ellipses, infer-
ence rule, judgment, macro, macro expansion, metanotation, nested
repetition, overline notation, repetition, substitution, template

1. Introduction
What is the most popular programming language at POPL? Not C,
nor Java, nor even Haskell, but the “POPL metanotation” consisting
of inference rules plus the data description language BNF—and,
make no mistake, this metanotation is indeed a programming lan-
guage, or could be, if properly formalized and mechanized. But it
is not completely described in any one place; rather, it is a folk lan-
guage that has grown over the years, as one paper after another tries

[Copyright notice will appear here once ’preprint’ option is removed.]

out small variations and extensions. Each paper largely assumes
metanotational conventions established by past papers as custom-
ary and explicitly describes only a few features of specific interest.

But after four decades of this, we now face three problems:
(1) So far, 27 different notations for substitution have been used in

POPL papers, and 14 of them are still in current use.
(2) Many of those same notations are also used for other purposes.
(3) In some cases, repetition notation is ambiguous, or requires the

reader to apply knowledge of semantics to interpret the syntax.
All three problems present substantial potential for confusion.

In this paper, we back these claims by presenting summary and
detailed statistics from a survey of all past POPL papers. We also
present and explain examples drawn from those papers. We propose
a set of design principles for metanotation, and then propose a
specific version of the metanotation that can be interpreted in a
purely formal, syntactic manner and yet is reasonably compatible
with past use (and where it cannot be compatible, we explain why).

In §2, we present the results of our survey. In §3, we analyze the
data and discuss difficulties with the metanotation, with examples
drawn from past POPL papers. In §4, we present design principles
for metanotation and novel extensions to the existing metanotation
intended to address the observed difficulties. In §5, we present a
careful specification of a complete metanotation and a formal ex-
planation of how to expand it. In §6, we present examples of the use
of this extended metanotation. In §7, we present recommendations
to future authors of POPL papers and suggest future work.

The specific novel contributions of this paper are:
(1) A survey of the use of inference rules, substitution notations,

and repetition notations in POPL papers, 1973–2016.
(2) A careful specification and formal interpretation of a complete

metanotation that includes inference rules, BNF, substitution
notation, and repetition notations, including:
(a) certain common uses of ellipses to indicate repetition, and
(b) the widely used overline notation that indicates repetition.

(3) Use of underlines in the overline notation to suppress indices.
(4) Use of harpoons as overlines to indicate repetition without

separating punctuation and to notate certain kinds of recursive
expression heretofore expressible only by using two ellipses.

2. Survey of POPL Papers
We examined manually (well, ocularly) every page of every paper
of every past POPL, 1973–2016 (there was no POPL conference in
1974, so that is 43 volumes). There were 1,401 papers, a total of
17,160 pages. We examined a paper copy of each volume, working
in chronological order; when we identified a paper of interest then
we pulled it up onto a screen from the ACM Digital Library so that
we could search the text for such words as “substitution” (actually,
“subst”). While the OCR is good (and gets better over time), it
does not always distiguish certain pairs of symbols such as→ and
7→, and it does not capture at all the horizontal lines that indicate
inference rules and repetition notation. Fortunately such horizontal
lines are easy to spot even when flipping through pages quickly.

For submission to 2017 ACM POPL 1 2016/6/30

e v
x

1 [P77A] e[v/x] 133 [P79D]–[P16Y] e(v/x) 1 [P78B]
[v/x]e 67 [P77B]–[P16S] e[v/x] 6 [P96O]–[P07I] e{v/x} 25 [P90A]–[P16W]
[v/x]e 1 [P97G] e[v/x] 2 [P13J]–[P15L] e{v/x} 5 [P01G]–[P16V]

[x := v]e 2 [P09F]–[P10S] e[v\x] 1 [P14T] e{v/x} 4 [P03D]–[P16L]
[x 7→ v]e 9 [P94M]–[P16B] e[x/v] 5 [P89C]–[P15Y] e{x← v} 4 [P88D]–[P95D]
[x→ v]e 1 [P08A] e[x := v] 21 [P88G]–[P16B] e{x 7→ v} 1 [P02B]

[[v/x]]e 2 [P08V]–[P12Y] e[x← v] 7 [P89E]–[P11F] e{x→ v} 1 [P02K]
{v/x}e 6 [P86D]–[P15P] e[x 7→ v] 12 [P94D]–[P15S] e{|v/x|} 2 [P98R]–[P99G]

{x 7→ v}e 4 [P95B]–[P16Q] e[x→ v] 2 [P12Σ]–[P15Θ] e{{x← v}} 1 [P04G]
Table 1. Twenty-seven substitution notations and the number of POPL papers in which they were observed, also citing the earliest and latest.
Prefix notations are shown right-justified, and postfix notations are shown left-justified. Eight different notations were used in 2016 alone.

At first we tried to identify every paper that used either inference
rules, repetition notation, or substitution notation. By about 1982 it
became clear that most papers using either repetition or substitution
notation also contained inference rules, so from that point on, with
only one or two exceptions that happend to catch our eye, we exam-
ined carefully only papers that contained at least one inference rule.
During such careful examination, we scanned the entire paper, not
just the inference rules themselves, to try to find uses of repetition
notation or substitution notation. By “repetition notation” we mean
either the use of an ellipsis, such as “x1, . . . , xn”, or the use of an
iterator notation, such as “{xi}i∈1..n”, or the use of an overbar or
overarrow or other such symbol to indicate either (1) repetition of
a symbol or syntax fragment, or (2) a vector of elements of which
only one representative is shown. Example of this last category are
x, −→x , x̃, and e[v/x]. By “substitution notation” we mean an ex-
plicit three-argument notation such as [v/x]e (not merely an appli-
cation such as σe of a substitution denoted by σ to an expression e)
that is intended to represent the standard capture-free substitution
of (a copy of) v (or, more typically, an expression denoted by the
metavariable v) for every free occurrence of a variable x (or a vari-
able denoted by the metavariable x) within the expression e (or an
expression denoted by the metavariable e).

Of the 1,401 papers, we identified 609 for careful examination.
For each paper, we recorded an actual example of the substitution
notation used (if any) as well as a schematic template using the
three variables v, x, and e so that the specific symbols used in
the notation could be easily identified. We also recorded whether
inference rules were used (because of our sampling bias, nearly
all did, but we wanted to have an accurate count of how many
papers out of the 1,401 use inference rules), and whether and how
those inference rules were labeled. We recorded whether ellipses,
iterators, and/or over-symbols were used to indicate repetition;
for over-symbol notation, we recorded the precise symbol used,
whether explicit index variables and/or iterators were used as part
of the over-symbols notation, whether the over-symbol was used
only over single symbols or over larger syntax fragments, and
whether the over-symbols were ever stacked or nested.

We recorded these details in a BIBTEX database, and then used
a custom bst file to generate various distillations of the data, some
of which were then pulled into a spreadsheet for further analysis.
The data presentations in Tables 1, 2, and 3 were generated semi-
automatically form this database (additional TEX commands were
hand-inserted for formatting purposes).

For purposes of graphing the data, we divide time into lustra
(five-year intervals), working backward from the present, produc-
ing nine bins of five conferences each, except that the first bin has
just the first POPL three conferences (1973, 1975, and 1976).

2.1 Notations for Substitution
We found that (at least) 27 distinct notations for three-argument
substitution have been used at POPL; these are summarized in
Table 1. We found substitution notation in 327 of the 609 papers we

No use of inference rules
Inference rules, no use of substitution notation
Inference rules, prefix substitution notation
Inference rules, postfix substitution notation

N
um

be
r o

f p
ap

er
s

0

50

100

150

200

250

1973,
1975,
1976

1977
to

1981

1982
to

1986

1987
to

1991

1992
to

1996

1997
to

2001

2002
to

2006

2007
to

2011

2012
to

2016

Substitution notations in POPL papers (five-year intervals)

Figure 1. Substitution notations in POPL papers, 1973–2016

examined closely; of these, 4 [P08V, P09E, P12Y, P16B] used two
different kinds of substitution notation, so we have a total of 331
data points. All 331 data points are listed in Table 2; each paragraph
is one year’s worth of data.

With the exception of the very earliest one, namely e v
x

, all these
notations can be characterized along five axes: (a) are they prefix
(v and x occur to the left of e) or postfix (v and x occur to the
right e)? (b) What symbols enclose v and x? (c) What symbol(s)
separate v from x? (d) Does v occur to the left of x, or to the right
of x? (e) Are v and/or x on the baseline, or are one or both raised
or lowered? Not all possible combinations occur.

By far the most commonly used notation is e[v/x] (postfix,
brackets, slash, v before x, baseline): 133 out of 331. The second
most common notation is [v/x]e (prefix, brackets, slash, v before
x, baseline): 67 out of 331. Two others, e{v/x} and e[x := v],
were used more than 20 times each. Each of the 23 other notations
observed was used in fewer than 10 papers.

Figure 1 shows the usage of inference rules and substitution
notation in POPL papers within each lustrum, and furthermore
breaks down usage of prefix and postfix notations. Observations:
(1) At first only a small percentage of papers presented inference
rules, but their use increased sharply after 1986, and over the last 20
years roughly 60% of POPL papers in each lustrum have presented
inference rules. (2) Of papers that present inference rules, over
half also use substitution notation. (3) Early on, prefix and postfix
notations were used with roughly equal frequency, but after 1986
the relative percentage of postfix notations climbed sharply.

Figure 2 shows the breakdown of enclosers within the 331 data
points for papers that use substitution notation. Plain brackets []
have always been the most commonly used encloser symbols, and

For submission to 2017 ACM POPL 2 2016/6/30

Each of these notations is intended to represent the result of capture-free substitution of v for all
occurrences of the variable x within expression e. Twenty-seven different styles of notation are presented
in this table. Each example is followed by a bibliographic citation (see the list of references); 327
papers are cited out of 1,401 papers that appeared in POPL from 1973 through 2016, and 4 of them

[P08V, P09E, P12Y, P16B] each used two different notations. Papers using substitution
notation were not found in years 1973, 1975, 1976, 1980, 1981, or 1984. We may have
missed a few; we focused primarily on papers that also use inference rule notation.

e v
x

[P77A], [v/x]e [P77B]
e(v/x) [P78B]
[v/x]e [P79B], e[v/x] [P79D]
[v/x]e [P82A]
e[v/x] [P83B], e[v/x] [P83C]
[v/x]e [P85B], [v/x]e [P85D], e[v/x] [P85E]
{v/x}e [P86D], e[v/x] [P86E]
[v/x]e [P87G]
[v/x]e [P88A], e[v/x] [P88B], e{x← v} [P88D], e[x := v] [P88G], e[x/v] [P89C], e[v/x] [P89D], e[x← v] [P89E],

e[x← v] [P89F]
e{v/x} [P90A], e[v/x] [P90B], e[v/x] [P90D], e[v/x] [P90I], [v/x]e [P90J], [v/x]e [P90K], e[x← v] [P90M]
e[x := v] [P91F], [v/x]e [P91J], e[v/x] [P91K]
e{v/x} [P92D], e[v/x] [P92E], e[v/x] [P92H], [v/x]e [P92I], {v/x}e [P92K]
e[v/x] [P93C], e[v/x] [P93E], e[v/x] [P93F], e[x := v] [P93H], [v/x]e [P93I], e{x← v} [P93J], e[v/x] [P93K],

[v/x]e [P93L], e[x/v] [P93N], [v/x]e [P93P], e{v/x} [P93Q]
[v/x]e [P94A], [v/x]e [P94B], e[x 7→ v] [P94D], e{x← v} [P94F], [v/x]e [P94G], e[x := v] [P94H], e[v/x] [P94I],

e[v/x] [P94K], [x 7→ v]e [P94M], e[v/x] [P94P], e[x := v] [P94R]
[v/x]e [P95A], {x 7→ v}e [P95B], [v/x]e [P95C], e{x← v} [P95D], [v/x]e [P95H], e[v/x] [P95K]
[v/x]e [P96C], [v/x]e [P96D], [v/x]e [P96H], e[v/x] [P96I], e[v/x] [P96L], e{v/x} [P96M], [v/x]e [P96N], e[v/x] [P96O],

e[v/x] [P96Q]
e[v/x] [P97B], e[v/x] [P97C], [v/x]e [P97D], e[x := v] [P97E], e[v/x] [P97F], [v/x]e [P97G], [v/x]e [P97H],

e[x← v] [P97L], e[v/x] [P97Q], {x 7→ v}e [P97S], [v/x]e [P97T]
e[v/x] [P98A], e[v/x] [P98E], e[v/x] [P98H], e[v/x] [P98J], [v/x]e [P98K], e[x 7→ v] [P98M], e[v/x] [P98Q], e{|v/x|} [P98R]
e[x := v] [P99B], [v/x]e [P99C], e[v/x] [P99D], e[x← v] [P99F], e{|v/x|} [P99G], e[v/x] [P99H], e[x := v] [P99I],

e[v/x] [P99K], e[x := v] [P99L], e[v/x] [P99O]
e[x 7→ v] [P00G], e[v/x] [P00I], {x 7→ v}e [P00K], e[v/x] [P00N]
e[v/x] [P01A], e[v/x] [P01B], [v/x]e [P01C], e{v/x} [P01G], [v/x]e [P01I], [v/x]e [P01J], e[v/x] [P01K], {v/x}e [P01M],

e[x/v] [P01P], e{v/x} [P01Q]
e{v/x} [P02A], e{x 7→ v} [P02B], e{v/x} [P02D], [v/x]e [P02G], e[x 7→ v] [P02H], [v/x]e [P02I], e[v/x] [P02J],

e{x→ v} [P02K], e[x← v] [P02L], [v/x]e [P02M]
[v/x]e [P03B], e[x := v] [P03C], e{v/x} [P03D], e[x 7→ v] [P03E], e[x := v] [P03F], e[v/x] [P03G], e[v/x] [P03I],

e[v/x] [P03J], e[x 7→ v] [P03K], e[v/x] [P03L]
[v/x]e [P04B], e[v/x] [P04C], e[v/x] [P04D], e[v/x] [P04E], [x 7→ v]e [P04F], e{{x← v}} [P04G], e{v/x} [P04I],

[v/x]e [P04J], e[v/x] [P04L], e[v/x] [P04M], [v/x]e [P04Q], e[v/x] [P04R]
[v/x]e [P05A], e[v/x] [P05D], [x 7→ v]e [P05E], [v/x]e [P05F], [v/x]e [P05G], e{v/x} [P05I], [v/x]e [P05J],

e[x 7→ v] [P05N], e[v/x] [P05O], e[v/x] [P05Q]
e[v/x] [P06A], e[v/x] [P06G], [v/x]e [P06H], e[x := v] [P06N], e[v/x] [P06R], e[v/x] [P06S], [v/x]e [P06U], e[v/x] [P06V]
e[v/x] [P07B], e[v/x] [P07C], e[v/x] [P07D], e[v/x] [P07F], e{v/x} [P07H], e[v/x] [P07I], [v/x]e [P07J], e[v/x] [P07K],

e{v/x} [P07N], e[v/x] [P07R]
[x→ v]e [P08A], e[v/x] [P08D], e[v/x] [P08E], e[v/x] [P08F], [v/x]e [P08G], e[v/x] [P08H], e[v/x] [P08I], e[x := v] [P08J],

e[v/x] [P08K], e[v/x] [P08N], [v/x]e [P08O], e[v/x] [P08Q], e[v/x] [P08R], [v/x]e [P08V], [[v/x]]e [P08V],
e[v/x] [P08W], e[x/v] [P08X]

e[v/x] [P09A], e[v/x] [P09D], e[v/x] [P09E], e{v/x} [P09E], [x := v]e [P09F], e[v/x] [P09H], {v/x}e [P09I], [v/x]e [P09K],
e[v/x] [P09L], [v/x]e [P09O], e[v/x] [P09P], [v/x]e [P09Q], [x 7→ v]e [P09R], [v/x]e [P09S]

e[x 7→ v] [P10C], e[x 7→ v] [P10E], e[v/x] [P10G], e[v/x] [P10H], e[v/x] [P10I], e[v/x] [P10J], e[x 7→ v] [P10K],
e[v/x] [P10L], e[v/x] [P10M], e{v/x} [P10O], [x 7→ v]e [P10P], e{v/x} [P10Q], e[x := v] [P10R], [x := v]e [P10S],
e[x 7→ v] [P10U], e[v/x] [P10Y], [v/x]e [P10Z]

[x 7→ v]e [P11B], e[x := v] [P11C], [x 7→ v]e [P11D], e[x← v] [P11F], e[x := v] [P11G], {v/x}e [P11H], e[x 7→ v] [P11I],
e[v/x] [P11J], e[v/x] [P11L], e{v/x} [P11M], e[v/x] [P11N], e[v/x] [P11O], e[v/x] [P11S], e{v/x} [P11T],
[v/x]e [P11U], e{v/x} [P11W], e[v/x] [P11Z]

e[v/x] [P12A], [v/x]e [P12C], e[v/x] [P12D], e[v/x] [P12E], e[x 7→ v] [P12F], e{v/x} [P12G], e[x 7→ v] [P12I],
e[v/x] [P12K], e[v/x] [P12M], e[x 7→ v] [P12Q], e[x 7→ v] [P12S], e[v/x] [P12T], e[v/x] [P12U], e[v/x] [P12V],
e[v/x] [P12W], e[v/x] [P12X], [v/x]e [P12Y], [[v/x]]e [P12Y], e[x := v] [P12Π], e[x→ v] [P12Σ], e[v/x] [P12Υ]

e[v/x] [P13A], e[v/x] [P13C], [v/x]e [P13D], e[v/x] [P13E], e[v/x] [P13F], e[v/x] [P13I], e[v/x] [P13J], e[v/x] [P13K],
e[v/x] [P13N], e[v/x] [P13O], e{v/x} [P13P], e[v/x] [P13Q], e[v/x] [P13T], e{v/x} [P13U], e{v/x} [P13V],
e[v/x] [P13X], e[v/x] [P13Y], [x 7→ v]e [P13Γ], [v/x]e [P13∆]

e{v/x} [P14A], e[v/x] [P14B], [v/x]e [P14C], e[v/x] [P14D], e[x := v] [P14L], e{v/x} [P14N], e[v/x] [P14O], [v/x]e [P14R],
e[v\x] [P14T], e[v/x] [P14W], e[v/x] [P14X], [v/x]e [P14Y], e{v/x} [P14Z], e[v/x] [P14Γ], e[v/x] [P14∆],
e[v/x] [P14Σ], e[v/x] [P14Υ], e{v/x} [P14Φ], e[v/x] [P14Ψ]

[v/x]e [P15B], e[v/x] [P15E], e[v/x] [P15H], e{v/x} [P15I], e[v/x] [P15L], [v/x]e [P15M], e{v/x} [P15N], {v/x}e [P15P],
e{v/x} [P15Q], e[v/x] [P15R], e[x 7→ v] [P15S], e{v/x} [P15T], e[x := v] [P15X], e[x/v] [P15Y], e[x→ v] [P15Θ],
[v/x]e [P15Π]

e[x := v] [P16A], [x 7→ v]e [P16B], e[x := v] [P16B], [v/x]e [P16D], e[v/x] [P16G], e[v/x] [P16K], e{v/x} [P16L],
{x 7→ v}e [P16Q], [v/x]e [P16S], e[v/x] [P16T], e{v/x} [P16V], e{v/x} [P16W], e[v/x] [P16X], e[v/x] [P16Y]

Table 2. Substitution notations used in POPL papers (mostly considering only papers that also use inference rules; see text), 1977–2016

For submission to 2017 ACM POPL 3 2016/6/30

Inference rules, substitution enclosers are braces { }
Inference rules, substitution enclosers are brackets []
Inference rules, other substitution enclosers

N
um

be
r o

f p
ap

er
s

0

10

20

30

40

50

60

70

80

90

1973,
1975,
1976

1977
to

1981

1982
to

1986

1987
to

1991

1992
to

1996

1997
to

2001

2002
to

2006

2007
to

2011

2012
to

2016

Substitution enclosers in POPL papers (five-year intervals)

Figure 2. Substitution enclosers in POPL papers, 1973–2016

for the last lustrum were used in 80% of papers that used substi-
tution notation, but plain braces { } may be making a comeback:
their percentage of use was 19% in 1992–1996, then dipped to 13%
for the next three lustra, but for the last lustrum is back to 19%.

Figure 3 shows the breakdown of separators within the same
331 data points. The slash character “/” has always dominated,
and its percentage for the most recent lustrum is over 80% (73 of
89 papers). But “:=” came into use after 1986, and likewise “ 7→”
after 1991; over the last ten years, roughly one paper per year has
used “:=” and almost two papers per year have used “ 7→”. Out of
327 papers, 12 have used “←” and 4 have used “→”; just 1 paper
[P14T] has used the backslash “\”, and of course one paper [P77A]
used the idiosyncratic form “e v

x
”.

Of the 327 papers using substitution notation, 100 used it to
express multiple simultaneous substitution of two or more values
for two more corresponding variables. Of those, 16 used braces { }
or double braces {{ }} as enclosers; the other 84 used brackets [].

In many (but not all) papers that use multiple simultaneous
substitution, repetition notation is used as a part of substitu-
tion notation; examples are S[y1/x1, . . . , yn/xn] [P85E, §4.3],
p[~q/~x] [P90D, §4.1], [βn/αn]τ [P93P, Fig. 6], P{~z/~x} [P93Q,
§2], [x 7→ t′]t [P94M, §1.4], E[z/y] [P96L, §1], [ỹ/z̃]P [P96N,
§4.2], Γ{~x 7→ ~y} [P02B, §2.2], {α 7→ φ′}(φ1) [P16Q, Fig. 3].

For comparison, we examined several well-known books and
monographs. Church used SxNM to “stand for the formula which
results by substitution of N for x throughout M” [3, p. 9]. Baren-
dregt used M [x := N] for the same purpose [1, §2.1], and Bruce
used [N/x]M [2, p. 128]. Gunter (reversing the use of M and N)
used {M/x}N to mean a substitution of M for x within N that
does not avoid variable capture, and then immediately used it to
define [M/x]N to mean a substitution of M for x in N that does
avoid variable capture (by using α-conversion as appropriate) [5,
pp. 35–37]. Winskel used A[a/i] to represent the result of substi-
tuting a for i within A [13, pp. 82–83]. Reynolds wrote, “p/v → e
denotes the result of substituting e for v in p (after replacing these
metavariables by particular phrases)” [9, p. 18]; while we other-
wise admire his book, we feel that this particular choice of notation
is ill-advised because in the book, as here, the extra space around
the arrow visually makes p and v bind tightly to the slash, making
it seems as if p/v, not just v, somehow maps to or becomes e.

Subsitution separator is slash /
Subsitution separator is colon-equals :=
Subsitution separator is \mapsto
Subsitution separator is \leftarrow
Subsitution separator is \rightarrow
Other substitution separator

N
um

be
r o

f p
ap

er
s

0

20

40

60

80

1973,
1975,
1976

1977
to

1981

1982
to

1986

1987
to

1991

1992
to

1996

1997
to

2001

2002
to

2006

2007
to

2011

2012
to

2016

Substitution separators in POPL papers (five-year intervals)

Figure 3. Substitution separators in POPL papers, 1973–2016

2.2 Notations for Repetition
Out of 609 papers selected for careful examination, 184 used el-
lipses to indicate repetition and 174 used some form of overline to
indicate repetition. There was overlap: 57 papers used both ellipses
and overlines. We observed exactly three forms of overline: overbar
(used in 94 papers), −−−−−−→overarrow (used in 60 papers), and t̃ilde (used
in 20 papers). Our impression was that almost every paper that used
tilde to indicate repetition addressed either the π-calculus or bisim-
ulation (π-calculus notation uses overbars for another purpose).

Table 3 contains an entry for each of the 609 papers; each
paragraph is one year’s worth of data.

Figure 4 shows the usage of inference rules and substitution
notation in POPL papers within each lustrum, and furthermore
breaks down usage of overline and ellipsis notations. Its vertical
axis matches that of Figure 1 and so those two figures may be com-
pared directly. Observations: (1) Over the last 15 years, of papers
that present inference rules, over half also use some repetition nota-
tion. (2) Repetition notations were rarely used before 1992, but af-
ter that their use increased sharply. (3) From 1992 to 2006, ellipses
were used much more frequently than overline notations, but in the
last ten years overline notations have come to dominate slightly.

Figure 5 shows the breakdown of kinds of overline (tilde, over-
arrow, or overbar) within just the 174 papers that used overline
notation for repetition. Over the last 20 years, an average of one
paper per year has used tilde. During 1997–2001 and 2007–2011,
the numbers of papers using overarrow and overbar were roughly
the same; during 2002–2006 and 2012–2016, the number of papers
using overbar was about twice the number using overarrow.

Of the 174 papers that used overline notation, 27 (15.5%) used
overline notation over syntax fragments rather than just single
symbols. Of these, 4 used overarrows [P06Q, P11S, P12Y, P16I]
and 23 used overbars [P05A, P05S, P06H, P08M, P10J, P10O,
P11I, P12D, P12M, P12Q, P12Π, P13P, P13T, P13Y, P14B, P14E,
P14Ξ, P14Ψ, P15G, P15I, P15N, P16B, P16Y].

Of the 174 papers that used overline notation, just 13 (7%) used
explicit index variables in conjunction with the overline notation
[P05U, P09H, P10J, P10O, P11I, P12Z, P13V, P15G, P15I, P15M,
P16B, P16R, P16Y]. While the yearly number of papers using this
combination is small, it has been increasing. Of these 13 papers,
3 also used an explicit iterator notation as part of the overline
notation; we quote an example or two from each:Ki ⇒ ei

i
[P11I],

Ci ‖ Di : Ti
i

and Ci
i∈{1,...,n}

[P15I], Ci x→ ei
i∈m

[P16Y].

For submission to 2017 ACM POPL 4 2016/6/30

This table contains bibliographic citations to 609 POPL papers, each decorated to indicate whether the paper contains
inference rules and whether it uses a repetition metanotation. Brackets [] around a citation indicate the presence of at least
one inference rule; parentheses () indicate no inference rule was seen. If a paper uses some sort of overline notation,

then such a notation appears above the citation. Only three distinct forms of overline were observed: overbar,
right-pointing overarrow, and tilde. (While collecting data, we made no distinction between the tiny
overarrow produced by \vec and the larger overarrow produced by \overrightarrow, nor between

the tiny tilde \tilde and the larger tilde \widetilde.) If a paper uses overlines only over monograms, then
an overbar or \vec or \tilde is shown over the first character “P” of the citation, and if it uses dual overlines
then two overlines are shown; on the other hand, if a paper uses overlines over larger syntax fragments, then an
overbar or \overrightarrow or \widetilde is shown over the entire citation, and if it uses nested overlines,

then a second overline appears over just the middle two characters. If a paper uses explicit subscripted
index variables in conjunction with the overline notation, then a subscripted i appears. If a paper

uses an explicit iterator notation in conjunction with the overline notation, then a
superscripted i appears. Independently of whether a paper uses an overline notation, if
it uses an ellipsis, then three dots appear beneath the citation, and if it uses an iterator

notation, then a superscripted ∀ appears
(but the paper itself may or may not use
the “∀” symbol in its iterator notation).

(~P75A)(P75B)
(~P76A)
[P77A](~P77B)
[P78A][P78B][P78C]
(P79A)[P79B][P79C][P79D][P79E]
[P80A]
(P81A)(P81B)[P81C]
[P82A][P82B]
[P83A][. . .P83B][P83C∀]
[P84A][P84B][P84C]
[P85A][P85B][P85C][P85D][. . .P85E]
[P86A][P86B](P86C)[P86D][P86E]
[P87A][P87B][P87C][P87D][P87E][P87F][P87G]
[P88A][P88B][P88C][P88D](~P88E)[. . .P88F][P88G]
[P89A][P89B][P89C][P89D][. . .~P89E][P89F]
[P90A][P90B][P90C][~P90D][P90E][P90F][P90G][~P90H][P90I][P90J][P90K][P90L][P90M]
[P91A][P91B][P91C][P91D][P91E][P91F][P91G][P91H][P91I][P91J][P91K][P91L]
[P92A][P92B][P92C][P92D][. . .P92E][P92F][P92G][. . .P92H][P92I][P92J][P92K]
[P93A][P93B][P93C][. . .P93D][P93E][. . .P93F][P93G][. . .P93H][P93I][. . .P93J][. . .P93K][. . .P93L][P93M][. . .P93N][P93O][. . .P93P][P93Q][. . .P93R]
[P94A][P94B][. . .P94C][. . .P94D][P94E][P94F][. . .P94G][P94H][. . .P94I][. . .P94J][. . .P94K][. . .P94L][P94M](P94Ni) [P94O][. . .P94P][P94Q][P94R]
[. . .P95A][P95B][. . .P95C][. . .P95D][P95E][P95F][P95G][P95H][P95I][P95J][P95K][P95L][P95M]
[. . .P96A][P96B][. . .P96C][P96D][P96E][. . .~P96F][. . .P96G][P96H][. . .P96I][. . .P96J][P96K][P96L][. . .P96M][P̃96N][P96O][P96P∀] [. . .P96Q]
[P97A][P97B∀] [P97C][P97D][P97E][P97F][P̃97G][P̃97H][P97I][P97J][P97K][P97L][. . .P97M][. . .P97N][P97O][. . .P97P][. . .P97Q][. . .~P97R]

[. . .P97S∀] [P97T]
[. . .P98A][P98B][P98C][P98D][. . .~P98E][P98F][P98G][. . .P98H∀] [P98I][P98J][P98K][. . .P98L][P98M][P98N][. . .P98O][P98P][P98Q][P̃98R]

[P98S]
[. . .P99A][. . .P99B][P99C][~P99D][. . .P99E][. . .P99F][P99G][. . .P99H][~P99I][P99J][P99K][~P99L][. . .P99M][. . .P99N][. . .P99O∀] [P99P][. . .P99Q]
[P00A][P00B][. . .P00C][P00D][P00E][. . .P00F][P00G][P00H][. . .P00I][. . .P00J][P00K][. . .~P00L][P00M][. . .P00N][P00O][. . .P00P][P00Q][. . .P00R][. . .P00S]
[P01A][P01B][. . .P01C][P01D][P01E][P01F][P̃01G][P01H][P̃01I][P01J][~P01K][P01L][P01M][. . .P01N][P01O][P01P][P01Q]
[. . .P02A][~P02B][P̃02C][~P02D][P02E][P02F][. . .~P02G][P02H][. . .P02I][P02J][P02K][P02L][P02M]
[P03A][P03B][. . .P03C][. . .P̃03D][P03E][. . .P03F][. . .P03G][. . .P03H][. . .P03I][. . .P03J][. . .~P03K][P03L][P03M]
[P04A][P04B][P04C][P04D][P04E][P04F][. . .P04G][. . .P04H][. . .~P04I][. . .P04J][P04K][P04L][~P04M][P04N][P04O][P04P][P04Q][P04R][. . .P04S]
[P05A][. . .P05B][. . .P05C][. . .P05D∀] [P05E][. . .P05F][P05G][. . .P̃05H][P05I][P05J][. . .P05K][P05L][P05M][. . .P̃05N∀] [. . .P05O][. . .P05P][~P05Q][. . .P05R]

[. . .P05S][. . .P05T][. . .P05Ui]
[. . .~P06A][~P06B][P06C][. . .P06D][P06E][. . .P06F][P06G][. . .P06H][P06I][P06J][P06K][. . .P06L][. . .P06M][P06N][. . .P06O∀] [P06P][

−−−→
P06Q][P06R]

[. . .P06S][P06T][P06U][. . .P06V∀] [. . .P06W][. . .P06X]
[P07A][~P07B][P07C][~P07D][P07E][P07F][P07G][P07H][P07I][P07J][. . .P07K][. . .P07L][~P07M∀] [P̃07N][P07O][P07P][P07Q][P07R]
[P08A][~P08B][P08C][P08D][P08E][. . .P08F][P08G∀] [P08H][. . .P08I][P08J][P08K][. . .P08L][. . .P08M][P08N][. . .~P08O][P08P][. . .P̃08Q][. . .P08R]

[. . .~P08S][. . .P08T][P08U][P08V][P08W][P08X][P08Y]
[. . .P09A][~P09B][P09C][~P09D][P09E][P09F][P09G][P09Hi][P09I][P09J][. . .P09K][~P09L][. . .P09M][P09N][P09O][P09P][~P09Q][P09R][P̃09S]
[. . .P10A][. . .P10B][. . .P10C][~P10D][P10E][P10F][~P10G][. . .P10H][P10I][P10Ji] [~P10K][~P10L][. . .~P10M][P10N][P10Oi] [P10P][~P10Q][P10R]

[P10S][. . .P10T][. . .P10U][. . .P10V][. . .P10W][. . .P10X][P10Y][. . .P̃10Z]
[P11A][P11B][P11C][P11D][P11E][. . .P11F][P11G][P11H][P11I

i
i] [P11J][. . .P11K][P11L][~P11M][P11N][P11O][P11P][P11Q][. . .P11R]

[
−−→
P11S][~P11T∀] [P11U][P11V][P̃11W][P11X][. . .P11Y][. . .P11Z]

[. . .P12A][. . .P12B][P12C][P12D][P12E][P12F][P12G][P12H][P12I][P12J][P12K][. . .~P12L][P12M∀] [P12N][. . .P12O][P12P][P12Q][P12R]
[P12S][. . .P12T][P12U][P12V][P12W][. . .P12X][

−−−→
P12Y][P12Zi] [P12Γ] [. . .P12∆∀] [P12Θ] [. . .P12Λ] [P12Ξ] [. . .P12Π∀] [P12Σ] [P12Υ]

[P13A][. . .P13B][~P13C][P13D][~P13E][. . .P13F∀] [. . .P13G][~P13H][P13I][. . .P13J][P13K][P13L][P13M][P13N][. . .P̃13O][. . .P13P][P13Q][P13R]
[P13S][P13T][. . .P13U][P13Vi] [. . .P13W][. . .P13X](. . .P13Y)[P13Z][P13Γ] [P13∆]

[P14A∀] [P14B][P14C][. . .P14D][P14E][P14F][~P14G][. . .P14H][P14I][P14J][P14K][. . .P14L][P14M][P14N][P14O][. . .P14P∀] [. . .P14Q][P14R]
[P14S][P14T][P14U][P14V][P14W][P14X][P14Y][. . .P14Z∀] [P14Γ] [. . .~P14∆] [. . .~P14Θ] [. . .P14Λ] [P14Ξ] [. . .P14Π] [P14Σ] [. . .P14Υ] [~P14Φ]
[P14Ψ]

[. . .P15A][P15B][P15C][P15D][P15E][. . .P15F][P15Gi] [. . .P15H∀] [P15I
i
i] [~P15J][~P15K][P15L∀] [P15Mi] [. . .P15N][P15O][. . .P15P](P15Q)[. . .~P15R]

[. . .P15S][P̃15T∀] [. . .P15U][P15V][~~P15W][. . .P15X][P15Y][P15Z][~P15Γ] [P15∆] [P15Θ] [. . .P15Λ] [P15Ξ] [P15Π] [P15Σ]
[P16A][P16Bi] [P16C][. . .P̃16D][P16E][. . .P16F][P16G][. . .P16H][. . .

−−→
P16I∀] [~P16J][P16K][. . .~P16L][. . .P16M][P16N][. . .P16O][P16P][P16Q][P16Ri]

[P16S][P̃16T∀] [P16U][P̃16V][P16W][. . .P16X∀] [. . .P16Yi
i]

Table 3. Repetition notations used in POPL papers (mostly considering only papers that also use inference rules; see text), 1977–2016

For submission to 2017 ACM POPL 5 2016/6/30

No use of inference rules
Inference rules, no use of overlines or ellipses
Inference rules, overlines only
Inference rules, both overlines and ellipses
Inference rules, ellipses only

N
um

be
r o

f p
ap

er
s

0

50

100

150

200

250

1973,
1975,
1976

1977
to

1981

1982
to

1986

1987
to

1991

1992
to

1996

1997
to

2001

2002
to

2006

2007
to

2011

2012
to

2016

Repetition notations in POPL papers (five-year intervals)

Figure 4. Repetition notations in POPL papers, 1973–2016

Overline repetition notation uses tilde
Overline repetition notation uses overarrow
Overline repetition notation uses overbar

N
um

be
r o

f p
ap

er
s

0

10

20

30

40

50

60

1973,
1975,
1976

1977
to

1981

1982
to

1986

1987
to

1991

1992
to

1996

1997
to

2001

2002
to

2006

2007
to

2011

2012
to

2016

Kinds of overlines in POPL papers (five-year intervals)

Figure 5. Kinds of overlines in POPL papers, 1973–2016

We observed 9 papers that used nested overline notation; of
these, 8 used nested overbars [P94N, P99B, P05A, P13Y, P14E,
P14Ψ, P16R, P16Y] and 1 used nested overarrows [P15W].

For comparison, we examined several well-known books. Baren-
dregt [1, §2.1.3] wrote “Let ~N ≡ N1, . . . , Nn. ThenMN1 · · ·Nn ≡
M ~N ≡ (· · · ((MN1)N2) · · ·Nn)”; note that he clearly does not
intend that ~N necessarily literally include separating commas in
its expansion. Milner et al. [7, p. 44] used ellipses not only within
an assertion but also to indicate a sequence of premisses in an
inference rule:

E(longstrid1) = E1 · · · E(longstridn) = En

E ` open longstrid1 · · · longstridn ⇒ E1 + · · ·+ En

and Gunter [5, p. 292] did the same:
H `M1 : t1 · · · H `Mn : tn

H ` {l1 = M1, . . . , ln = Mn} : {l1 : t1, . . . , ln : tn}
and so did Reynolds [9, p. 227] (using zero-origin indexing):

e0 ⇒ Z0 · · · en−1 ⇒ zn−1

〈e0, . . . , en−1〉 ⇒ 〈z0, . . . , zn−1〉
Bruce [2, p. 164] used both ellipses and iterator notation:

N
um

be
r o

f d
is

tin
ct

 s
ub

st
itu

tio
n

no
ta

tio
ns

0

2

4

6

8

10

12

14

1973,
1975,
1976

1977
to

1981

1982
to

1986

1987
to

1991

1992
to

1996

1997
to

2001

2002
to

2006

2007
to

2011

2012
to

2016

Substitution notation variety in POPL papers

Figure 6. Substitution variety in POPL papers, 1973–2016

E `Mi : Ti, for 1 ≤ i ≤ n
E ` 〈M1, . . . ,Mn〉 : T1 × . . .× Tn

3. Analysis
Based on the data reported in Section 2 plus other observations
about the papers, we infer this story about metanotation in POPL
papers: Before 1987, there was relatively little use of metanotation
for formal specification of the behaviors and type systems of lan-
guages. In the late 1980s, there was a shift from studying small lan-
guages (such as various forms of the λ-calculus) in which functions
took only one argument to explaining larger, more realistic lan-
guages in which sequences of items (parameters, arguments, dec-
larations, statements, . . .) played a role, and so there was a sharply
increased need for metanotation to describe such sequences. More-
over, the use of inference-rule metanotation became increasingly
popular, to the point that over 60% of POPL papers now use in-
ference rules for some descriptive purpose. Different subjects have
had slightly different descriptive needs, and so there has been a
natural experimentation with alternative extensions to the metano-
tation, leading to an ever-increasing diversity of notations.

This is how languages grow—but we believe that it has reached
the point where it is causing problems, and it is time to apply the
tools of our trade (including formalism and critical analysis), which
we normally apply to programming languages, to the metanotation.

In this section we point out specific problems we have observed
with three aspects of the metanotation: substitution notations, over-
line notations, and ellipses. We cite specific examples from specific
papers for concreteness, to document the existence of these prob-
lems, but it is not our intent to single out individual papers as “bad
examples”; rather, we believe the problems exist as a natural con-
sequence of language evolution, as cutting-edge pioneers try out
different (and experimental) modes of expression, and the nature
of the problems observed is a global inconsistency across a large
body of work rather than defects in particular papers.

3.1 Substitution Notations
We don’t believe that there is an inherent problem with any one
of the 27 specific notations for substitution listed in Table 1. The
difficulties we see are social rather than technical, and twofold.

The first problem is that authors use a wide variety of substi-
tution notations, but some take them for granted; many, many pa-
pers use substitution notation without explaining what it means. For
each notation, enough other POPL papers use the same notation (or
a very similar notation) for substitution that any individual author

For submission to 2017 ACM POPL 6 2016/6/30

might well feel justified in assuming that readers will recognize it.
But the diversity of notations has been increasing over time (see
Figure 6); during the last five years alone, 14 different notations
have been used, making it less likely that a reader will instantly
recognize any one of them as intended to denote substitution.

Some general comments about the notations observed: (1) Both
e[v/x] and e[x/v] are in use, identical except as to whether v pre-
cedes or follows x. Therefore a reader who sees a[b/c] cannot be
sure which is meant. (2) Focusing only on separators, 4 papers use
x → v and 12 papers use x ← v. A reader who had already seen
one (say, x → v) might well think that the rule is that the arrow
points from the variable to the replacement value, and on encoun-
tering the other, say in the form a[b← c], might well think that c is
the variable and b the replacement value, when in fact the opposite
was intended. (3) The very fact that most notations that use “/” as
a separator (including the two most popular notations, e[v/x] and
[v/x]e) have v to the left of x, whereas notations that use “:=” or
some form of arrow as a separator have v to the right of x, is itself a
potential source of confusion. (4) We speculated that the increasing
use of braces might reflect a desire to emphasize that a substitution
conceptually includes a set, not an ordered list, of variable-value
pairs when multiple substitution is involved. However, our obser-
vations provide little statistical support for this conjecture: of the
327 papers that use substitution notation, 100 papers (30.5%) use
multiple simultaneous substitution, and of the 50 papers out of 327
that uses braces as enclosers, just 16 (32%, almost exactly the same
percentage) use multiple simultaneous substitution.

The second problem, which exacerbates the first, is that many
of these notations are also used for completely different purposes
in other POPL papers. As a result, the reader cannot even be cer-
tain, on seeing a notation such as e[v/x] or e[x := v], whether it
is intended to denote substitution or some other operation. For ex-
ample, paper [P86C, §5] uses the notation one e[x̂/x] to mean en-
vironment extension, not substitution; the notation is not explicitly
explained, but from its use we infer that if e is an environment then(

e[x̂/x]
)[[

id
]]

=

{
x̂ if id is x
e
[[
id
]]

otherwise

Another paper [P88E, §4.3.1] gives the explicit definition

f [a→ b]
def
= λx.if x = a then b else f(x)

and so f [a→ b] denotes function update, not substitution. In a third
paper [P89E], the authors write “To denote the extension of a type
environment TE by a binding of x to T, we write TE [x ← T].” A
fourth paper [P12Π] uses ρ{xi 7→ x′i} to indicate “repeated exten-
sion of the environment ρwith variable mappings”; thus e{x 7→ v}
would indicate a single environment extension, not substitution.
These are but a handful of the many papers we observed that use
substitution-like notations for other purposes.

3.2 Overline Notations
The earliest uses of overline notation were over single symbols,
and the interpretation was straightforward: one may regard A as
standing for an empty sequence, or a singleton sequence “A1” or a
length-2 sequence “A1, A2” or a length-3 sequence “A1, A2, A3”
and so on for any finite length of sequence desired. Typically such
expansions are described using ellipsis notation: we say that “A”
stands for “A1, . . . , An”. Often this notation is used in the context
of abstract syntax, where the need for parentheses is often fudged
away or glossed over, and the need for commas to separate the
copies of the symbol can be similarly fudged away or glossed over.
It is completely clear what to replicate and where to attach the in-
dices: the unit of replication is the single symbol under the overline,
and an integer index is attached to each copy of that symbol. It is

assumed that separate occurrences of the same overlined symbol
will expand into sequences of the same length.

Over time the notation was extended in three significant ways,
which we will refer to as pointwise clustering, expression replica-
tion, and nesting. Each of these extensions solved a problem at the
expense of introducing a different problem.

The first extension, pointwise clustering, uses multiple overline
repetitions within a specific syntactic context to indicate that the
unit of replication should be not just individual symbols, but the
entire context. At first this convention was described explicitly, but
then came to be taken for granted and extended to situations not
previously documented, creating the potential for confusion. We
quote a typical explanation of the convention [P97E, Appendix B]:

We use vector notation A to indicate a sequence A1, . . . , An.
If A = A1, . . . , An and B = B1, . . . , Bn and ⊕ is a binary
operator then A⊕B stands forA1⊕B1, . . . , An⊕Bn. If A if B
have different lengths then A⊕B is not defined. Each predicate
p is promoted to a predicate over vectors: p(A1, . . . , An) is
interpreted as p(A1) ∧ . . . ∧ p(An).

So far, so good. However, the same paper goes on to use the same
convention for declarations of function parameters: Ax(B y){S}
is intended to be interpreted as Ax(B1 y1, . . . , Bn yn){S}. Per-
haps the whitespace that separates the type B from the parameter
name y is to be construed as a “binary operator”?

Many papers have used this convention; by 2006 at least one set
of authors regarded this convention as widespread, but still worth
explaining: “Following common convention, T f represents a list
of pairs T1 f · · ·Tn fn rather than a pair of lists” [P06P, §3.1].

Pointwise clustering may induce transitive constraints: if, within
some context, we have T f and elsewhere T : κ, f and κ must
have the same length even though they nowhere appear together.
(Following Einstein, we call this “spooky action at a distance.”)

Pointwise clustering solves the problem of wanting to replicate
syntactic units larger than single symbols, with the effect of being
able to “zip together multiple lists of the same length” in construct-
ing the copies. The downside is that the unit of replication is not
indicated explicitly, and so must be explained separately.

But consider now this example [P04J, Ex. 4.7], one of the
clearest illustrations of the difficulty that arises when the contexts
to be replicated are not explicitly marked or explained:

Take any w = [v/x]e and w′ = [v′/x]e with (v, v′) ∈ R

There are five different vectors involved: w, w′, v, v′, and e.
Which pairs of vectors must be of the same length? All of them?
We soon realize that to answer this, we need to understand what
are the intended units of syntactic replication. For the first two
equations, a plausible answer is “the entire equation,” leading to
the interpretation

Take any w1 = [v1/x1]e1, . . . , wn = [vn/xn]en
and w′1 = [v′1/x1]e1, . . . , w

′
n = [v′n/xn]en with . . .

However, careful consideration of the rest of the paper leads one to
conclude that the intended interpretation is:

Take any w1 = [v1/x1, . . . , vm/xm]e1, . . . ,
wn = [v1/x1, . . . , vm/xm]en

and w′1 = [v′1/x1, . . . , v
′
m/xm]e1, . . . ,

w′n = [v′1/x1, . . . , v
′
m/xm]en with . . .

That last is quite a mouthful, so we can understand why the authors
chose to use abbreviate it using a repetition notation. But this
particular form of overline notation, which fails to mark the units
of replication, is not quite up to the task. The same problem shows
up elsewhere in the example: how is (v, v′) ∈ R to be interpreted?

For submission to 2017 ACM POPL 7 2016/6/30

Here is a clear example of the sort of special-purpose explana-
tion that is required when using pointwise clustering, particularly
with substitution notation [P11I, §3.3]:

The notation a : κ zips together a list of type variables and a
list of kinds to create a type variable context ∆. These two lists
must have the same length for the notation to be well-defined.
The notation ϕ[a 7→ ψ] applies a multi-substitution of the types
ψ for each of the corresponding variables in the list a.

The second extension, which we call expression replication,
solves these problems by writing the overline over an entire expres-
sion, not just individual symbols, thereby indicating quite precisely
what is the unit of replication. This works very well for multiple
substitution notation such as {α 7→ φ′}(φ1) [P16Q, Fig. 3], but in
the general case it comes at a cost: the precise points at which to
attach the integer subscripts are no longer explicitly marked. For
the previous example, we could try writing (v, v′) ∈ R; the unit
of replication is clearly “(v, v′) ∈ R” but it is not at all clear
that v and v′ should receive subscripts in each copy but R should
not—for that matter, we might even ask whether ∈ should also re-
ceive subscripts. Some authors have solved this problem by explic-
itly marking the subscript attachment points, typically using either
i or j or k, intended to represent a “typical index value” (exam-
ple: (Gi, ψi) [P05U, Fig. 3]) or m or m, intended to do double
duty by also indicating the intended length of the sequence (ex-
ample: θ = {Xn 7→ tn} [P94N, §3]). In the former case, au-
thors may also provide a binding of the index variable that indi-
cates the attachment points, for example Ki ⇒ ei

i
[P11I, Fig. 2]

or Ci x→ ei
i∈m

[P16Y, Fig. 8]. This makes the attachment points
quite clear, but with less conciseness than a pure overline notation.

We did find this clear description of a pure overline notation
with implicit subscript attachment points [P06H, §2]:

We will also use an overbar as a syntactic meta-operator to
denote a comma-separated sequence of syntax fragments: σ =
σ1, . . . , σn where σ is a syntax fragment and σi is the same
fragment with i-subscripts on all meta-identifiers it contains. For
example we will write [u/x]e instead of [u1/x1, . . . , un/xn]e,
and (v, v′) ∈ R instead of (v1, v

′
1), . . . , (vn, v

′
n) ∈ R.

The third extension, nesting, effectively provides “nested loops.”
The earliest example we found, σ′ = {F 7→ λyn .a(Hm(yn))}
[P94N, Fig. 1], explicitly marks the index attachment points but
provides no bindings, thereby removing all ambiguity as to where
subscripts are to be attached but not entirely eliminating all confu-
sion as to which subscript attachment points correspond to which
overline (it can easily be figured out, but it requires a deduc-
tion step). The same is true of data T αk = Ciτij [P99B,
Fig. 1], which uses three distinct index variables i, j, and k to
correspond to the three overbars. A more complex example is
yi : (∀αk.τi)ui 7→ Λαk.ei[S] [P99B, Fig. 1]; note the occurrence
of the index variable i within the superscripted expression ui. Such
an example would be difficult to understand without explicit index
variables or some specific conventions about index attachment.

An interesting example of apparently mixed conventions is
Ω ` [τ ′/α]τ v [P05A, Fig. 4]. Elsewhere the authors gener-
ally use expression replication in such situations as data D α ⇒
S α β = C τ [P05A, Fig. 1] and ∆→ d : θ [P05A, Fig. 3], so we
assume that the authors believed that [τ ′/α]τ rather than [τ ′/α]τ
was the appropriate notation for multiple substitution.

A different example of mixed conventions within a single asser-
tion is β = {|(G0, null), (Gi, oi.f1. · · · .fn)|} [P05U, Fig. 5]. Here
there is nested repetition: a use of an ellipsis within an overline
cluster that uses the index variable i to indicate attachment points.

Nothing wrong with that; this may be the clearest way to express
this situation. It is in fact clearly the intent of the authors that the se-
quence of field accesses .f1. · · · .fn be the same for every value of
i. This example does suggest that in some other scenario one might
wish to have a different set of field accessors for each value of i;
this could be expressed as (Gi, oi.fi 1. · · · .fi ni). Can this example
be expressed more concisely using nested overlines? We answer
this question in §6. (This example also illustrates a conventional
treatment of the overline notation as concrete syntax or “macro ex-
pansion” rather than abstract syntax: the intent is that the copies
produced by the overline cluster be comma-separated but not sur-
rounded by enclosers, so that β has n+ 1 pairs as its elements.)

3.3 Ellipses
We wish to provide a formal specification of the meaning of such
notations as “x1, . . . , xn” and “x1, x2, . . .” and “x1 ⊕ · · · ⊕ xn”
and “[v1/x1, . . . , vn/xn]e”. Sometimes two ellipses are used
together, for example when nested function calls are involved:
f1(f2(· · · fn(x) · · ·)). Ellipsis notation is sometimes used in tricky
ways, for example C = [p1, s1, . . . , pn, sn] [P06X, Fig. 6]. In any
case, it won’t do simply to assume that the repeated pattern is
comma-separated and contains no commas.

4. A Specific Proposal, with Three Novelties
We propose these design principles as desirable for future POPL
metanotation: (1) Be compatible with past usage. (2) Obey the prin-
ciples of abstract syntax (that is, a correct concrete syntax can be
obtained purely by inserting enclosers and commas, but only as
needed to maintain the integrity of the parse tree). (3) Provide a
range of notational choices, allowing authors to make the choices
about conciseness and readability. (4) Avoid context-dependent be-
havior. (5) Be as agnostic as possible about the structure and mean-
ing of the assertion language. (6) Be as agnostic as possible about
the structure and meaning of the object language. (7) Provide a
purely formal explanation of the interpretation of the metanotation
(in particular, the interpretation should not depend on types or se-
mantics of either the assertion language or the object language).

In this section we present an informal description of a few as-
pects of our proposed metanotation, including some novel features.
In §5.2 we present a definition and formal interpretation.

In general, an inference rule consists of zero or more premisses
and a single conclusion. . . . The premisses and conclusion are
each a scheme for an assertion, that is, a pattern containing
metavariables that each range over some type of phrase, such
that one obtains an assertion by replacing each metavariable by
any phrase in its range. . . . An instance of an inference rule is
obtained by replacing all occurrences of each metavariable by
a phrase in its range. (Sometimes, there will be side conditions
on the rule that must be satisfied by the replacement. Also, there
may be syntactic operations, such as substitution, that must be
carried out after the replacement.) A proof —more precisely, a
formal proof —is a sequence of assertions, each of which is the
conclusion of some instance of an inference rule whose pre-
misses all occur earlier in the sequence. —Reynolds [9, §1.3]

Each of the assertions (sometimes called judgments) is written in
an assertion language, which is typically the standard language
of mathematics and logic, possibly augmented with substitution
and/or repetition notations, and also with the possibility of men-
tioning tokens of some object language (Reynold’s term) and/or
nonterminals of a context-free grammar defined in some BNF no-
tation (of which there are many variations); such nonterminals are
one kind of metavariable. Examples of possible object languages
are Java [4] and Featherweight Java [6].

For submission to 2017 ACM POPL 8 2016/6/30

We will use the term monogram to refer to a single letter that,
rather than being used for decorative purposes, is itself possibly
“decorated” with one or more prime marks and/or a sequence of
one or more integer subscripts. We will define this term formally
in §5; for now, consider as examples the monograms x, β, e′, α2,
and τ ′15 27. The decorations are part of the monogram; thus x and x′

and x3 are distinct monograms. Multicharacter identifiers such as
expr and type and if are not monograms; neither are nonalphabetic
symbols such as = and + and &.

Our basic approach to making overline notation unambiguous:
(1) Implicit pointwise clustering is never used. The material be-
neath (that is, within) an overline is the unit of replication. Thus”
T f ” expands to “T1, . . . , Tn f1, . . . , fn”. If “T1 f1, . . . , Tn fn”
is the desired expansion, the correct way to write that is “T f ”.
(2) If explicit index variables are to be used, then the overline no-
tation must include an explicit binding of that variable, so that
the correspondence of index variables to overlines will be unam-
biguous. For example, we cannot write vi/xi ; instead we must
write at least vi/xi

i
, and perhaps more explicitly vi/xi

i≤n
or

vi/xi
p≤i≤q

. Index variables are the way to go if it is necessary
to attach subscripts to symbols or multicharacter identifiers.
(3) If no explicit index variables are to be used, then integer indices
will be implicitly attached to all monograms (but see §4.1 below),
and only to monograms. Thus f(x) will mean f1(x1), . . . , fn(xn),
not f(x1), . . . , f(xn), because f , like x, is a monogram.

We allow any combination of three optional notations at the up-
per right of an overline: an explicit separator, a multiplicity marker
(which may be + or ?), and a variable binding. The explicit sep-
arator is used instead of a comma to separate copies; if s repre-
sents statements, then a notation such as s ; could be useful when
describing an object language that uses semicolons as separators
rather than terminators. The multiplicity marker + means that the
expanded sequence must not be empty; ? means that the expanded
sequence must contain either zero or one copy (and therefore in
this case also specifying an explicit separator would be pointless).
A variable binding may provide bounds, or may consist of just the
variable name, in which case bounds will be inferred. Examples are
x ;+, x+ i, x?, x i, x j<i, x max , x 1≤i≤n, x⊗+ i≤n, and x i∈1..n.

4.1 Underlining
What if we want an expansion such as f(x1), . . . , f(xn)? We can
always use explicit indices, as in f(xi)

i
, but what if we want fur-

ther conciseness? We take inspiration from the α notation for par-
allel computation in Connection Machine Lisp [12], which was in
turn inspired by the backquote notation of Common Lisp [11]. In
each of these notations, an expression is marked for special treat-
ment (making a copy; executing many copies in parallel), but there
is also a way to mark subexpressions as exceptional (use the value
of the subexpression instead of making a copy; use correspond-
ing elements of a vector rather than replicating a single value). The
overline notation attaches subscripts to every monogram; we need a
way to say “except here,” and for this we use underlines. Just as ev-
ery comma must correspond to a governing backquote in Common
Lisp, just as every bullet must correspond to a governing α, so in
our metanotation every underline must fall beneath a corresponding
overline. As simple examples, for f(x1), . . . , f(xn) we can write
f(x), and for f(x1 + z, . . . , xn + z) we can write f(x+ z).

Consider again this example [P04J, Ex. 4.7] from §3.2:

Take any w = [v/x]e and w′ = [v′/x]e with (v, v′) ∈ R

With our proposed notation, we use nested overlines to indicate the
(nested) units of replication and underlines to indicate where the
uppermost overline should not attach indices:

Take any w = [v/x]e and w′ = [v′/x]e with (v, v′) ∈ R

Thus, in each of the two equalities, v and v′ and x receive indices
only from the inner overline. Note also the underline under R to
indicate that there is just one R, not a subscripted sequence of R’s.

4.2 Harpoons and Boxes
Harpoons used as overlines do not provide separators between the
copies. (We use harpoons so as to avoid conflict with past usage
of overarrows; besides, harpoons take less vertical space.) The di-
rection of the harpoon indicates whether copies are numbered in
forward or reverse order. If a harpoon overline cluster immediately
contains a single boxed cluster, then the material in the boxed clus-
ter is used as is. and the material to its left and right is replicated;
this provides a concise way to notation certain expressions that
would otherwise require two ellipses. We illustrate with examples:

−⇀x ≡ x1x2x3 . . . xn−1xn
↼−x ≡ xnxn−1xn−2 . . . x2x1−−−−−−−−⇀

let x = v in e ≡ let x1 = v1 in . . . let xn = vn in e
↼−−−−−−−−
let x = v in e ≡ let xn = vn in . . . let x1 = v1 in e

↼−
e .f ≡ e.f1.f2.f3 · · · .fn−1.fn−⇀
e .f ≡ e.fn.fn−1.fn−2 · · · .f2.f1

−−−−−⇀
h(x, e , z) ≡ h1(x1, h2(x2, . . . hn(xn, e, zn) . . . , z2), z1)
↼−−−−−
h(x, e , z) ≡ hn(xn, . . . h2(x2, h1(x1, e, z1), z2) . . . , zn)

4.3 Explaining Ellipses Rigorously
We provide the overline notation because it is concise, mentioning
the repeated material just once. But we also wish to provide ellipsis
notation, despite the fact that it typically mentions (variations of)
the repeated material two or more times, because it is often more
readable. In §5.2 we will explain the formal interpretation of several
ellipsis idioms by transforming them into instances of overline
notation. Here are some illustrative examples:

x1, x2, . . . becomes x , x1, . . . , xn becomes xi
, 1≤i≤n

x1x2 . . . becomes −⇀x x1; . . . ;xn becomes xi
; 1≤i≤n

f1(x1, y), . . . , fn(xn, y) becomes fi(xi, y)
, 1≤i≤n

x3 ⊕ · · · ⊕ x7 becomes xi
⊕ 3≤i≤7

x1 . . . xn becomes −⇀xi 1≤i≤n

f(x1, . . . f(xn, e) . . .) becomes
−−−−⇀
f(x, e)

5. A Careful Specification
Our description of metanotation builds on that of Reynolds [9, §1].

5.1 Syntax
Assertions, inference rules, and BNF are all built from tokens.

5.1.1 Monograms and Other Tokens
A letter is a single letter (Latin, Greek, or perhaps from some other
alphabet), for example x, A, Z, β, and Γ. An accented letter is ei-
ther a letter, or an accented letter to which a depending or surmount-
ing or superscripted symbol (other than an overbar or harpoon) has
been added; examples are x, ç, é, x̂, A′, Z̃′, β†, and Γ′′. A mono-
gram is either an accented letter, or a monogram to which an inte-
ger subscript has been attached; examples of monograms are x, x̂,
x1, A2 2, and ψ′′1 3 2. Here we use whitespace between subscripts,
so that the monogram τ4 12 (having subscripts 4 and 12) is clearly
different from τ41 2 (which has subscripts 41 and 2). An indexed
monogram is either a monogram to which a subscript other than
an integer has been attached, or an indexed monogram to which a
subscript has been attached; examples are xi, x3 j , and x′k 3 k.

For submission to 2017 ACM POPL 9 2016/6/30

Monograms may be used as names of metanotation index vari-
ables and as BNF nonterminals. They may also be used within the
assertion language and the object language for other purposes.

We assume that the syntax of the assertion language (which
may include part or all of the syntax of the object language) may
be regarded abstractly as a linear sequence of tokens, some of
which may have a compound structure that may include tokens
or sequences of tokens. We also assume that such tokens may be
divided into five classes: monograms, commas, left enclosers, right
enclosers, and all other tokens, which we will call common tokens.
The assertion template language has six additional classes of token:
ellipses such as “. . .” or “· · · ”, overline clusters, underline clusters,
boxed clusters, the don’t-care symbol “ ”, and the empty-sequence
symbol “•”. An overline cluster consists of a nonempty sequence
of assertion template tokens surmounted by an overline, where an
overline is either an overbar, a left-pointing harpoon, or a right-
pointing harpoon; such an overline cluster may have additional
information attached at the upper right, as described below. An
underline cluster consists of a nonempty sequence of assertion
template tokens with an underbar beneath. A boxed cluster consists
of a nonempty sequence of assertion template tokens within a
rectangular box. In each case, a cluster is said to contain the token
sequence, which is sometimes referred to as the material within
the cluster, and to immediately contain each of the tokens in the
material. A cluster also contains any token contained by any token
in the material; thus (non-immediate) containment is recursive.

Some tokens in the assertion language may belong to the object
language. The assertion language comma token is “,”; there may
also be a separate object language comma token such as “,”.
Possible examples of left enclosers are “ (” and “(” and “ [” and
“[” and “ 〈 ” and “begin” and “if”; examples of right enclosers
are “) ” and “)” and “] ” and “]” and “ 〉 ” and “end” and “fi”.

As an example, the assertion “Γ ` f(y + z) : τ” might be
regarded as a sequence of eight tokens: “Γ” and “f” and “τ” are
monograms, “`” and “:” are common tokens, “ (” is a left encloser,
“) ” is a right encloser, and “y + z” is an overline cluster that
happens to contain a sequence of three other tokens, namely the
monogram “y”, the common token “+”, and an underline cluster
“z”that contains the monogram “z”.

We say that a sequence of tokens is an entire sequence if it
constitutes the whole of an assertion or a BNF alternative or a
formula mentioned within text, or if it constitutes all of the material
within an overline cluster or underline cluster.

We say that a token is left-delimited if either (a) it is the leftmost
of an entire sequence of tokens, or (b) the token immediately to its
left is either a comma or a left encloser. Similarly, we say that a
token is right-delimited if either (a) it is the rightmost of an entire
sequence of tokens, or (b) the token immediately to its right is either
a comma or a right encloser.

We say that a sequence of tokens is left-balanced if (a) the ma-
terial in every overline cluster and every underline cluster immedi-
ately contained in the sequence is balanced, and (b) there is no pre-
fix of the sequence (including the sequence itself) that immediately
contains more right enclosers than left enclosers. Similarly, a se-
quence of tokens is right-balanced if (a) the material in every over-
line cluster and every underline cluster immediately contained in
the sequence is balanced, and (b) there is no suffix of the sequence
(including the sequence itself) that immediately contains more left
enclosers than right enclosers. A sequence of tokens is balanced
if it is both left-balanced and right-balanced, left-enclosing if it is
left-balanced but not right-balanced, right-enclosing if it is right-
balanced but not left-balanced. A token z is unenclosed if either the
maximal subsequence to the left of z in the immediately containing
token sequence is not left-enclosing or the maximal subsequence to
the right of z in that token sequence is not right-enclosing.

5.1.2 Assertions and Inference Rules
A assertion is a sentence of the assertion language that may be
determined to be valid or invalid. We rely critically on only one
characteristic of assertion language syntax: that it have a comma
token. The assertion language may use a notation such as e[v/x] or
e[v1/x1, . . . , vn/xn] to indicate substitution, where e and v and
every vi represent phrases of the object language, x and every
xi represent single-token identifiers of the object language, and
“ [”and “] ”and “/ ” are tokens of the assertion language but not of
the object language. The assertion language may include a function
that can take any number of arguments and returns a nonnegative
integer indicating now many arguments it was given; for example,
#(a, zi, x > y) = 3.1

An inference rule consists of a set of assertions called the pre-
misses and a second, nonempty set of assertions called the conclu-
sions2; it is customary to notate an inference rule as a horizontal
line with the premisses above the line and the conclusion(s) below
the line. The premisses (and conclusions) may be stacked vertically
and/or separated by commas [P78A, §1.5ff.], but more recent cus-
tom is to put multiple premisses on a line, separated only by wide
whitespace (2 ems or more), while trying to minimize the number
of lines required. If an inference rule has no premisses, one may
either (1) leave whitespace above the horizontal line, (2) write “ • ”
above the horizontal line, or (3) omit the horizontal line.

A possibly repeated inference rule is either an inference rule or
an overline cluster whose overline is an overbar and whose material
is a possibly repeated inference rule (rather than a set of tokens).

5.1.3 BNF
A BNF (Backus-Naur Form) description of an object language con-
sists of one or more productions. Each production has a nonter-
minal on its left-hand side3 and a set of alternatives on its right-
hand side. Each nonterminal is typically an identifier, and may be
a monogram. Each alternative is a BNF token sequence annotated
by a set of constraints. Each token in a BNF token sequence must
be either an object-language token, a nonterminal appearing in the
left-hand side of some BNF production, a monogram that matches
a nonterminal appearing in the left-hand side of some BNF produc-
tion, an ellipsis, or an overline cluster, underline cluster, or boxed
cluster whose material is a BNF token sequence. (Thus, all repeti-
tion notations may eb used in BNF alternatives.) Each constraint is
an assertion. Typically each production is written as the symbol ::=
with the nonterminals written to its left, separated by commas, and
the alternatives written to its right, separated by vertical bars “ | ”.

A monogram is said to match a nonterminal if the nonterminal is
also a monogram and a sequence of decorations of the nonterminal
can produce the original monogram, where a decoration operation
consists of either adding an accent or attaching an integer subscript.
(For example, x′ matches x, x̂3 matches x, and x̂′3 8 matches any
of x̂′3, x̂′, x̂3 8, x̂3, x̂, x′3 8, x′3, x′, x3 8, x3, and x.) If a monogram
matches more than one nonterminal, the best match is the one

1 We dislike the use of |x| to denote the length of the sequence x because
if we happen to choose x = x1, then it is not clear whether |x| = 1 (using
abstract syntax) or |x| = |x1| = (if x1 ≥ 0 then xi else − xi) (using
concrete syntax). A similar convention with big operators is less dangerous,
because when #(x) = 1,

∧
x = x1 under either interpretation.

2 In most cases an inference rule will have only a single conclusion, but
in some cases it is useful to allow several, particularly when they may be
generated by a repetition notation. It is as if there were multiple inference
rules, each with one conclusion and each having all the same premisses.
3 As an abbreviation, one may write a comma-separated sequence of non-
terminals on the left-hand side of a BNF production; it is as if several copies
of the production were written, one for each of the nonterminals listed, with
just that nonterminal on its left-hand side.

For submission to 2017 ACM POPL 10 2016/6/30

(if any) that matches all the others. For example, if τ and τ ′ are
nonterminals, then τ ′ is the best match for the monogram τ ′3, but τ
is the best match for τ3.

5.2 Interpretation
Metanotation is interpreted by expanding a template into a specific
instance, which may have constraints attached; the instance is rele-
vant only if the constraints are satisfied. Interpretation proceeds in
three steps: macro-expanding repetition notations, replacing BNF
nonterminals, and performing substitutions. Each of the first two
steps may involve making free choices. In effect, a template is re-
garded as representing all possible expansions.

5.2.1 Expand Repetition Tokens
Repetition expansion can be performed within any of the following
contexts: an inference rule template, one alternative of a BNF
production, or a sentence or paragraph of text. Repetition expansion
proceeds in eight steps:

Initialize bookkeeping. Create two data structures, each initially
empty: C (Constraints) is a set of equalities, and P (Pairs) is a set
of pairs (m, v) where m is a monogram and v is a variable.

Transform ellipses to overbars. In this section we use greek-
letter monograms to denote sequences of tokens and p and q to
represent integer-valued expressions of the assertion language. We
use “. . .” to denote an ellipsis, though it might actually have an-
other appearance such as “· · · ” or “ :: ”.

Repeat the following sentence until execution of the sentence
results in no changes to the context: For every ellipsis in the context
(visiting them as if in some sequential order), attempt a left-and-
right single-ellipsis replacement (see below); if it does not succeed,
attempt a left-only single-ellipsis replacement (see below). if it does
not succeed, attempt a double-ellipsis replacement (see below).4

After the preceding repetition has completed, then every re-
maining ellipsis that is both left-delimited and right-delimited is
replaced with “ ” (an overline cluster containing the don’t-care
symbol). It is an error if this process does not eliminate all remain-
ing ellipses in the context.

To attempt a left-and-right single-ellipsis replacement with re-
spect to a given ellipsis: Let x be a fresh variable, and examine the
tokens to the left and right of the ellipsis to identify material having
the pattern α′κ . . . κα′′ such that (a) the “. . .” in the pattern corre-
sponds to the given ellipsis; (b) each of α′κ and κα′′ is maximal
(as long as possible), is balanced, and contains no ellipsis; (c) all
the material lies within the span of any overline or underline that is
above or below the given ellipsis; and (d) there exist α and p and q
such that x occurs at least once in α, and p 6= q, and the result of
replacing every occurrence of x with p in α is α′, and the result of
replacing every occurrence of x with q in α is α′′, and p and q are
minimal balanced substrings (or subexpressions) of the assertion
language. (Note that κ may be empty.) If such material is identi-
fied, replace it with −⇀α p≤x≤q if κ is empty or with α κ p≤x≤q if κ
is not empty, and the attempt succeeds.

To attempt a left-only single-ellipsis replacement with respect
to a given ellipsis: Examine the tokens to the left of the ellipsis to
identify material having the pattern α′κα′′κ . . . such that (a) the
“. . .” in the pattern corresponds to the given ellipsis; (b) each of
α′κα′′κ is maximal, is balanced, and contains no ellipsis; (c) all
the material lies within the span of any overline or underline that
is above or below the given ellipsis; and (d) there exists α such

4 Other patterns of ellipsis usage, such as “x1, . . .” and “x1, x2, . . . , xn”
and “x1, x2, . . . , xn−1, xn” may easily be interpreted in a similar manner.
We omit the handling of such additional patterns for lack of space, but may
include them in the final paper.

that x occurs at least once in α, and the result of replacing every
occurrence of x with 1 in α is α′, and the result of replacing every
occurrence of x with 2 in α is α′′. (Note that κ may be empty.) If
such material is identified, replace it with −⇀α if κ is empty or with
α κ if κ is not empty, and the attempt succeeds.

To attempt a double-ellipsis replacement with respect to a given
ellipsis: Let x and y be fresh variables, and examine the tokens
to the left and right of the ellipsis to identify material having the
pattern α′ . . . α′′ωγ′′ . . . γ′ (note that γ′′ precedes γ′) such that
(a) the material is balanced, the first “. . .” in the pattern corresponds
to the given ellipsis and the second “. . .” in the pattern corresponds
to another ellipsis of the same kind; (b) each of α′ and α′′ is
maximal, is left-enclosing, and contains no ellipsis, and each of
γ′ and γ′′ is maximal, is right-enclosing, and contains no ellipsis,
and ω is balanced and contains no ellipsis; (c) all the material lies
within the span of any overline or underline that is above or below
the given ellipsis; and (d) there exist α and γ and p and q such that
x occurs at least once in either α or γ, and p 6= q, and the result of
replacing every occurrence of x with p in α is α′, and the result of
replacing every occurrence of x with q in α is α′′, and the result of
replacing every occurrence of x with p in γ is γ′, and the result of
replacing every occurrence of x with q in γ is γ′′, and p and q are
minimal balanced substrings (or subexpressions) of the assertion
language. If such material is identified, replace it with −−⇀

αωγ
p≤x≤q

,
and the attempt succeeds.

Make implicit indices explicit. Repeat the following sentence un-
til the context contains no plain overline (an overbar or overharpoon
with no explicit variable binding): For some plain overline cluster
in the context that has no plain overline above it, do five things:
(1) choose a fresh variable i; (2) for every monogram m that is un-
der that plain overline and has no underline below it, attach i to m
as an additional subscript; (3) within the span of the plain overline,
identify every underline cluster that has no other underline below it;
(4) replace each underline cluster identified in step (3) with the ma-
terial it contains; (5) add the variable binding i to the plain overline
(thereby making it no longer plain).

It is an error if the context now contains any underlines.

Normalize separators. For every overline cluster in the context,
if it has an explicit separator that is a common token, replace it with
a boxed cluster containing that common token.

For every overline cluster in the context, if the overline is an
overbar and the overline cluster has no explicit separator, then add
an explicit separator that is a boxed cluster containing a single
comma token. If there is an object-language comma that is different
from the assertion-language comma token, and either (1) there is
an object-language comma or left encloser immediately to the left
of the overline cluster, or (2) there is an object-language comma
or right encloser immediately to the right of the overline cluster, or
(3) the overline cluster appears in a BNF alternative, then the single
comma token shall be an object-language comma, and otherwise an
assertion-language comma.5

At this point, every overline cluster for which the overline is an
overbar has an explicit separator that is a boxed cluster.

Normalize variable bindings. For every overline in the context, if
its variable binding is of the form i < n, replace it with 1 ≤ i < n;
if of the form i ≤ n, replace it with 1 ≤ i ≤ n; if of the form
n > i, replace it with n > i ≥ 1; if of the form n ≥ i, replace it
with n ≥ i ≥ 1; if of the form i ∈ p..q, replace it with p ≤ i ≤ q.

At this point, every overline cluster has a variable binding that
has one of the nine forms i, p ≤ i ≤ q, p ≤ i < q, p < i ≤ q,

5 This rule is context-sensitive. We explored context-free rules for deciding
which comma to use and found that none covered all cases of interest.

For submission to 2017 ACM POPL 11 2016/6/30

p < i < q, p ≥ i ≥ q, p ≥ i > q, p > i ≥ q, p > i > q. Bindings
of the first five forms are called upward bindings; bindings of the
last four forms are called downward bindings. In all nine cases we
say that i is the bound variable.

Create repetitions. Let
�� ��e denote (the decimal representation of)

the integer value of the expression e. Repeat the following sentence
until the context contains no overline: For some overline cluster in
the context that has an overbar for its overline and has no over-
line above it, do five things: (1) freely choose an integer b; (2) if the
overline cluster has no multiplicity marker, freely choose a nonneg-
ative integer `, or if the overline cluster has a multiplicity marker
+, freely choose a positive integer `, or if the overline cluster has
a multiplicity marker ?, freely choose ` to be either 0 or 1;6 (3) if
the variable binding of the overline is of the form i, then do three
things: (a) choose a fresh variable n; (b) for every occurrence of
i within the material below the overline, if it occurs as a subscript
within an indexed monogram m and the result of removing that
occurrence and all following subscripts from m results in a mono-
gram m′, then add7 the pair (m,n) to P ; (c) replace the variable
binding i with 1 ≤ i ≤ n; (4) replace the overline cluster with `
consecutive copies of the material within the overline, where within
the first copy (if any) i is everywhere replaced by

�� ��b , within the sec-
ond copy (if any) i is everywhere replaced by

�� ��b+ 1 (if the binding
is an upward binding) or

�� ��b− 1 (if the binding is a downward bind-
ing), and in general within the jth copy (if any) i is everywhere
replaced by

�� ��b− 1 + j (if the binding is an upward binding) or�� ��b+ 1− j (if the binding is a downward binding), so that within
the last copy (if any) i is everywhere replaced by

�� ��b− 1 + ` (if
the binding is an upward binding) or

�� ��b+ 1− ` (if the binding is a
downward binding), and where if ` > 1 then adjacent copies of the
material within the overline are separated by copies of the material
within the boxed cluster that is the explicit separator of the overline
cluster; (5) add to C two constraints, depending on the form of the
variable binding, according to the following table:

binding form the two constraints to be added to C
p < i < q p equals

�� ��b− 1 q equals
�� ��b+ `

p < i ≤ q p equals
�� ��b− 1 q equals

�� ��b+ `− 1
p ≤ i < q p equals

�� ��b q equals
�� ��b+ `

p ≤ i ≤ q p equals
�� ��b q equals

�� ��b+ `− 1
p > i > q p equals

�� ��b+ 1 q equals
�� ��b− `

p > i ≥ q p equals
�� ��b+ 1 q equals

�� ��b− `+ 1
p ≥ i > q p equals

�� ��b q equals
�� ��b− `

p ≥ i ≥ q p equals
�� ��b q equals

�� ��b− `+ 1

Overline clusters are handled in a similar manner (we omit the
details for lack of space, but may include them in the final paper).

Create length constraints. For all (m,n) in P and all (m′, n′)
in P , if m and m′ are the same monogram and the associated
variables n and n′ are not the same variable, then add to C a
constraint8 that the value of n must equal the value of n′. (Once
this is done, P is no longer needed.)

Add constraints to context. The set of equality constraints C
is implicitly added to the expansion of the entire context. If the

6 The number of copies ` is freely chosen, and then constraints are added to
ensure that this choice ` satisfies any stated bounds. In this way, the process
of expanding repetitions does not rely on the semantics of the assertion-
language expressions that denote the bounds; instead, interpretation of such
expressions is deferred until after the expansion process is complete.
7 Adding (m,n) to P may eventually result in creating contraints equating
n to other variables, each of which also represents the number of copies
produced by expanding an overline cluster. These constraints implement
the “spooky action at a distance” aspect of the overline notation.
8 Spooky!

context is an inference rule template, then the constraints may be
considered to be additional premisses; because an inference rule
has no effect if any of its premisses is not valid, it is as if expansions
for which the constraints are not satisfied are never produced at all.
If the context is an alternative of a BNF production, then when
expanding a nonterminal, an expansion of that alternative may be
chosen only if the constraints are satisfied; it is as if expansions
for which the constraints are not satisfied are not present at all. If
the context is a declarative sentence or paragraph of text, then the
claims of that sentence or paragraph should be regarded as true
only for expansions for which the constraints are satisfied; it is as if
expansions for which the constraints are not satisfied do not occur
in the text.

5.2.2 Expand BNF Nonterminals and Other Symbols
If the context is not a BNF alternative, then consider the set of all
distinct tokens in the context such that each such token is either
a BNF nonterminal or a monogram (possibly both). For each one:
(1) if it is a BNF nonterminal, then freely choose some phrase of
the object language generated by that nonterminal; (2) if it is not
a BNF nonterminal but is a monogram that matches at least one
BNF nonterminal, then freely choose some phrase of the object
language generated by the nonterminal that is the best match for
the monogram (it is an error if there is no best match); (3) if it is a
monogram that does not match any BNF nonterminal, then choose
(a copy of) the monogram itself as its “freely chosen phrase.”

A phrase of the object language is generated by a BNF nonter-
minal (call it α), if it can be produced by an instance of the follow-
ing process that terminates after a finite number of steps: (1) first
freely choose a production that has the nonterminal on its left-hand
side and has at least one alternative whose constraints are satisfied;
(2) then freely choose some alternative from that production whose
constraints are satisfied; (3) then replace each nonterminal in the
token sequence of the alternative with a freely chosen phrase gen-
erated by that nonterminal (thus this is a recursive process)—the
result is a phrase freely chosen for α.

5.2.3 Perform Substitutions
For every occurrence in the context of a substitution notation (say
e[v1/x1, . . . , vn/vn]), replace each of e and each vi and each xi
with the result of replacing each BNF nonterminal or monogram
within it by the phrase freely chosen for it in the previous step.
Then perform the indicated capture-avoiding substitution using the
corresponding results, and finally use the result to replace that
occurrence of the substitution notation within the context.

For every occurrence of the don’t-care symbol “ ” in the con-
text, replace it with a freely chosen balanced sequence of object-
language tokens that contains no unenclosed comma tokens.

Delete the token “•” everywhere it occurs within the context.
The result is a completely expanded instance of the context.

6. Examples
We believe that our metanotation gives the intended interpretation
to the following example [P07D, Fig. 3], which uses ellipses both
between assertions and within an assertion:

δ = C1 of τ1 | · · · | Cn of τn
Γ ` v : δ Γ, x1 : τ1 ` e1 : τ · · · Γ, xn : τn ` en : τ

Γ ` match v with (C1 x1 → e1 | · · · | Cn xn → en) : τ

but also allows further abbreviation using overline notation (and we
choose to rename τ to τ ′ for clarity):

Γ ` v : δ δ = C of τ
|

Γ, x : τ ` e : τ ′

Γ ` match v with (Cx→ e) : τ ′

For submission to 2017 ACM POPL 12 2016/6/30

and if we don’t like the look of that explicit separator “|” then we
can write it this way, using a left-only ellipsis:

Γ ` v : δ δ = C1 of τ1 | C2 of τ2 | · · · Γ, x : τ ` e : τ ′

Γ ` match v with (Cx→ e) : τ ′

One paper [P09E, §4.1] explains “We use the notation a for both
the list a1, . . . , an and the set {a1, . . . , an}, for n ≥ 0. We abbre-
viate terms with list subterms in the obvious way, e.g., T x stands
for T1 x1, . . . , Tn xn, T\M stands for T\M1\ . . . \Mn, and
p.S stands for p.S1, . . . , p.Sn.” But it is not obvious on syntactic
grounds alone why T\M should not stand for T\M1, . . . , T\Mn,
or p.S for p.S1. · · · .Sn. The metanotation we propose allows one
to write

↼−−−
T \M for T\M1\ . . . \Mn and p.S for p.S1, . . . , p.Sn.

Another paper [P16L, §3.3] states “We write [for ~z < ~e → E]
short for [for z1 < e1 → . . . [for zn < en → E] . . .], and
E[~z] for E[z1]...[zn].” There are fine ad hoc notations when well
explained (as here), but such patterns are also easily captured by
our harpoon overline notation as

−−−−−−−−−−⇀
[for z < e→ E] and

↼−−
E [z] (or

perhaps E
−⇀
[z]), and moreover the syntactic process we present

in §5.2 provides appropriate interpretations for the ellipsis forms
[for z1 < e1 → . . . [for zn < en → E] . . .] and E[z1]...[zn].

A good example of double ellipses: “We write δ(q,D(ti, pi))
for δ(. . . (δ(q,D(t1, p1)), . . .),D(tn, pn)).” [P02H, §6.1] (Note
the use of the index variable i with the overline, but with no
explicit indication that i is bound.) Using harpoons, we write
↼−−−−−−−−
δ(q ,D(ti, pi)) for δ(. . . (δ(q,D(t1, p1)), . . .),D(tn, pn)).

To answer a question we pose near the end of §3.2: using nested
overline notation, we write β = {|(G0, null), (Gi, oi.f1. · · · .fn)|}

[P05U, Fig. 5] as β = {|(G0, null), (G,↼−o .f)|}, and we write our

alternative example (Gi, oi.fi 1. · · · .fi ni) as (G,↼−o .f).
Here is a complex example of nested repetition notation [P14Ψ,

Fig. 4]:

C:Ψ ∈ Σ Ψ = [α:κ]. F (ρ) ∼ υ
Σ; ∆ t̀y τ : κi c̀tx Σ; ∆
∀j < i, no conflict(Ψ, i, τ , j)

Σ; ∆ c̀o C[i] τ : F (ρi[τ/αi]) ∼ υi[τ/αi]
CO AXIOM

As the authors explain in the text [P14Ψ, §4.3], the free variable i
indicates which of the equations in Ψ (the list of equations of axiom
C) is to be instantiated. Elsewhere in the text [P14Ψ, §4.1] we see:

Although our notation for lists does not make it apparent, we
restrict the form of the equations to require that F refers to only
one type family—that is, there are no independent Fi. We use
subscripts on metavariables to denote which equation they refer
to, and we refer to the types ρi as the type patterns of the ith
equation. We assume that the variables α bound in each equation
are distinct from the variables bound in other equations.

A little thought then shows that we must regard α, κ, and ρ as two-
dimensional (that is, doubly indexed) aggregates, but F is not to
be regarded as a vector or sequence, despite the fact that in one
place it occurs beneath an overline, and τ must be regarded as one-
dimensional, despite the fact that in one place it occurs beneath
two overlines. The inference rule is perfectly consistent, but cannot
be interpreted on a purely syntactic basis; some understanding
of the dimensions or types of the metavariables is required. We
believe that the following version, expressed in the metanotation
presented in this paper, accurately conveys the intention of that
paper’s authors, but can be interpreted (that is, correctly expanded)
using the purely formal, syntactic process we present in §5.2:

C:Ψ ∈ Σ Ψ =
〈
[α:κ]. F (ρ) ∼ υ

〉
Σ; ∆ t̀y τ : κi c̀tx Σ; ∆

no conflict(Ψ, i, 〈τ 〉, j)
j<i

Σ; ∆ c̀o C[i]〈τ 〉 : F
(
ρi[τ/αi]

)
∼ υi[τ/αi]

CO AXIOMi

i

We have added enclosers 〈 〉 where otherwise a concrete-syntax
interpretation might differ from an abstract-syntax interpretation.
Underlines make explicit where an overline should not attach sub-
scripts (for example, F and Σ and ∆). An overline cluster replaces
the notation ∀j < i. Finally, an overline over the entire inference
rule provides a binding point for the variable i, making clear that
this is really a set of inference rules and that they differ according
to the value of i (therefore we added a subscript i to the rule la-
bel). Because i is used to index α and κ and ρ and υ, they are all
constrained to have the same length n, and the number of inference
rules is also constrained to be n, exactly as desired.

7. Recommendations and Future Work
We make no recommendation to prefer one form of metanotation
over another, although we do hope that the one we have outlined
will prove attractive. We do, however, strongly recommend to fu-
ture authors that, whatever notations you use for repetition and es-
pecially substitution, do not take them for granted, but explain them
carefully to readers. By way of example, here are sentences that we
plan to use in future papers; they happen to illustrate our notational
preferences, but you can easily use them as models for describing
any notation you prefer:

We use e[v/x] to denote the standard capture-avoiding substitu-
tion of (a copy of) v for every free occurrence of x within e.
We use e[v/x] to denote the standard capture-avoiding simulta-
neous substitution of (copies of) vi for every free occurrence of
xi within e, for all 1 ≤ i ≤ #(x).
We use σ[x → v] to denote a substitution σ′ that is identical to
σ except that σ′ substitutes v for free occurrences of x.
We use f [x 7→ v] to denote a function f ′ that is identical to
function f except that f ′(x) = v.
We use M [x := v] to denote a memory M ′ that is identical to
memory M except that M ′[x] = v.
We use x to mean the sequence x1, . . . , xn; more generally,
we use token-sequence to denote a (possibly empty) comma-
separated sequence of copies of the token-sequence, where
within the ith copy, i is attached as a subscript to every mono-
gram that is not underlined. (A monogram is any single letter,
possibly with accents and/or subscripts.)

As for future work: It remains to survey and systematically an-
alyze the use of metanotation in other conference series; we be-
lieve the most illuminating would be OOPSLA, ICFP, and PLDI.
It would be also interesting to trace the development of changes in
metanotation notation by examining the connections among papers,
including common co-authors, institutional influence, and biblio-
graphic citation; such considerations were beyond the scope of this
paper. There may be other useful ways to extend the metanota-
tion presented here, including the accommodation of other patterns
for using ellipses. In this paper we primarily used English as the
metametanotation, but we should explore using the metanotation
itself to define its own syntax and semantics, in the style of one of
Reynolds’ metacircular definitional interpreters [8]. Finally, there
are great opportunities for mechanizing the metanotation, one pos-
sible goal being to produce appropriate input for theorem provers
such as Coq; one line of research [10, P12Ξ, P15V] has already
taken steps in this direction.

For submission to 2017 ACM POPL 13 2016/6/30

Note to reviewers: As required by the 2017 POPL call for papers,
our paper is no more than 12 pages in length, excluding the bibli-
ography, in (at least) 9pt format. We have done our best to format
the bibliography so as to minimize the total number of pages while
maximizing its usefulness.

We are aware that many of the bibliographic entries are in
bad shape. That’s because we took the BIBTEX entries for all the
POPL papers straight off the ACM Digital Library website. We are
working to clean them up to acceptable standards by comparing
them to the original paper proceedings, and expect to complete the
process well before the author response period. (We regard this as
the normal process that any author must go through to clean up
third-party BIBTEX data; it’s just that this time we need to clean up
over 600 of them.)

References
[1] H. P. Barendregt. The Lambda Calculus: Its Syntax and Semantics,

revised edition. Elsevier Science Publishers, Amsterdam, The
Netherlands, 1984. ISBN 0-444-87508-5.

[2] Kim B. Bruce. Foundations of Object-Oriented Languages: Types
and Semantics. MIT Press, Cambridge, Massachusetts, 2002.
ISBN 0-262-02523-X.

[3] Alonzo Church. The Calculi of Lambda Conversion, volume 6
of Annals of Mathematics Studies. Princeton University Press,
Princeton, New Jersey, 1941. Reprinted by Klaus Reprint Corp.,
New York, 1965.

[4] James Gosling, Bill Joy, and Guy Steele. The Java Language
Specification. Addison-Wesley Longman Publishing Co., Inc.,
Reading, Massachusetts, 1996. ISBN 0-201-63451-1.

[5] Carl A. Gunter. Semantics of Programming Languages: Structures
and Techniques. MIT Press, Cambridge, Massachusetts, 1992.
ISBN 0-262-07143-6.

[6] Atsushi Igarashi, Benjamin C. Pierce, and Philip Wadler. Feather-
weight Java: A minimal core calculus for Java and GJ. ACM Trans.
Programming Languages and Systems (TOPLAS), 23(3):396–450,
May 2001. Association for Computing Machinery, New York.
http://doi.acm.org/10.1145/503502.503505

[7] Robin Milner, Mads Tofte, Robert Harper, and David MacQueen.
The Definition of Standard ML (Revised). MIT Press, Cambridge,
Massachusetts, 1997. ISBN 0-262-63181-4.

[8] John C. Reynolds. Definitional interpreters for higher-order pro-
gramming languages. In Proceedings of the ACM Annual Con-
ference: Volume 2, Boston, Massachusetts, USA, ACM ’72, 717–
740, New York, 1972. Association for Computing Machinery.
http://doi.acm.org/10.1145/800194.805852

[9] John C. Reynolds. Theories of Programming Languages. Cam-
bridge University Press, Cambridge, United Kingdom, 1998.
ISBN 978-0-521-59414-1.

[10] Grigore Ros,u and Traian Florin S, erbănută. An overview of the
K semantic framework. The Journal of Logic and Algebraic Pro-
gramming, 79(6):397–434, 2010. http://www.sciencedirect.com/
science/article/pii/S1567832610000160

[11] Guy L. Steele Jr., Scott E. Fahlman, Richard P. Gabriel, David A.
Moon, Daniel L. Weinreb, Daniel G. Bobrow, Linda G. DeMichiel,
Sonya E. Keene, Gregor Kiczales, Crispin Perdue, Kent M. Pit-
man, Richard C. Waters, and Jon L White. Common Lisp: The
Language (Second Edition). Digital Press, Bedford, MA, 1990.
ISBN 1-55558-041-6.

[12] Guy L. Steele Jr. and W. Daniel Hillis. Connection Machine Lisp:
Fine-grained parallel symbolic processing. In LFP ’86: Proc.
1986 ACM Conference on LISP and Functional Programming,
Cambridge, Massachusetts, 279–297. Association for Computing
Machinery SIGPLAN and SIGACT and SIGART, August 1986.
ISBN 0-89791-200-4. http://doi.acm.org/10.1145/319838.319870

[13] Glynn Winskel. The Formal Semantics of Programming Lan-
guages: An Introduction. MIT Press, Cambridge, Massachusetts,
1993. ISBN 0-262-73103-7-6.

[P75] POPL ’75: Proc. 2nd ACM SIGACT-SIGPLAN Symposium on
Principles of Programming Languages, New York, 1975. Associ-
ation for Computing Machinery.
http://dl.acm.org/citation.cfm?id=512976

[P75A] Neil D. Jones and Steven S. Muchnick. Even simple programs are
hard to analyze. In POPL ’75 [P75], 106–118.
http://doi.acm.org/10.1145/512976.512988

[P75B] Marvin Solomon. Modes, values and expressions. In POPL ’75
[P75], 149–159. http://doi.acm.org/10.1145/512976.512992

[P76] POPL ’76: Proc. 3rd ACM SIGACT-SIGPLAN Symposium on
Principles of Programming Languages, New York, 1976. Associ-
ation for Computing Machinery.

[P76A] Neil D. Jones and Steven S. Muchnick. Binding time optimization
in programming languages: Some thoughts toward the design of
an ideal language. In POPL ’76 [P76], 77–94.
http://doi.acm.org/10.1145/800168.811542

[P77] POPL ’77: Proc. 4th ACM SIGACT-SIGPLAN Symposium on
Principles of Programming Languages, New York, 1977. Associ-
ation for Computing Machinery.

[P77A] Edmund Melson Clarke, Jr. Programming language constructs for
which it is impossible to obtain good hoare-like axiom systems.
In POPL ’77 [P77], 10–20.
http://doi.acm.org/10.1145/512950.512952

[P77B] Bernard Lang. Threshold evaluation and the semantics of call by
value, assignment and generic procedures. In POPL ’77 [P77],
227–237. http://doi.acm.org/10.1145/512950.512972

[P78] POPL ’78: Proc. 5th ACM SIGACT-SIGPLAN Symposium on
Principles of Programming Languages, New York, USA, 1978.
Association for Computing Machinery.

[P78A] Steven M. German. Automating proofs of the absence of common
runtime errors. In POPL ’78 [P78], 105–118.
http://doi.acm.org/10.1145/512760.512772

[P78B] Robert Cartwright and Derek Oppen. Unrestricted procedure calls
in hoare’s logic. In POPL ’78 [P78], 131–140.
http://doi.acm.org/10.1145/512760.512774

[P78C] David Harel and Vaughan R. Pratt. Nondeterminism in logics of
programs. In POPL ’78 [P78], 203–213.
http://doi.acm.org/10.1145/512760.512782

[P79] POPL ’79: Proc. 6th ACM SIGACT-SIGPLAN Symposium on
Principles of Programming Languages, New York, 1979. Associ-
ation for Computing Machinery.

[P79A] Robert Cartwright and John McCarthy. First order programming
logic. In POPL ’79 [P79], 68–80.
http://doi.acm.org/10.1145/567752.567759

[P79B] David Harel. Recursion in logics of programs. In POPL ’79 [P79],
81–92. http://doi.acm.org/10.1145/567752.567760

[P79C] V. R. Pratt. Process logic: Preliminary report. In POPL ’79 [P79],
93–100. http://doi.acm.org/10.1145/567752.567761

[P79D] Marco A. Casanova and Philip A. Bernstein. The logic of a
relational data manipulation language. In POPL ’79 [P79], 101–
109. http://doi.acm.org/10.1145/567752.567762

[P79E] Richard P. Reitman and Gregory R. Andrews. Certifying infor-
mation flow properties of programs: An axiomatic approach. In
POPL ’79 [P79], 283–290.
http://doi.acm.org/10.1145/567752.567779

[P80] POPL ’80: Proc. 7th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, New York, 1980. Associ-
ation for Computing Machinery. ISBN 0-89791-011-7.

[P80A] Rohit Parikh. Propositional logics of programs: Systems, models,
and complexity. In POPL ’80 [P80], 186–192.
http://doi.acm.org/10.1145/567446.567464

[P81] POPL ’81: Proc. 8th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, New York, 1981. Associ-
ation for Computing Machinery. ISBN 0-89791-029-X.

For submission to 2017 ACM POPL 14 2016/6/30

http://doi.acm.org/10.1145/503502.503505
http://doi.acm.org/10.1145/800194.805852
http://www.sciencedirect.com/science/article/pii/S1567832610000160
http://www.sciencedirect.com/science/article/pii/S1567832610000160
http://doi.acm.org/10.1145/319838.319870
http://dl.acm.org/citation.cfm?id=512976
http://doi.acm.org/10.1145/512976.512988
http://doi.acm.org/10.1145/512976.512992
http://doi.acm.org/10.1145/800168.811542
http://doi.acm.org/10.1145/512950.512952
http://doi.acm.org/10.1145/512950.512972
http://doi.acm.org/10.1145/512760.512772
http://doi.acm.org/10.1145/512760.512774
http://doi.acm.org/10.1145/512760.512782
http://doi.acm.org/10.1145/567752.567759
http://doi.acm.org/10.1145/567752.567760
http://doi.acm.org/10.1145/567752.567761
http://doi.acm.org/10.1145/567752.567762
http://doi.acm.org/10.1145/567752.567779
http://doi.acm.org/10.1145/567446.567464

[P81A] William L. Scherlis. Program improvement by internal specializa-
tion. In POPL ’81 [P81], 41–49.
http://doi.acm.org/10.1145/567532.567536

[P81B] Ashok K. Chandra. Programming primitives for database lan-
guages. In POPL ’81 [P81], 50–62.
http://doi.acm.org/10.1145/567532.567537

[P81C] D. J. Kuck, R. H. Kuhn, D. A. Padua, B. Leasure, and M. Wolfe.
Dependence graphs and compiler optimizations. In POPL ’81
[P81], 207–218. http://doi.acm.org/10.1145/567532.567555

[P82] POPL ’82: Proc. 9th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, New York, 1982. Associ-
ation for Computing Machinery. ISBN 0-89791-065-6.

[P82A] Luis Damas and Robin Milner. Principal type-schemes for func-
tional programs. In POPL ’82 [P82], 207–212.
http://doi.acm.org/10.1145/582153.582176

[P82B] Shaula Yemini. An axiomatic treatment of exception handling. In
POPL ’82 [P82], 281–288.
http://doi.acm.org/10.1145/582153.582183

[P83] POPL ’83: Proc. 10th ACM SIGACT-SIGPLAN Symposium on
Principles of Programming Languages, New York, 1983. Associ-
ation for Computing Machinery. ISBN 0-89791-090-7.

[P83A] Leslie Lamport. Reasoning about nonatomic operations. In POPL
’83 [P83], 28–37. http://doi.acm.org/10.1145/567067.567072

[P83B] Alan Demers and James Donahue. Making variables abstract: An
equational theory for russell. In POPL ’83 [P83], 59–72.
http://doi.acm.org/10.1145/567067.567075

[P83C] Daniel Leivant. Polymorphic type inference. In POPL ’83 [P83],
88–98. http://doi.acm.org/10.1145/567067.567077

[P84] POPL ’84: Proc. 11th ACM SIGACT-SIGPLAN Symposium on
Principles of Programming Languages, New York, 1984. Associ-
ation for Computing Machinery. ISBN 0-89791-125-3. 549840.

[P84A] Thomas Reps and Bowen Alpern. Interactive proof checking. In
POPL ’84 [P84], 36–45.
http://doi.acm.org/10.1145/800017.800514 549840.

[P84B] David MacQueen, Gordon Plotkin, and Ravi Sethi. An ideal
model for recursive polymorphic types. In POPL ’84 [P84], 165–
174. http://doi.acm.org/10.1145/800017.800528 549840.

[P84C] Joseph Y. Halpern. A good hoare axiom system for an algol-like
language. In POPL ’84 [P84], 262–271.
http://doi.acm.org/10.1145/800017.800538 549840.

[P85] POPL ’85: Proc. 12th ACM SIGACT-SIGPLAN Symposium on
Principles of Programming Languages, New York, 1985. Associ-
ation for Computing Machinery. ISBN 0-89791-147-4. 549850.

[P85A] Prateek Mishra and Uday S. Reddy. Declaration-free type check-
ing. In POPL ’85 [P85], 7–21.
http://doi.acm.org/10.1145/318593.318603 549850.

[P85B] John C. Mitchell and Gordon D. Plotkin. Abstract types have
existential types. In POPL ’85 [P85], 37–51.
http://doi.acm.org/10.1145/318593.318606 549850.

[P85C] Van Nguyen, David Gries, and Susan Owicki. A model and
temporal proof system for networks of processes. In POPL ’85
[P85], 121–131.
http://doi.acm.org/10.1145/318593.318624 549850.

[P85D] Daniel Leivant. Logical and mathematical reasoning about imper-
ative programs: Preliminary report. In POPL ’85 [P85], 132–140.
http://doi.acm.org/10.1145/318593.318625 549850.

[P85E] Leslie Lamport and Fred B. Schneider. Constraints: A uniform
approach to aliasing and typing. In POPL ’85 [P85], 205–216.
http://doi.acm.org/10.1145/318593.318640 549850.

[P86] POPL ’86: Proc. 13th ACM SIGACT-SIGPLAN Symposium on
Principles of Programming Languages, New York, 1986. Associ-
ation for Computing Machinery.

[P86A] Howard Barringer, Ruurd Kuiper, and Amir Pnueli. A really
abstract concurrent model and its temporal logic. In POPL ’86
[P86], 173–183. http://doi.acm.org/10.1145/512644.512660

[P86B] Pierre America, Jaco de Bakker, Joost N. Kok, and Jan J. M. M.
Rutten. Operational semantics of a parallel object-oriented lan-
guage. In POPL ’86 [P86], 194–208.
http://doi.acm.org/10.1145/512644.512662

[P86C] Paul Hudak and Lauren Smith. Para-functional programming: A
paradigm for programming multiprocessor systems. In POPL ’86
[P86], 243–254. http://doi.acm.org/10.1145/512644.512667

[P86D] John C. Mitchell. Representation independence and data abstrac-
tion. In POPL ’86 [P86], 263–276.
http://doi.acm.org/10.1145/512644.512669

[P86E] Albert R. Meyer and Mark B. Reinhold. ”type” is not a type. In
POPL ’86 [P86], 287–295.
http://doi.acm.org/10.1145/512644.512671

[P87] POPL ’87: Proc. 14th ACM SIGACT-SIGPLAN Symposium on
Principles of Programming Languages, New York, 1987. Associ-
ation for Computing Machinery. ISBN 0-89791-215-2.

[P87A] Z. Manna and A. Pnueli. Specification and verification of concur-
rent programs by ∀-automata. In POPL ’87 [P87], 1–2.
http://doi.acm.org/10.1145/41625.41626

[P87B] J. Widom, D. Gries, and F. B. Schneider. Completeness and
incompleteness of trace-based network proof systems. In POPL
’87 [P87], 27–38. http://doi.acm.org/10.1145/41625.41628

[P87C] V. A. Saraswat. The concurrent logic programming language cp:
Definition and operational semantics. In POPL ’87 [P87], 49–62.
http://doi.acm.org/10.1145/41625.41630

[P87D] T.-M. Kuo and P. Mishra. On strictness and its analysis. In POPL
’87 [P87], 144–155. http://doi.acm.org/10.1145/41625.41638

[P87E] P. Caspi, D. Pilaud, N. Halbwachs, and J. A. Plaice. Lustre: A
declarative language for real-time programming. In POPL ’87
[P87], 178–188. http://doi.acm.org/10.1145/41625.41641

[P87F] C. Huizing, R. Gerth, and W. P. deRoever. Full abstraction of a
real-time denotational semantics for an occam-like language. In
POPL ’87 [P87], 223–236.
http://doi.acm.org/10.1145/41625.41645

[P87G] A. R. Meyer, J. C. Mitchell, E. Moggi, and R. Statman. Empty
types in polymorphic lambda calculus. In POPL ’87 [P87], 253–
262. http://doi.acm.org/10.1145/41625.41648

[P88] POPL ’88: Proc. 15th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, New York, 1988. Associ-
ation for Computing Machinery. ISBN 0-89791-252-7.

[P88A] J. C. Mitchell and R. Harper. The essence of ml. In POPL ’88
[P88], 28–46. http://doi.acm.org/10.1145/73560.73563

[P88B] J. M. Lucassen and D. K. Gifford. Polymorphic effect systems. In
POPL ’88 [P88], 47–57. http://doi.acm.org/10.1145/73560.73564

[P88C] A. J. Kfoury, J. Tiuryn, and P. Urzyczyn. A proper extension of ml
with an effective type-assignment. In POPL ’88 [P88], 58–69.
http://doi.acm.org/10.1145/73560.73565

[P88D] L. Cardelli. Structural subtyping and the notion of power type. In
POPL ’88 [P88], 70–79. http://doi.acm.org/10.1145/73560.73566

[P88E] S. Kamin. Inheritance in smalltalk-80: A denotational definition.
In POPL ’88 [P88], 80–87.
http://doi.acm.org/10.1145/73560.73567

[P88F] R. Stansifer. Type inference with subtypes. In POPL ’88 [P88],
88–97. http://doi.acm.org/10.1145/73560.73568

[P88G] B. Bloom, S. Istrail, and A. R. Meyer. Bisimulation can’t be
traced. In POPL ’88 [P88], 229–239.
http://doi.acm.org/10.1145/73560.73580

[P89] POPL ’89: Proc. 16th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, New York, 1989. Associ-
ation for Computing Machinery. ISBN 0-89791-294-2.

[P89A] P. Wadler and S. Blott. How to make ad-hoc polymorphism less
ad hoc. In POPL ’89 [P89], 60–76.
http://doi.acm.org/10.1145/75277.75283

[P89B] D. Rémy. Typechecking records and variants in a natural extension
of ml. In POPL ’89 [P89], 77–88.
http://doi.acm.org/10.1145/75277.75284

For submission to 2017 ACM POPL 15 2016/6/30

http://doi.acm.org/10.1145/567532.567536
http://doi.acm.org/10.1145/567532.567537
http://doi.acm.org/10.1145/567532.567555
http://doi.acm.org/10.1145/582153.582176
http://doi.acm.org/10.1145/582153.582183
http://doi.acm.org/10.1145/567067.567072
http://doi.acm.org/10.1145/567067.567075
http://doi.acm.org/10.1145/567067.567077
http://doi.acm.org/10.1145/800017.800514
http://doi.acm.org/10.1145/800017.800528
http://doi.acm.org/10.1145/800017.800538
http://doi.acm.org/10.1145/318593.318603
http://doi.acm.org/10.1145/318593.318606
http://doi.acm.org/10.1145/318593.318624
http://doi.acm.org/10.1145/318593.318625
http://doi.acm.org/10.1145/318593.318640
http://doi.acm.org/10.1145/512644.512660
http://doi.acm.org/10.1145/512644.512662
http://doi.acm.org/10.1145/512644.512667
http://doi.acm.org/10.1145/512644.512669
http://doi.acm.org/10.1145/512644.512671
http://doi.acm.org/10.1145/41625.41626
http://doi.acm.org/10.1145/41625.41628
http://doi.acm.org/10.1145/41625.41630
http://doi.acm.org/10.1145/41625.41638
http://doi.acm.org/10.1145/41625.41641
http://doi.acm.org/10.1145/41625.41645
http://doi.acm.org/10.1145/41625.41648
http://doi.acm.org/10.1145/73560.73563
http://doi.acm.org/10.1145/73560.73564
http://doi.acm.org/10.1145/73560.73565
http://doi.acm.org/10.1145/73560.73566
http://doi.acm.org/10.1145/73560.73567
http://doi.acm.org/10.1145/73560.73568
http://doi.acm.org/10.1145/73560.73580
http://doi.acm.org/10.1145/75277.75283
http://doi.acm.org/10.1145/75277.75284

[P89C] C. Paulin-Mohring. Extracting Fω’s programs from proofs in the
calculus of constructions. In POPL ’89 [P89], 89–104.
http://doi.acm.org/10.1145/75277.75285

[P89D] B. Thomsen. A calculus of higher order communicating systems.
In POPL ’89 [P89], 143–154.
http://doi.acm.org/10.1145/75277.75290

[P89E] M. Abadi, L. Cardelli, B. Pierce, and G. Plotkin. Dynamic typing
in a statically-typed language. In POPL ’89 [P89], 213–227.
http://doi.acm.org/10.1145/75277.75296

[P89F] J. Meseguer. Relating models of polymorphism. In POPL ’89
[P89], 228–241. http://doi.acm.org/10.1145/75277.75297

[P90] POPL ’90: Proc. 17th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, New York, 1990. Associ-
ation for Computing Machinery. ISBN 0-89791-343-4.

[P90A] M. Abadi, L. Cardelli, P.-L. Curien, and J.-J. Levy. Explicit
substitutions. In POPL ’90 [P90], 31–46.
http://doi.acm.org/10.1145/96709.96712

[P90B] Timothy G. Griffin. A formulae-as-type notion of control. In
POPL ’90 [P90], 47–58. http://doi.acm.org/10.1145/96709.96714

[P90C] Andrea Asperti, Gian Luigi Ferrari, and Roberto Gorrieri. Im-
plicative formulae in the “proofs of computations” analogy. In
POPL ’90 [P90], 59–71. http://doi.acm.org/10.1145/96709.96715

[P90D] Gerard Berry and Gerard Boudol. The chemical abstract machine.
In POPL ’90 [P90], 81–94.
http://doi.acm.org/10.1145/96709.96717

[P90E] Yves Lafont. Interaction nets. In POPL ’90 [P90], 95–108.
http://doi.acm.org/10.1145/96709.96718

[P90F] John C. Mitchell. Toward a typed foundation for method special-
ization and inheritance. In POPL ’90 [P90], 109–124.
http://doi.acm.org/10.1145/96709.96719

[P90G] William R. Cook, Walter Hill, and Peter S. Canning. Inheritance
is not subtyping. In POPL ’90 [P90], 125–135.
http://doi.acm.org/10.1145/96709.96721

[P90H] Justin O. Graver and Ralph E. Johnson. A type system for
smalltalk. In POPL ’90 [P90], 136–150.
http://doi.acm.org/10.1145/96709.96722

[P90I] Vijay A. Saraswat and Martin Rinard. Concurrent constraint
programming. In POPL ’90 [P90], 232–245.
http://doi.acm.org/10.1145/96709.96733

[P90J] Carl A. Gunter. Relating total and partial correctness interpreta-
tions of non-deterministic programs. In POPL ’90 [P90], 306–
319. http://doi.acm.org/10.1145/96709.96741

[P90K] Robert Harper, John C. Mitchell, and Eugenio Moggi. Higher-
order modules and the phase distinction. In POPL ’90 [P90], 341–
354. http://doi.acm.org/10.1145/96709.96744

[P90L] Francois Rouaix. Safe run-time overloading. In POPL ’90 [P90],
355–366. http://doi.acm.org/10.1145/96709.96746

[P90M] Satish Thatte. Quasi-static typing. In POPL ’90 [P90], 367–381.
http://doi.acm.org/10.1145/96709.96747

[P91] POPL ’91: Proc. 18th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, New York, 1991. Associ-
ation for Computing Machinery. ISBN 0-89791-419-8.

[P91A] Keshav Pingali, Micah Beck, Richard Johnson, Mayan Moudgill,
and Paul Stodghill. Dependence flow graphs: An algebraic ap-
proach to program dependencies. In POPL ’91 [P91], 67–78.
http://doi.acm.org/10.1145/99583.99595

[P91B] Robert Harper and Benjamin Pierce. A record calculus based on
symmetric concatenation. In POPL ’91 [P91], 131–142.
http://doi.acm.org/10.1145/99583.99603

[P91C] William Clinger and Jonathan Rees. Macros that work. In POPL
’91 [P91], 155–162. http://doi.acm.org/10.1145/99583.99607

[P91D] Bruce Duba, Robert Harper, and David MacQueen. Typing first-
class continuations in ml. In POPL ’91 [P91], 163–173.
http://doi.acm.org/10.1145/99583.99608

[P91E] Alon Kleinman, Yael Moscowitz, Amir Pnueli, and Ehud Sharpio.
Communication with directed logic variables. In POPL ’91 [P91],
221–232. http://doi.acm.org/10.1145/99583.99615

[P91F] Jon G. Riecke. Fully abstract translations between functional
languages. In POPL ’91 [P91], 245–254.
http://doi.acm.org/10.1145/99583.99617

[P91G] Luc Maranget. Optimal derivations in weak lambda-calculi and in
orthogonal term rewriting systems. In POPL ’91 [P91], 255–269.
http://doi.acm.org/10.1145/99583.99618

[P91H] Alex Aiken and Brian Murphy. Static type inference in a dynami-
cally typed language. In POPL ’91 [P91], 279–290.
http://doi.acm.org/10.1145/99583.99621

[P91I] Xavier Leroy and Pierre Weis. Polymorphic type inference and
assignment. In POPL ’91 [P91], 291–302.
http://doi.acm.org/10.1145/99583.99622

[P91J] Pierre Jouvelot and David Gifford. Algebraic reconstruction of
types and effects. In POPL ’91 [P91], 303–310.
http://doi.acm.org/10.1145/99583.99623

[P91K] Martin Abadi and Gordon Plotkin. A logical view of composition
and refinement. In POPL ’91 [P91], 323–332.
http://doi.acm.org/10.1145/99583.99626

[P91L] Vijay A. Saraswat, Martin Rinard, and Prakash Panangaden. The
semantic foundations of concurrent constraint programming. In
POPL ’91 [P91], 333–352.
http://doi.acm.org/10.1145/99583.99627

[P92] POPL ’92: Proc. 19th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, New York, 1992. Associ-
ation for Computing Machinery. ISBN 0-89791-453-8. 549920.

[P92A] Andrzej Filinski. Linear continuations. In POPL ’92 [P92], 27–
38. http://doi.acm.org/10.1145/143165.143174 549920.

[P92B] Patrick Cousot and Radhia Cousot. Inductive definitions, seman-
tics and abstract interpretations. In POPL ’92 [P92], 83–94.
http://doi.acm.org/10.1145/143165.143184 549920.

[P92C] Martin C. Rinard and Monica S. Lam. Semantic foundations of
jade. In POPL ’92 [P92], 105–118.
http://doi.acm.org/10.1145/143165.143189 549920.

[P92D] Dave Berry, Robin Milner, and David N. Turner. A semantics for
ml concurrency primitives. In POPL ’92 [P92], 119–129.
http://doi.acm.org/10.1145/143165.143191 549920.

[P92E] Atsushi Ohori. A compilation method for ml-style polymorphic
record calculi. In POPL ’92 [P92], 154–165.
http://doi.acm.org/10.1145/143165.143200 549920.

[P92F] Xavier Leroy. Unboxed objects and polymorphic typing. In POPL
’92 [P92], 177–188.
http://doi.acm.org/10.1145/143165.143205 549920.

[P92G] Mads Tofte. Principal signatures for higher-order program mod-
ules. In POPL ’92 [P92], 189–199.
http://doi.acm.org/10.1145/143165.143206 549920.

[P92H] Robero Di Cosmo. Type isomorphisms in a type-assignment
framework. In POPL ’92 [P92], 200–210.
http://doi.acm.org/10.1145/143165.143208 549920.

[P92I] QingMing Ma. Parametricity as subtyping. In POPL ’92 [P92],
281–292. http://doi.acm.org/10.1145/143165.143225 549920.

[P92J] Patrick Lincoln and John C. Mitchell. Algorithmic aspects of type
inference with subtypes. In POPL ’92 [P92], 293–304.
http://doi.acm.org/10.1145/143165.143227 549920.

[P92K] Benjamin C. Pierce. Bounded quantification is undecidable. In
POPL ’92 [P92], 305–315.
http://doi.acm.org/10.1145/143165.143228 549920.

[P93] POPL ’93: Proc. 20th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, New York, 1993. Associ-
ation for Computing Machinery. ISBN 0-89791-560-7. 549930.

[P93A] Stephen Weeks and Matthias Felleisen. On the orthogonality of
assignments and procedures in algol. In POPL ’93 [P93], 57–70.
http://doi.acm.org/10.1145/158511.158523 549930.

For submission to 2017 ACM POPL 16 2016/6/30

http://doi.acm.org/10.1145/75277.75285
http://doi.acm.org/10.1145/75277.75290
http://doi.acm.org/10.1145/75277.75296
http://doi.acm.org/10.1145/75277.75297
http://doi.acm.org/10.1145/96709.96712
http://doi.acm.org/10.1145/96709.96714
http://doi.acm.org/10.1145/96709.96715
http://doi.acm.org/10.1145/96709.96717
http://doi.acm.org/10.1145/96709.96718
http://doi.acm.org/10.1145/96709.96719
http://doi.acm.org/10.1145/96709.96721
http://doi.acm.org/10.1145/96709.96722
http://doi.acm.org/10.1145/96709.96733
http://doi.acm.org/10.1145/96709.96741
http://doi.acm.org/10.1145/96709.96744
http://doi.acm.org/10.1145/96709.96746
http://doi.acm.org/10.1145/96709.96747
http://doi.acm.org/10.1145/99583.99595
http://doi.acm.org/10.1145/99583.99603
http://doi.acm.org/10.1145/99583.99607
http://doi.acm.org/10.1145/99583.99608
http://doi.acm.org/10.1145/99583.99615
http://doi.acm.org/10.1145/99583.99617
http://doi.acm.org/10.1145/99583.99618
http://doi.acm.org/10.1145/99583.99621
http://doi.acm.org/10.1145/99583.99622
http://doi.acm.org/10.1145/99583.99623
http://doi.acm.org/10.1145/99583.99626
http://doi.acm.org/10.1145/99583.99627
http://doi.acm.org/10.1145/143165.143174
http://doi.acm.org/10.1145/143165.143184
http://doi.acm.org/10.1145/143165.143189
http://doi.acm.org/10.1145/143165.143191
http://doi.acm.org/10.1145/143165.143200
http://doi.acm.org/10.1145/143165.143205
http://doi.acm.org/10.1145/143165.143206
http://doi.acm.org/10.1145/143165.143208
http://doi.acm.org/10.1145/143165.143225
http://doi.acm.org/10.1145/143165.143227
http://doi.acm.org/10.1145/143165.143228
http://doi.acm.org/10.1145/158511.158523

[P93B] G. Berry, S. Ramesh, and R. K. Shyamasundar. Communicating
reactive processes. In POPL ’93 [P93], 85–98.
http://doi.acm.org/10.1145/158511.158526 549930.

[P93C] Atsushi Ohori and Kazuhiko Kato. Semantics for communication
primitives in a polymorphic language. In POPL ’93 [P93], 99–
112. http://doi.acm.org/10.1145/158511.158529 549930.

[P93D] Julia L. Lawall and Olivier Danvy. Separating stages in the
continuation-passing style transformation. In POPL ’93 [P93],
124–136. http://doi.acm.org/10.1145/158511.158613 549930.

[P93E] Mitchell Wand. Specifying the correctness of binding-time analy-
sis. In POPL ’93 [P93], 137–143.
http://doi.acm.org/10.1145/158511.158614 549930.

[P93F] John Launchbury. A natural semantics for lazy evaluation. In
POPL ’93 [P93], 144–154.
http://doi.acm.org/10.1145/158511.158618 549930.

[P93G] Martı́n Abadi, Luca Cardelli, and Pierre-Louis Curien. Formal
parametric polymorphism. In POPL ’93 [P93], 157–170.
http://doi.acm.org/10.1145/158511.158622 549930.

[P93H] Jon G. Riecke and Ramesh Subrahmanyam. Algebraic reasoning
and completeness in typed languages. In POPL ’93 [P93], 185–
195. http://doi.acm.org/10.1145/158511.158627 549930.

[P93I] Robert Harper and Mark Lillibridge. Explicit polymorphism and
cps conversion. In POPL ’93 [P93], 206–219.
http://doi.acm.org/10.1145/158511.158630 549930.

[P93J] Xavier Leroy. Polymorphism by name for references and contin-
uations. In POPL ’93 [P93], 220–231.
http://doi.acm.org/10.1145/158511.158632 549930.

[P93K] Kim B. Bruce. Safe type checking in a statically-typed object-
oriented programming language. In POPL ’93 [P93], 285–298.
http://doi.acm.org/10.1145/158511.158650 549930.

[P93L] Benjamin C. Pierce and David N. Turner. Object-oriented pro-
gramming without recursive types. In POPL ’93 [P93], 299–312.
http://doi.acm.org/10.1145/158511.158653 549930.

[P93M] Harry G. Mairson. A constructive logic of multiple subtyping. In
POPL ’93 [P93], 313–324.
http://doi.acm.org/10.1145/158511.158657 549930.

[P93N] E. Villemonte de la Clergerie. Layer sharing: An improved
structure-sharing framework. In POPL ’93 [P93], 345–358.
http://doi.acm.org/10.1145/158511.158687 549930.

[P93O] A. Bossi, M. Bugliesi, M. Gabbrielli, G. Levi, and M. C. Meo.
Differential logic programming. In POPL ’93 [P93], 359–370.
http://doi.acm.org/10.1145/158511.158689 549930.

[P93P] Tobias Nipkow and Christian Prehofer. Type checking type
classes. In POPL ’93 [P93], 409–418.
http://doi.acm.org/10.1145/158511.158698 549930.

[P93Q] Simon J. Gay. A sort inference algorithm for the polyadic &pgr;-
calculus. In POPL ’93 [P93], 429–438.
http://doi.acm.org/10.1145/158511.158701 549930.

[P93R] Maria Virginia Aponte. Extending record typing to type paramet-
ric modules with sharing. In POPL ’93 [P93], 465–478.
http://doi.acm.org/10.1145/158511.158704 549930.

[P94] POPL ’94: Proc. 21st ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, New York, 1994. Associ-
ation for Computing Machinery. ISBN 0-89791-636-0. 549940.

[P94A] Jacques Garrigue and Hassan Aı̈t-Kaci. The typed polymorphic
label-selective λ-calculus. In POPL ’94 [P94], 35–47.
http://doi.acm.org/10.1145/174675.174434 549940.

[P94B] Martin Odersky. A functional theory of local names. In POPL ’94
[P94], 48–59.
http://doi.acm.org/10.1145/174675.175187 549940.

[P94C] Pierre Lescanne. From λσ to λv: A journey through calculi of
explicit substitutions. In POPL ’94 [P94], 60–69.
http://doi.acm.org/10.1145/174675.174707 549940.

[P94D] Hanne Riis Nielson and Flemming Nielson. Higher-order concur-
rent programs with finite communication topology (extended ab-

stract). In POPL ’94 [P94], 84–97.
http://doi.acm.org/10.1145/174675.174538 549940.

[P94E] Frank S. de Boer, Maurizio Gabbrielli, Elena Marchiori, and
Catuscia Palamidessi. Proving concurrent constraint programs
correct. In POPL ’94 [P94], 98–108.
http://doi.acm.org/10.1145/174675.176925 549940.

[P94F] Xavier Leroy. Manifest types, modules, and separate compilation.
In POPL ’94 [P94], 109–122.
http://doi.acm.org/10.1145/174675.176926 549940.

[P94G] Robert Harper and Mark Lillibridge. A type-theoretic approach to
higher-order modules with sharing. In POPL ’94 [P94], 123–137.
http://doi.acm.org/10.1145/174675.176927 549940.

[P94H] Giuseppe Castagna and Benjamin C. Pierce. Decidable bounded
quantification. In POPL ’94 [P94], 151–162.
http://doi.acm.org/10.1145/174675.177844 549940.

[P94I] Alexander Aiken, Edward L. Wimmers, and T. K. Lakshman. Soft
typing with conditional types. In POPL ’94 [P94], 163–173.
http://doi.acm.org/10.1145/174675.177847 549940.

[P94J] Satish R. Thatté. Automated synthesis of interface adapters for
reusable classes. In POPL ’94 [P94], 174–187.
http://doi.acm.org/10.1145/174675.177850 549940.

[P94K] Mads Tofte and Jean-Pierre Talpin. Implementation of the typed
call-by-value λ-calculus using a stack of regions. In POPL ’94
[P94], 188–201.
http://doi.acm.org/10.1145/174675.177855 549940.

[P94L] Chris Hankin and Daniel Le Métayer. Deriving algorithms from
type inference systems: Application to strictness analysis. In
POPL ’94 [P94], 202–212.
http://doi.acm.org/10.1145/174675.177858 549940.

[P94M] Fritz Henglein and Jesper Jørgensen. Formally optimal boxing. In
POPL ’94 [P94], 213–226.
http://doi.acm.org/10.1145/174675.177874 549940.

[P94N] Zhenyu Qian. Higher-order equational logic programming. In
POPL ’94 [P94], 254–267.
http://doi.acm.org/10.1145/174675.177889 549940.

[P94O] Bard Bloom. Chocolate: Calculi of higher order communication
and lambda terms (preliminary report). In POPL ’94 [P94], 339–
347. http://doi.acm.org/10.1145/174675.177948 549940.

[P94P] Mitchell Wand and Paul Steckler. Selective and lightweight clo-
sure conversion. In POPL ’94 [P94], 435–445.
http://doi.acm.org/10.1145/174675.178044 549940.

[P94Q] Andrzej Filinski. Representing monads. In POPL ’94 [P94], 446–
457. http://doi.acm.org/10.1145/174675.178047 549940.

[P94R] John Hatcliff and Olivier Danvy. A generic account of continuation-
passing styles. In POPL ’94 [P94], 458–471.
http://doi.acm.org/10.1145/174675.178053 549940.

[P95] POPL ’95: Proc. 22nd ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, New York, 1995. Associ-
ation for Computing Machinery. ISBN 0-89791-692-1. 549950.

[P95A] Jon G. Riecke and Ramesh Viswanathan. Isolating side effects in
sequential languages. In POPL ’95 [P95], 1–12.
http://doi.acm.org/10.1145/199448.199450 549950.

[P95B] Catherine Dubois, François Rouaix, and Pierre Weis. Extensional
polymorphism. In POPL ’95 [P95], 118–129.
http://doi.acm.org/10.1145/199448.199473 549950.

[P95C] Robert Harper and Greg Morrisett. Compiling polymorphism
using intensional type analysis. In POPL ’95 [P95], 130–141.
http://doi.acm.org/10.1145/199448.199475 549950.

[P95D] Xavier Leroy. Applicative functors and fully transparent higher-
order modules. In POPL ’95 [P95], 142–153.
http://doi.acm.org/10.1145/199448.199476 549950.

[P95E] Sandip K. Biswas. Higher-order functors with transparent signa-
tures. In POPL ’95 [P95], 154–163.
http://doi.acm.org/10.1145/199448.199478 549950.

For submission to 2017 ACM POPL 17 2016/6/30

http://doi.acm.org/10.1145/158511.158526
http://doi.acm.org/10.1145/158511.158529
http://doi.acm.org/10.1145/158511.158613
http://doi.acm.org/10.1145/158511.158614
http://doi.acm.org/10.1145/158511.158618
http://doi.acm.org/10.1145/158511.158622
http://doi.acm.org/10.1145/158511.158627
http://doi.acm.org/10.1145/158511.158630
http://doi.acm.org/10.1145/158511.158632
http://doi.acm.org/10.1145/158511.158650
http://doi.acm.org/10.1145/158511.158653
http://doi.acm.org/10.1145/158511.158657
http://doi.acm.org/10.1145/158511.158687
http://doi.acm.org/10.1145/158511.158689
http://doi.acm.org/10.1145/158511.158698
http://doi.acm.org/10.1145/158511.158701
http://doi.acm.org/10.1145/158511.158704
http://doi.acm.org/10.1145/174675.174434
http://doi.acm.org/10.1145/174675.175187
http://doi.acm.org/10.1145/174675.174707
http://doi.acm.org/10.1145/174675.174538
http://doi.acm.org/10.1145/174675.176925
http://doi.acm.org/10.1145/174675.176926
http://doi.acm.org/10.1145/174675.176927
http://doi.acm.org/10.1145/174675.177844
http://doi.acm.org/10.1145/174675.177847
http://doi.acm.org/10.1145/174675.177850
http://doi.acm.org/10.1145/174675.177855
http://doi.acm.org/10.1145/174675.177858
http://doi.acm.org/10.1145/174675.177874
http://doi.acm.org/10.1145/174675.177889
http://doi.acm.org/10.1145/174675.177948
http://doi.acm.org/10.1145/174675.178044
http://doi.acm.org/10.1145/174675.178047
http://doi.acm.org/10.1145/174675.178053
http://doi.acm.org/10.1145/199448.199450
http://doi.acm.org/10.1145/199448.199473
http://doi.acm.org/10.1145/199448.199475
http://doi.acm.org/10.1145/199448.199476
http://doi.acm.org/10.1145/199448.199478

[P95F] Sergei G. Vorobyov. Structural decidable extensions of bounded
quantification. In POPL ’95 [P95], 164–175.
http://doi.acm.org/10.1145/199448.199479 549950.

[P95G] My Hoang and John C. Mitchell. Lower bounds on type inference
with subtypes. In POPL ’95 [P95], 176–185.
http://doi.acm.org/10.1145/199448.199481 549950.

[P95H] Martin Hofmann and Benjamin Pierce. Positive subtyping. In
POPL ’95 [P95], 186–197.
http://doi.acm.org/10.1145/199448.199482 549950.

[P95I] Cormac Flanagan and Matthias Felleisen. The semantics of future
and its use in program optimization. In POPL ’95 [P95], 209–220.
http://doi.acm.org/10.1145/199448.199484 549950.

[P95J] Vijay A. Saraswat, Radha Jagadeesan, and Vineet Gupta. Default
timed concurrent constraint programming. In POPL ’95 [P95],
272–285. http://doi.acm.org/10.1145/199448.199513 549950.

[P95K] Patrick M. Sansom and Simon L. Peyton Jones. Time and space
profiling for non-strict, higher-order functional languages. In
POPL ’95 [P95], 355–366.
http://doi.acm.org/10.1145/199448.199531 549950.

[P95L] Jens Palsberg and Patrick O’Keefe. A type system equivalent to
flow analysis. In POPL ’95 [P95], 367–378.
http://doi.acm.org/10.1145/199448.199533 549950.

[P95M] John Field, G. Ramalingam, and Frank Tip. Parametric program
slicing. In POPL ’95 [P95], 379–392.
http://doi.acm.org/10.1145/199448.199534 549950.

[P96] POPL ’96: Proc. 23rd ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, New York, 1996. Associ-
ation for Computing Machinery. ISBN 0-89791-769-3.

[P96A] Bjarne Steensgaard. Points-to analysis in almost linear time. In
POPL ’96 [P96], 32–41.
http://doi.acm.org/10.1145/237721.237727

[P96B] Trevor Jim. What are principal typings and what are they good
for? In POPL ’96 [P96], 42–53.
http://doi.acm.org/10.1145/237721.237728

[P96C] Martin Odersky and Konstantin Läufer. Putting type annotations
to work. In POPL ’96 [P96], 54–67.
http://doi.acm.org/10.1145/237721.237729

[P96D] Mark P. Jones. Using parameterized signatures to express modular
structure. In POPL ’96 [P96], 68–78.
http://doi.acm.org/10.1145/237721.237731

[P96E] Daniel Jackson, Somesh Jha, and Craig A. Damon. Faster check-
ing of software specifications by eliminating isomorphs. In POPL
’96 [P96], 79–90. http://doi.acm.org/10.1145/237721.237733

[P96F] Lars Birkedal, Mads Tofte, and Magnus Vejlstrup. From region
inference to von neumann machines via region representation
inference. In POPL ’96 [P96], 171–183.
http://doi.acm.org/10.1145/237721.237771

[P96G] Christopher Colby and Peter Lee. Trace-based program analysis.
In POPL ’96 [P96], 195–207.
http://doi.acm.org/10.1145/237721.237776

[P96H] Rowan Davies and Frank Pfenning. A modal analysis of staged
computation. In POPL ’96 [P96], 258–270.
http://doi.acm.org/10.1145/237721.237788

[P96I] Yasuhiko Minamide, Greg Morrisett, and Robert Harper. Typed
closure conversion. In POPL ’96 [P96], 271–283.
http://doi.acm.org/10.1145/237721.237791

[P96J] Leonidas Fegaras and Tim Sheard. Revisiting catamorphisms
over datatypes with embedded functions (or, programs from outer
space). In POPL ’96 [P96], 284–294.
http://doi.acm.org/10.1145/237721.237792

[P96K] John Greiner and Guy E. Blelloch. A provably time-efficient
parallel implementation of full speculation. In POPL ’96 [P96],
309–321. http://doi.acm.org/10.1145/237721.237797

[P96L] Joachim Niehren. Functional computation as concurrent compu-
tation. In POPL ’96 [P96], 333–343.
http://doi.acm.org/10.1145/237721.237801

[P96M] Kohei Honda. Composing processes. In POPL ’96 [P96], 344–
357. http://doi.acm.org/10.1145/237721.237802

[P96N] Naoki Kobayashi, Benjamin C. Pierce, and David N. Turner. Lin-
earity and the pi-calculus. In POPL ’96 [P96], 358–371.
http://doi.acm.org/10.1145/237721.237804

[P96O] Andrew D. Gordon and Gareth D. Rees. Bisimilarity for a first-
order calculus of objects with subtyping. In POPL ’96 [P96], 386–
395. http://doi.acm.org/10.1145/237721.237807

[P96P] Martı́n Abadi, Luca Cardelli, and Ramesh Viswanathan. An in-
terpretation of objects and object types. In POPL ’96 [P96], 396–
409. http://doi.acm.org/10.1145/237721.237809

[P96Q] John Hughes, Lars Pareto, and Amr Sabry. Proving the correctness
of reactive systems using sized types. In POPL ’96 [P96], 410–
423. http://doi.acm.org/10.1145/237721.240882

[P97] POPL ’97: Proc. 24th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, New York, 1997. Associ-
ation for Computing Machinery. ISBN 0-89791-853-3.

[P97A] Pascal Fradet and Daniel Le Métayer. Shape types. In POPL ’97
[P97], 27–39. http://doi.acm.org/10.1145/263699.263706

[P97B] Didier Rémy and Jérôme Vouillon. Objective ml: A simple object-
oriented extension of ml. In POPL ’97 [P97], 40–53.
http://doi.acm.org/10.1145/263699.263707

[P97C] Chih-Ping Chen and Paul Hudak. Rolling your own mutable
adt—a connection between linear types and monads. In
POPL ’97 [P97], 54–66.
http://doi.acm.org/10.1145/263699.263708

[P97D] George C. Necula. Proof-carrying code. In POPL ’97 [P97], 106–
119. http://doi.acm.org/10.1145/263699.263712

[P97E] Martin Odersky and Philip Wadler. Pizza into java: Translating
theory into practice. In POPL ’97 [P97], 146–159.
http://doi.acm.org/10.1145/263699.263715

[P97F] C.-H. L. Ong and C. A. Stewart. A curry-howard foundation for
functional computation with control. In POPL ’97 [P97], 215–
227. http://doi.acm.org/10.1145/263699.263722

[P97G] Gérard Boudol. The π-calculus in direct style. In POPL ’97 [P97],
228–242. http://doi.acm.org/10.1145/263699.263726

[P97H] Benjamin C. Pierce and Davide Sangiorgi. Behavioral equivalence
in the polymorphic pi-calculus. In POPL ’97 [P97], 242–255.
http://doi.acm.org/10.1145/263699.263729

[P97I] Catuscia Palamidessi. Comparing the expressive power of the
synchronous and the asynchronous &pgr;-calculus. In POPL ’97
[P97], 256–265. http://doi.acm.org/10.1145/263699.263731

[P97J] Luca Cardelli. Program fragments, linking, and modularization.
In POPL ’97 [P97], 266–277.
http://doi.acm.org/10.1145/263699.263735

[P97K] Jakob Rehof. Minimal typings in atomic subtyping. In POPL ’97
[P97], 278–291. http://doi.acm.org/10.1145/263699.263738

[P97L] Amokrane Saı̈bi. Typing algorithm in type theory with inheri-
tance. In POPL ’97 [P97], 292–301.
http://doi.acm.org/10.1145/263699.263742

[P97M] François Bourdoncle and Stephan Merz. Type checking higher-
order polymorphic multi-methods. In POPL ’97 [P97], 302–315.
http://doi.acm.org/10.1145/263699.263743

[P97N] Patrick Cousot. Types as abstract interpretations. In POPL ’97
[P97], 316–331. http://doi.acm.org/10.1145/263699.263744

[P97O] Flemming Nielson and Hanne Riis Nielson. Infinitary control flow
analysis: A collecting semantics for closure analysis. In POPL ’97
[P97], 332–345. http://doi.acm.org/10.1145/263699.263745

[P97P] Sandip K. Biswas. A demand-driven set-based analysis. In POPL
’97 [P97], 372–385. http://doi.acm.org/10.1145/263699.263753

[P97Q] Mitchell Wand and Gregory T. Sullivan. Denotational semantics
using an operationally-based term model. In POPL ’97 [P97],
386–399. http://doi.acm.org/10.1145/263699.263755

[P97R] David Sands. From sos rules to proof principles: An operational
metatheory for functional languages. In POPL ’97 [P97], 428–
441. http://doi.acm.org/10.1145/263699.263760

For submission to 2017 ACM POPL 18 2016/6/30

http://doi.acm.org/10.1145/199448.199479
http://doi.acm.org/10.1145/199448.199481
http://doi.acm.org/10.1145/199448.199482
http://doi.acm.org/10.1145/199448.199484
http://doi.acm.org/10.1145/199448.199513
http://doi.acm.org/10.1145/199448.199531
http://doi.acm.org/10.1145/199448.199533
http://doi.acm.org/10.1145/199448.199534
http://doi.acm.org/10.1145/237721.237727
http://doi.acm.org/10.1145/237721.237728
http://doi.acm.org/10.1145/237721.237729
http://doi.acm.org/10.1145/237721.237731
http://doi.acm.org/10.1145/237721.237733
http://doi.acm.org/10.1145/237721.237771
http://doi.acm.org/10.1145/237721.237776
http://doi.acm.org/10.1145/237721.237788
http://doi.acm.org/10.1145/237721.237791
http://doi.acm.org/10.1145/237721.237792
http://doi.acm.org/10.1145/237721.237797
http://doi.acm.org/10.1145/237721.237801
http://doi.acm.org/10.1145/237721.237802
http://doi.acm.org/10.1145/237721.237804
http://doi.acm.org/10.1145/237721.237807
http://doi.acm.org/10.1145/237721.237809
http://doi.acm.org/10.1145/237721.240882
http://doi.acm.org/10.1145/263699.263706
http://doi.acm.org/10.1145/263699.263707
http://doi.acm.org/10.1145/263699.263708
http://doi.acm.org/10.1145/263699.263712
http://doi.acm.org/10.1145/263699.263715
http://doi.acm.org/10.1145/263699.263722
http://doi.acm.org/10.1145/263699.263726
http://doi.acm.org/10.1145/263699.263729
http://doi.acm.org/10.1145/263699.263731
http://doi.acm.org/10.1145/263699.263735
http://doi.acm.org/10.1145/263699.263738
http://doi.acm.org/10.1145/263699.263742
http://doi.acm.org/10.1145/263699.263743
http://doi.acm.org/10.1145/263699.263744
http://doi.acm.org/10.1145/263699.263745
http://doi.acm.org/10.1145/263699.263753
http://doi.acm.org/10.1145/263699.263755
http://doi.acm.org/10.1145/263699.263760

[P97S] Patrik Jansson and Johan Jeuring. Polyp—a polytypic pro-
gramming language extension. In POPL ’97 [P97], 470–482.
http://doi.acm.org/10.1145/263699.263763

[P97T] Mark P. Jones. First-class polymorphism with type inference. In
POPL ’97 [P97], 483–496.
http://doi.acm.org/10.1145/263699.263765

[P98] POPL ’98: Proc. 25th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, New York, 1998. Associ-
ation for Computing Machinery. ISBN 0-89791-979-3.

[P98A] John Hannan and Patrick Hicks. Higher-order uncurrying. In
POPL ’98 [P98], 1–11.
http://doi.acm.org/10.1145/268946.268947

[P98B] Simon Peyton Jones, Mark Shields, John Launchbury, and Andrew
Tolmach. Bridging the gulf: A common intermediate language for
ml and haskell. In POPL ’98 [P98], 49–61.
http://doi.acm.org/10.1145/268946.268951

[P98C] Zena M. Ariola and Amr Sabry. Correctness of monadic state: An
imperative call-by-need calculus. In POPL ’98 [P98], 62–74.
http://doi.acm.org/10.1145/268946.268952

[P98D] Yasuhiko Minamide. A functional representation of data struc-
tures with a hole. In POPL ’98 [P98], 75–84.
http://doi.acm.org/10.1145/268946.268953

[P98E] Greg Morrisett, David Walker, Karl Crary, and Neal Glew. From
system f to typed assembly language. In POPL ’98 [P98], 85–97.
http://doi.acm.org/10.1145/268946.268954

[P98F] Raymie Stata and Martı́n Abadi. A type system for java bytecode
subroutines. In POPL ’98 [P98], 149–160.
http://doi.acm.org/10.1145/268946.268959

[P98G] Tobias Nipkow and David von Oheimb. Javalight is type-
safe—definitely. In POPL ’98 [P98], 161–170.
http://doi.acm.org/10.1145/268946.268960

[P98H] Matthew Flatt, Shriram Krishnamurthi, and Matthias Felleisen.
Classes and mixins. In POPL ’98 [P98], 171–183.
http://doi.acm.org/10.1145/268946.268961

[P98I] Jens Palsberg and Christina Pavlopoulou. From polyvariant flow
information to intersection and union types. In POPL ’98 [P98],
197–208. http://doi.acm.org/10.1145/268946.268963

[P98J] Thomas P. Jensen. Inference of polymorphic and conditional
strictness properties. In POPL ’98 [P98], 209–221.
http://doi.acm.org/10.1145/268946.268964

[P98K] Benjamin C. Pierce and David N. Turner. Local type inference. In
POPL ’98 [P98], 252–265.
http://doi.acm.org/10.1145/268946.268967

[P98L] Susumu Nishimura. Static typing for dynamic messages. In POPL
’98 [P98], 266–278. http://doi.acm.org/10.1145/268946.268968

[P98M] Mark Shields, Tim Sheard, and Simon Peyton Jones. Dynamic
typing as staged type inference. In POPL ’98 [P98], 289–302.
http://doi.acm.org/10.1145/268946.268970

[P98N] Zhenjiang Hu, Masato Takeichi, and Wei-Ngan Chin. Paralleliza-
tion in calculational forms. In POPL ’98 [P98], 316–328.
http://doi.acm.org/10.1145/268946.268972

[P98O] Alexander Aiken and David Gay. Barrier inference. In POPL ’98
[P98], 342–354. http://doi.acm.org/10.1145/268946.268974

[P98P] Geoffrey Smith and Dennis Volpano. Secure information flow in
a multi-threaded imperative language. In POPL ’98 [P98], 355–
364. http://doi.acm.org/10.1145/268946.268975

[P98Q] Nevin Heintze and Jon G. Riecke. The slam calculus: Program-
ming with secrecy and integrity. In POPL ’98 [P98], 365–377.
http://doi.acm.org/10.1145/268946.268976

[P98R] James Riely and Matthew Hennessy. A typed language for dis-
tributed mobile processes (extended abstract). In POPL ’98 [P98],
378–390. http://doi.acm.org/10.1145/268946.268978

[P98S] Xavier Leroy and François Rouaix. Security properties of typed
applets. In POPL ’98 [P98], 391–403.
http://doi.acm.org/10.1145/268946.268979

[P99] POPL ’99: Proc. 26th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, New York, 1999. Associ-
ation for Computing Machinery. ISBN 1-58113-095-3.

[P99A] Peter Harry Eidorff, Fritz Henglein, Christian Mossin, Henning
Niss, Morten Heine Sørensen, and Mads Tofte. Annodomini:
From type theory to year 2000 conversion tool. In POPL ’99
[P99], 1–14. http://doi.acm.org/10.1145/292540.292543

[P99B] Keith Wansbrough and Simon Peyton Jones. Once upon a poly-
morphic type. In POPL ’99 [P99], 15–28.
http://doi.acm.org/10.1145/292540.292545

[P99C] Naoki Kobayashi. Quasi-linear types. In POPL ’99 [P99], 29–42.
http://doi.acm.org/10.1145/292540.292546

[P99D] Andrew Moran and David Sands. Improvement in a lazy context:
An operational theory for call-by-need. In POPL ’99 [P99], 43–
56. http://doi.acm.org/10.1145/292540.292547

[P99E] Robert O’Callahan. A simple, comprehensive type system for java
bytecode subroutines. In POPL ’99 [P99], 70–78.
http://doi.acm.org/10.1145/292540.292549

[P99F] Luca Cardelli and Andrew D. Gordon. Types for mobile ambients.
In POPL ’99 [P99], 79–92.
http://doi.acm.org/10.1145/292540.292550

[P99G] James Riely and Matthew Hennessy. Trust and partial typing in
open systems of mobile agents. In POPL ’99 [P99], 93–104.
http://doi.acm.org/10.1145/292540.292551

[P99H] Martı́n Abadi, Anindya Banerjee, Nevin Heintze, and Jon G.
Riecke. A core calculus of dependency. In POPL ’99 [P99], 147–
160. http://doi.acm.org/10.1145/292540.292555

[P99I] A. J. Kfoury and J. B. Wells. Principality and decidable type
inference for finite-rank intersection types. In POPL ’99 [P99],
161–174. http://doi.acm.org/10.1145/292540.292556

[P99J] Andrzej Filinski. Representing layered monads. In POPL ’99
[P99], 175–188. http://doi.acm.org/10.1145/292540.292557

[P99K] Vineet Gupta, Radha Jagadeesan, and Prakash Panangaden. Stochas-
tic processes as concurrent constraint programs. In POPL ’99
[P99], 189–202. http://doi.acm.org/10.1145/292540.292558

[P99L] Hongwei Xi and Frank Pfenning. Dependent types in practical
programming. In POPL ’99 [P99], 214–227.
http://doi.acm.org/10.1145/292540.292560

[P99M] Andrew C. Myers. Jflow: Practical mostly-static information flow
control. In POPL ’99 [P99], 228–241.
http://doi.acm.org/10.1145/292540.292561

[P99N] Neal Glew and Greg Morrisett. Type-safe linking and modular
assembly language. In POPL ’99 [P99], 250–261.
http://doi.acm.org/10.1145/292540.292563

[P99O] Karl Crary, David Walker, and Greg Morrisett. Typed memory
management in a calculus of capabilities. In POPL ’99 [P99],
262–275. http://doi.acm.org/10.1145/292540.292564

[P99P] François Pessaux and Xavier Leroy. Type-based analysis of un-
caught exceptions. In POPL ’99 [P99], 276–290.
http://doi.acm.org/10.1145/292540.292565

[P99Q] Mitchell Wand and Igor Siveroni. Constraint systems for useless
variable elimination. In POPL ’99 [P99], 291–302.
http://doi.acm.org/10.1145/292540.292567

[P00] POPL ’00: Proc. 27th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, New York, 2000. Associ-
ation for Computing Machinery. ISBN 1-58113-125-9. 549201.

[P00A] Javier Esparza and Andreas Podelski. Efficient algorithms for pre*
and post* on interprocedural parallel flow graphs. In POPL ’00
[P00], 1–11. http://doi.acm.org/10.1145/325694.325697 549201.

[P00B] Nevin Heintze, Joxan Jaffar, and Răzvan Voicu. A framework for
combining analysis and verification. In POPL ’00 [P00], 26–39.
http://doi.acm.org/10.1145/325694.325700 549201.

[P00C] Johan Agat. Transforming out timing leaks. In POPL ’00 [P00],
40–53. http://doi.acm.org/10.1145/325694.325702 549201.

For submission to 2017 ACM POPL 19 2016/6/30

http://doi.acm.org/10.1145/263699.263763
http://doi.acm.org/10.1145/263699.263765
http://doi.acm.org/10.1145/268946.268947
http://doi.acm.org/10.1145/268946.268951
http://doi.acm.org/10.1145/268946.268952
http://doi.acm.org/10.1145/268946.268953
http://doi.acm.org/10.1145/268946.268954
http://doi.acm.org/10.1145/268946.268959
http://doi.acm.org/10.1145/268946.268960
http://doi.acm.org/10.1145/268946.268961
http://doi.acm.org/10.1145/268946.268963
http://doi.acm.org/10.1145/268946.268964
http://doi.acm.org/10.1145/268946.268967
http://doi.acm.org/10.1145/268946.268968
http://doi.acm.org/10.1145/268946.268970
http://doi.acm.org/10.1145/268946.268972
http://doi.acm.org/10.1145/268946.268974
http://doi.acm.org/10.1145/268946.268975
http://doi.acm.org/10.1145/268946.268976
http://doi.acm.org/10.1145/268946.268978
http://doi.acm.org/10.1145/268946.268979
http://doi.acm.org/10.1145/292540.292543
http://doi.acm.org/10.1145/292540.292545
http://doi.acm.org/10.1145/292540.292546
http://doi.acm.org/10.1145/292540.292547
http://doi.acm.org/10.1145/292540.292549
http://doi.acm.org/10.1145/292540.292550
http://doi.acm.org/10.1145/292540.292551
http://doi.acm.org/10.1145/292540.292555
http://doi.acm.org/10.1145/292540.292556
http://doi.acm.org/10.1145/292540.292557
http://doi.acm.org/10.1145/292540.292558
http://doi.acm.org/10.1145/292540.292560
http://doi.acm.org/10.1145/292540.292561
http://doi.acm.org/10.1145/292540.292563
http://doi.acm.org/10.1145/292540.292564
http://doi.acm.org/10.1145/292540.292565
http://doi.acm.org/10.1145/292540.292567
http://doi.acm.org/10.1145/325694.325697
http://doi.acm.org/10.1145/325694.325700
http://doi.acm.org/10.1145/325694.325702

[P00D] Thomas Colcombet and Pascal Fradet. Enforcing trace properties
by program transformation. In POPL ’00 [P00], 54–66.
http://doi.acm.org/10.1145/325694.325703 549201.

[P00E] Zhendong Su, Manuel Fähndrich, and Alexander Aiken. Pro-
jection merging: Reducing redundancies in inclusion constraint
graphs. In POPL ’00 [P00], 81–95.
http://doi.acm.org/10.1145/325694.325706 549201.

[P00F] Andrea Asperti, Paolo Coppola, and Simone Martini. (optimal)
duplication is not elementary recursive. In POPL ’00 [P00], 96–
107. http://doi.acm.org/10.1145/325694.325707 549201.

[P00G] Jeffrey R. Lewis, John Launchbury, Erik Meijer, and Mark B.
Shields. Implicit parameters: Dynamic scoping with static types.
In POPL ’00 [P00], 108–118.
http://doi.acm.org/10.1145/325694.325708 549201.

[P00H] Ralf Hinze. A new approach to generic functional programming.
In POPL ’00 [P00], 119–132.
http://doi.acm.org/10.1145/325694.325709 549201.

[P00I] Karl Crary and Stephanie Weirich. Resource bound certification.
In POPL ’00 [P00], 184–198.
http://doi.acm.org/10.1145/325694.325716 549201.

[P00J] Ben Liblit and Alexander Aiken. Type systems for distributed data
structures. In POPL ’00 [P00], 199–213.
http://doi.acm.org/10.1145/325694.325717 549201.

[P00K] Christopher A. Stone and Robert Harper. Deciding type equiva-
lence in a language with singleton kinds. In POPL ’00 [P00], 214–
227. http://doi.acm.org/10.1145/325694.325724 549201.

[P00L] Todd B. Knoblock and Jakob Rehof. Type elaboration and subtype
completion for java bytecode. In POPL ’00 [P00], 228–242.
http://doi.acm.org/10.1145/325694.325725 549201.

[P00M] Andrew W. Appel and Amy P. Felty. A semantic model of types
and machine instructions for proof-carrying code. In POPL ’00
[P00], 243–253.
http://doi.acm.org/10.1145/325694.325727 549201.

[P00N] David Walker. A type system for expressive security policies. In
POPL ’00 [P00], 254–267.
http://doi.acm.org/10.1145/325694.325728 549201.

[P00O] Dennis Volpano and Geoffrey Smith. Verifying secrets and rela-
tive secrecy. In POPL ’00 [P00], 268–276.
http://doi.acm.org/10.1145/325694.325729 549201.

[P00P] Anders Sandholm and Michael I. Schwartzbach. A type system
for dynamic web documents. In POPL ’00 [P00], 290–301.
http://doi.acm.org/10.1145/325694.325733 549201.

[P00Q] Martı́n Abadi, Cédric Fournet, and Georges Gonthier. Authenti-
cation primitives and their compilation. In POPL ’00 [P00], 302–
315. http://doi.acm.org/10.1145/325694.325734 549201.

[P00R] Carl A. Gunter and Trevor Jim. Generalized certificate revocation.
In POPL ’00 [P00], 316–329.
http://doi.acm.org/10.1145/325694.325736 549201.

[P00S] Francesca Levi and Davide Sangiorgi. Controlling interference in
ambients. In POPL ’00 [P00], 352–364.
http://doi.acm.org/10.1145/325694.325741 549201.

[P01] POPL ’01: Proc. 28th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, New York, 2001. Associ-
ation for Computing Machinery. ISBN 1-58113-336-7.

[P01A] Davide Sangiorgi. Extensionality and intensionality of the ambi-
ent logics. In POPL ’01 [P01], 4–13.
http://doi.acm.org/10.1145/360204.375707

[P01B] Samin S. Ishtiaq and Peter W. O’Hearn. Bi as an assertion lan-
guage for mutable data structures. In POPL ’01 [P01], 14–26.
http://doi.acm.org/10.1145/360204.375719

[P01C] Martin Odersky, Christoph Zenger, and Matthias Zenger. Colored
local type inference. In POPL ’01 [P01], 41–53.
http://doi.acm.org/10.1145/360204.360207

[P01D] Jakob Rehof and Manuel Fähndrich. Type-base flow analysis:
From polymorphic subtyping to cfl-reachability. In POPL ’01
[P01], 54–66. http://doi.acm.org/10.1145/360204.360208

[P01E] Haruo Hosoya and Benjamin Pierce. Regular expression pattern
matching for xml. In POPL ’01 [P01], 67–80.
http://doi.acm.org/10.1145/360204.360209

[P01F] Harald Ganzinger. Efficient deductive methods for program anal-
ysis. In POPL ’01 [P01], 102–103.
http://doi.acm.org/10.1145/360204.360212

[P01G] Martı́n Abadi and Cédric Fournet. Mobile values, new names, and
secure communication. In POPL ’01 [P01], 104–115.
http://doi.acm.org/10.1145/360204.360213

[P01H] Asis Unyapoth and Peter Sewell. Nomadic pict: Correct com-
munication infrastructure for mobile computation. In POPL ’01
[P01], 116–127. http://doi.acm.org/10.1145/360204.360214

[P01I] Atsushi Igarashi and Naoki Kobayashi. A generic type system for
the pi-calculus. In POPL ’01 [P01], 128–141.
http://doi.acm.org/10.1145/360204.360215

[P01J] George C. Necula and S. P. Rahul. Oracle-based checking of
untrusted software. In POPL ’01 [P01], 142–154.
http://doi.acm.org/10.1145/360204.360216

[P01K] Cristiano Calcagno. Stratified operational semantics for safety and
correctness of the region calculus. In POPL ’01 [P01], 155–165.
http://doi.acm.org/10.1145/360204.360217

[P01L] Michele Bugliesi and Giuseppe Castagna. Secure safe ambients.
In POPL ’01 [P01], 222–235.
http://doi.acm.org/10.1145/360204.360223

[P01M] Peter Sewell. Modules, abstract types, and distributed versioning.
In POPL ’01 [P01], 236–247.
http://doi.acm.org/10.1145/360204.360225

[P01N] Andrew D. Gordon and Don Syme. Typing a multi-language
intermediate code. In POPL ’01 [P01], 248–260.
http://doi.acm.org/10.1145/360204.360228

[P01O] Mark Shields and Erik Meijer. Type-indexed rows. In POPL ’01
[P01], 261–275. http://doi.acm.org/10.1145/360204.360230

[P01P] Joseph (Yossi) Gil. Subtyping arithmetical types. In POPL ’01
[P01], 276–289. http://doi.acm.org/10.1145/360204.360232

[P01Q] Jérôme Vouillon. Combining subsumption and binary methods:
An object calculus with views. In POPL ’01 [P01], 290–303.
http://doi.acm.org/10.1145/360204.360233

[P02] POPL ’02: Proc. 29th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, New York, 2002. Associ-
ation for Computing Machinery. ISBN 1-58113-450-9. 549021.

[P02A] Martı́n Abadi and Bruno Blanchet. Analyzing security protocols
with secrecy types and logic programs. In POPL ’02 [P02], 33–
44. http://doi.acm.org/10.1145/503272.503277 549021.

[P02B] Sagar Chaki, Sriram K. Rajamani, and Jakob Rehof. Types as
models: Model checking message-passing programs. In POPL ’02
[P02], 45–57.
http://doi.acm.org/10.1145/503272.503278 549021.

[P02C] Massimo Merro and Matthew Hennessy. Bisimulation congru-
ences in safe ambients. In POPL ’02 [P02], 71–80.
http://doi.acm.org/10.1145/503272.503280 549021.

[P02D] Kohei Honda and Nobuko Yoshida. A uniform type structure for
secure information flow. In POPL ’02 [P02], 81–92.
http://doi.acm.org/10.1145/503272.503281 549021.

[P02E] George C. Necula, Scott McPeak, and Westley Weimer. Ccured:
Type-safe retrofitting of legacy code. In POPL ’02 [P02], 128–
139. http://doi.acm.org/10.1145/503272.503286 549021.

[P02F] Anindya Banerjee and David A. Naumann. Representation inde-
pendence, confinement and access control [extended abstract]. In
POPL ’02 [P02], 166–177.
http://doi.acm.org/10.1145/503272.503289 549021.

[P02G] Zhong Shao, Bratin Saha, Valery Trifonov, and Nikolaos Papaspy-
rou. A type system for certified binaries. In POPL ’02 [P02], 217–
232. http://doi.acm.org/10.1145/503272.503293 549021.

[P02H] Matthias Neubauer, Peter Thiemann, Martin Gasbichler, and
Michael Sperber. Functional logic overloading. In POPL ’02

For submission to 2017 ACM POPL 20 2016/6/30

http://doi.acm.org/10.1145/325694.325703
http://doi.acm.org/10.1145/325694.325706
http://doi.acm.org/10.1145/325694.325707
http://doi.acm.org/10.1145/325694.325708
http://doi.acm.org/10.1145/325694.325709
http://doi.acm.org/10.1145/325694.325716
http://doi.acm.org/10.1145/325694.325717
http://doi.acm.org/10.1145/325694.325724
http://doi.acm.org/10.1145/325694.325725
http://doi.acm.org/10.1145/325694.325727
http://doi.acm.org/10.1145/325694.325728
http://doi.acm.org/10.1145/325694.325729
http://doi.acm.org/10.1145/325694.325733
http://doi.acm.org/10.1145/325694.325734
http://doi.acm.org/10.1145/325694.325736
http://doi.acm.org/10.1145/325694.325741
http://doi.acm.org/10.1145/360204.375707
http://doi.acm.org/10.1145/360204.375719
http://doi.acm.org/10.1145/360204.360207
http://doi.acm.org/10.1145/360204.360208
http://doi.acm.org/10.1145/360204.360209
http://doi.acm.org/10.1145/360204.360212
http://doi.acm.org/10.1145/360204.360213
http://doi.acm.org/10.1145/360204.360214
http://doi.acm.org/10.1145/360204.360215
http://doi.acm.org/10.1145/360204.360216
http://doi.acm.org/10.1145/360204.360217
http://doi.acm.org/10.1145/360204.360223
http://doi.acm.org/10.1145/360204.360225
http://doi.acm.org/10.1145/360204.360228
http://doi.acm.org/10.1145/360204.360230
http://doi.acm.org/10.1145/360204.360232
http://doi.acm.org/10.1145/360204.360233
http://doi.acm.org/10.1145/503272.503277
http://doi.acm.org/10.1145/503272.503278
http://doi.acm.org/10.1145/503272.503280
http://doi.acm.org/10.1145/503272.503281
http://doi.acm.org/10.1145/503272.503286
http://doi.acm.org/10.1145/503272.503289
http://doi.acm.org/10.1145/503272.503293

[P02], 233–244.
http://doi.acm.org/10.1145/503272.503294 549021.

[P02I] Umut A. Acar, Guy E. Blelloch, and Robert Harper. Adaptive
functional programming. In POPL ’02 [P02], 247–259.
http://doi.acm.org/10.1145/503272.503296 549021.

[P02J] Martin Hofmann. The strength of non-size increasing computa-
tion. In POPL ’02 [P02], 260–269.
http://doi.acm.org/10.1145/503272.503297 549021.

[P02K] Cédric Fournet and Andrew D. Gordon. Stack inspection: Theory
and variants. In POPL ’02 [P02], 307–318.
http://doi.acm.org/10.1145/503272.503301 549021.

[P02L] François Pottier and Vincent Simonet. Information flow inference
for ml. In POPL ’02 [P02], 319–330.
http://doi.acm.org/10.1145/503272.503302 549021.

[P02M] Atsushi Igarashi and Naoki Kobayashi. Resource usage analysis.
In POPL ’02 [P02], 331–342.
http://doi.acm.org/10.1145/503272.503303 549021.

[P03] POPL ’03: Proc. 30th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, New York, 2003. Associ-
ation for Computing Machinery. ISBN 1-58113-628-5. 549031.

[P03A] Jérôme Siméon and Philip Wadler. The essence of xml. In POPL
’03 [P03], 1–13.
http://doi.acm.org/10.1145/604131.604132 549031.

[P03B] Umut A. Acar, Guy E. Blelloch, and Robert Harper. Selective
memoization. In POPL ’03 [P03], 14–25.
http://doi.acm.org/10.1145/604131.604133 549031.

[P03C] Walid Taha and Michael Florentin Nielsen. Environment classi-
fiers. In POPL ’03 [P03], 26–37.
http://doi.acm.org/10.1145/604131.604134 549031.

[P03D] Alan Schmitt and Jean-Bernard Stefani. The m-calculus: A
higher-order distributed process calculus. In POPL ’03 [P03], 50–
61. http://doi.acm.org/10.1145/604131.604136 549031.

[P03E] Hayo Thielecke. From control effects to typed continuation pass-
ing. In POPL ’03 [P03], 139–149.
http://doi.acm.org/10.1145/604131.604144 549031.

[P03F] Gang Chen. Coercive subtyping for the calculus of constructions.
In POPL ’03 [P03], 150–159.
http://doi.acm.org/10.1145/604131.604145 549031.

[P03G] Leaf Petersen, Robert Harper, Karl Crary, and Frank Pfenning. A
type theory for memory allocation and data layout. In POPL ’03
[P03], 172–184.
http://doi.acm.org/10.1145/604131.604147 549031.

[P03H] Martin Hofmann and Steffen Jost. Static prediction of heap space
usage for first-order functional programs. In POPL ’03 [P03],
185–197. http://doi.acm.org/10.1145/604131.604148 549031.

[P03I] Karl Crary. Toward a foundational typed assembly language. In
POPL ’03 [P03], 198–212.
http://doi.acm.org/10.1145/604131.604149 549031.

[P03J] Chandrasekhar Boyapati, Barbara Liskov, and Liuba Shrira. Own-
ership types for object encapsulation. In POPL ’03 [P03], 213–
223. http://doi.acm.org/10.1145/604131.604156 549031.

[P03K] Hongwei Xi, Chiyan Chen, and Gang Chen. Guarded recursive
datatype constructors. In POPL ’03 [P03], 224–235.
http://doi.acm.org/10.1145/604131.604150 549031.

[P03L] Derek Dreyer, Karl Crary, and Robert Harper. A type system for
higher-order modules. In POPL ’03 [P03], 236–249.
http://doi.acm.org/10.1145/604131.604151 549031.

[P03M] Gilles Barthe, Horatiu Cirstea, Claude Kirchner, and Luigi Liquori.
Pure patterns type systems. In POPL ’03 [P03], 250–261.
http://doi.acm.org/10.1145/604131.604152 549031.

[P04] POPL ’04: Proc. 31st ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, volume 39, New York,
2004. Association for Computing Machinery. ISBN 1-58113-729-
X. 549041.

[P04A] Nick Benton. Simple relational correctness proofs for static anal-
yses and program transformations. In POPL ’04 [P04], 14–25.
http://doi.acm.org/10.1145/964001.964003 549041.

[P04B] Dachuan Yu, Andrew Kennedy, and Don Syme. Formalization
of generics for the .net common language runtime. In POPL ’04
[P04], 39–51.
http://doi.acm.org/10.1145/964001.964005 549041.

[P04C] Jerome Vouillon and Paul-André Melliès. Semantic types: A fresh
look at the ideal model for types. In POPL ’04 [P04], 52–63.
http://doi.acm.org/10.1145/964001.964006 549041.

[P04D] Vincent Balat, Roberto Di Cosmo, and Marcelo Fiore. Exten-
sional normalisation and type-directed partial evaluation for typed
lambda calculus with sums. In POPL ’04 [P04], 64–76.
http://doi.acm.org/10.1145/964001.964007 549041.

[P04E] Marcelo Fiore. Isomorphisms of generic recursive polynomial
types. In POPL ’04 [P04], 77–88.
http://doi.acm.org/10.1145/964001.964008 549041.

[P04F] François Pottier and Nadji Gauthier. Polymorphic typed defunc-
tionalization. In POPL ’04 [P04], 89–98.
http://doi.acm.org/10.1145/964001.964009 549041.

[P04G] Denis Caromel, Ludovic Henrio, and Bernard Paul Serpette.
Asynchronous and deterministic objects. In POPL ’04 [P04],
123–134. http://doi.acm.org/10.1145/964001.964012 549041.

[P04H] Silvano Dal Zilio, Denis Lugiez, and Charles Meyssonnier. A
logic you can count on. In POPL ’04 [P04], 135–146.
http://doi.acm.org/10.1145/964001.964013 549041.

[P04I] Nobuko Yoshida. Channel dependent types for higher-order mo-
bile processes. In POPL ’04 [P04], 147–160.
http://doi.acm.org/10.1145/964001.964014 549041.

[P04J] Eijiro Sumii and Benjamin C. Pierce. A bisimulation for dynamic
sealing. In POPL ’04 [P04], 161–172.
http://doi.acm.org/10.1145/964001.964015 549041.

[P04K] Roberto Giacobazzi and Isabella Mastroeni. Abstract non-
interference: Parameterizing non-interference by abstract inter-
pretation. In POPL ’04 [P04], 186–197.
http://doi.acm.org/10.1145/964001.964017 549041.

[P04L] Lars Birkedal, Noah Torp-Smith, and John C. Reynolds. Local
reasoning about a copying garbage collector. In POPL ’04 [P04],
220–231. http://doi.acm.org/10.1145/964001.964020 549041.

[P04M] Thomas A. Henzinger, Ranjit Jhala, Rupak Majumdar, and Ken-
neth L. McMillan. Abstractions from proofs. In POPL ’04 [P04],
232–244. http://doi.acm.org/10.1145/964001.964021 549041.

[P04N] Shaz Qadeer, Sriram K. Rajamani, and Jakob Rehof. Summarizing
procedures in concurrent programs. In POPL ’04 [P04], 245–255.
http://doi.acm.org/10.1145/964001.964022 549041.

[P04O] Cormac Flanagan and Stephen N Freund. Atomizer: A dynamic
atomicity checker for multithreaded programs. In POPL ’04
[P04], 256–267.
http://doi.acm.org/10.1145/964001.964023 549041.

[P04P] Peter W. O’Hearn, Hongseok Yang, and John C. Reynolds. Sepa-
ration and information hiding. In POPL ’04 [P04], 268–280.
http://doi.acm.org/10.1145/964001.964024 549041.

[P04Q] Joshua Dunfield and Frank Pfenning. Tridirectional typechecking.
In POPL ’04 [P04], 281–292.
http://doi.acm.org/10.1145/964001.964025 549041.

[P04R] Derek Dreyer. A type system for well-founded recursion. In POPL
’04 [P04], 293–305.
http://doi.acm.org/10.1145/964001.964026 549041.

[P04S] Davide Ancona and Elena Zucca. Principal typings for java-like
languages. In POPL ’04 [P04], 306–317.
http://doi.acm.org/10.1145/964001.964027 549041.

[P05] POPL ’05: Proc. 32nd ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, New York, 2005. Associ-
ation for Computing Machinery. ISBN 1-58113-830-X. 549051.

[P05A] Manuel M. T. Chakravarty, Gabriele Keller, Simon Peyton Jones,
and Simon Marlow. Associated types with class. In POPL ’05

For submission to 2017 ACM POPL 21 2016/6/30

http://doi.acm.org/10.1145/503272.503294
http://doi.acm.org/10.1145/503272.503296
http://doi.acm.org/10.1145/503272.503297
http://doi.acm.org/10.1145/503272.503301
http://doi.acm.org/10.1145/503272.503302
http://doi.acm.org/10.1145/503272.503303
http://doi.acm.org/10.1145/604131.604132
http://doi.acm.org/10.1145/604131.604133
http://doi.acm.org/10.1145/604131.604134
http://doi.acm.org/10.1145/604131.604136
http://doi.acm.org/10.1145/604131.604144
http://doi.acm.org/10.1145/604131.604145
http://doi.acm.org/10.1145/604131.604147
http://doi.acm.org/10.1145/604131.604148
http://doi.acm.org/10.1145/604131.604149
http://doi.acm.org/10.1145/604131.604156
http://doi.acm.org/10.1145/604131.604150
http://doi.acm.org/10.1145/604131.604151
http://doi.acm.org/10.1145/604131.604152
http://doi.acm.org/10.1145/964001.964003
http://doi.acm.org/10.1145/964001.964005
http://doi.acm.org/10.1145/964001.964006
http://doi.acm.org/10.1145/964001.964007
http://doi.acm.org/10.1145/964001.964008
http://doi.acm.org/10.1145/964001.964009
http://doi.acm.org/10.1145/964001.964012
http://doi.acm.org/10.1145/964001.964013
http://doi.acm.org/10.1145/964001.964014
http://doi.acm.org/10.1145/964001.964015
http://doi.acm.org/10.1145/964001.964017
http://doi.acm.org/10.1145/964001.964020
http://doi.acm.org/10.1145/964001.964021
http://doi.acm.org/10.1145/964001.964022
http://doi.acm.org/10.1145/964001.964023
http://doi.acm.org/10.1145/964001.964024
http://doi.acm.org/10.1145/964001.964025
http://doi.acm.org/10.1145/964001.964026
http://doi.acm.org/10.1145/964001.964027

[P05], 1–13.
http://doi.acm.org/10.1145/1040305.1040306 549051.

[P05B] Richard Cobbe and Matthias Felleisen. Environmental acquisition
revisited. In POPL ’05 [P05], 14–25.
http://doi.acm.org/10.1145/1040305.1040307 549051.

[P05C] Davide Ancona, Ferruccio Damiani, Sophia Drossopoulou, and
Elena Zucca. Polymorphic bytecode: Compositional compilation
for java-like languages. In POPL ’05 [P05], 26–37.
http://doi.acm.org/10.1145/1040305.1040308 549051.

[P05D] Juan Chen and David Tarditi. A simple typed intermediate lan-
guage for object-oriented languages. In POPL ’05 [P05], 38–49.
http://doi.acm.org/10.1145/1040305.1040309 549051.

[P05E] Haruo Hosoya, Alain Frisch, and Giuseppe Castagna. Parametric
polymorphism for xml. In POPL ’05 [P05], 50–62.
http://doi.acm.org/10.1145/1040305.1040310 549051.

[P05F] Eijiro Sumii and Benjamin C. Pierce. A bisimulation for type
abstraction and recursion. In POPL ’05 [P05], 63–74.
http://doi.acm.org/10.1145/1040305.1040311 549051.

[P05G] Healfdene Goguen. A syntactic approach to eta equality in type
theory. In POPL ’05 [P05], 75–84.
http://doi.acm.org/10.1145/1040305.1040312 549051.

[P05H] Simon J. Gay and Rajagopal Nagarajan. Communicating quantum
processes. In POPL ’05 [P05], 145–157.
http://doi.acm.org/10.1145/1040305.1040318 549051.

[P05I] Peng Li and Steve Zdancewic. Downgrading policies and relaxed
noninterference. In POPL ’05 [P05], 158–170.
http://doi.acm.org/10.1145/1040305.1040319 549051.

[P05J] Sungwoo Park, Frank Pfenning, and Sebastian Thrun. A proba-
bilistic language based upon sampling functions. In POPL ’05
[P05], 171–182.
http://doi.acm.org/10.1145/1040305.1040320 549051.

[P05K] Gareth Stoyle, Michael Hicks, Gavin Bierman, Peter Sewell, and
Iulian Neamtiu. Mutatis mutandis: Safe and predictable dynamic
software updating. In POPL ’05 [P05], 183–194.
http://doi.acm.org/10.1145/1040305.1040321 549051.

[P05L] John Field and Carlos A. Varela. Transactors: A programming
model for maintaining globally consistent distributed state in un-
reliable environments. In POPL ’05 [P05], 195–208.
http://doi.acm.org/10.1145/1040305.1040322 549051.

[P05M] Roberto Bruni, Hernán Melgratti, and Ugo Montanari. Theoretical
foundations for compensations in flow composition languages. In
POPL ’05 [P05], 209–220.
http://doi.acm.org/10.1145/1040305.1040323 549051.

[P05N] Matthias Neubauer and Peter Thiemann. From sequential pro-
grams to multi-tier applications by program transformation. In
POPL ’05 [P05], 221–232.
http://doi.acm.org/10.1145/1040305.1040324 549051.

[P05O] Matthew Parkinson and Gavin Bierman. Separation logic and
abstraction. In POPL ’05 [P05], 247–258.
http://doi.acm.org/10.1145/1040305.1040326 549051.

[P05P] Richard Bornat, Cristiano Calcagno, Peter O’Hearn, and Matthew
Parkinson. Permission accounting in separation logic. In POPL
’05 [P05], 259–270.
http://doi.acm.org/10.1145/1040305.1040327 549051.

[P05Q] Cristiano Calcagno, Philippa Gardner, and Uri Zarfaty. Context
logic and tree update. In POPL ’05 [P05], 271–282.
http://doi.acm.org/10.1145/1040305.1040328 549051.

[P05R] John Tang Boyland and William Retert. Connecting effects and
uniqueness with adoption. In POPL ’05 [P05], 283–295.
http://doi.acm.org/10.1145/1040305.1040329 549051.

[P05S] Noam Rinetzky, Jörg Bauer, Thomas Reps, Mooly Sagiv, and
Reinhard Wilhelm. A semantics for procedure local heaps and its
abstractions. In POPL ’05 [P05], 296–309.
http://doi.acm.org/10.1145/1040305.1040330 549051.

[P05T] Brian Hackett and Radu Rugina. Region-based shape analysis
with tracked locations. In POPL ’05 [P05], 310–323.
http://doi.acm.org/10.1145/1040305.1040331 549051.

[P05U] Yichen Xie and Alex Aiken. Scalable error detection using
boolean satisfiability. In POPL ’05 [P05], 351–363.
http://doi.acm.org/10.1145/1040305.1040334 549051.

[P06] POPL ’06: Proc. 33rd ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, New York, 2006. Associ-
ation for Computing Machinery. ISBN 1-59593-027-2. 549061.

[P06A] Kathleen Fisher, Yitzhak Mandelbaum, and David Walker. The
next 700 data description languages. In POPL ’06 [P06], 2–15.
http://doi.acm.org/10.1145/1111037.1111039 549061.

[P06B] Xavier Leroy. Formal certification of a compiler back-end or:
Programming a compiler with a proof assistant. In POPL ’06
[P06], 42–54.
http://doi.acm.org/10.1145/1111037.1111042 549061.

[P06C] Steve Bishop, Matthew Fairbairn, Michael Norrish, Peter Sewell,
Michael Smith, and Keith Wansbrough. Engineering with logic:
Hol specification and symbolic-evaluation testing for tcp imple-
mentations. In POPL ’06 [P06], 55–66.
http://doi.acm.org/10.1145/1111037.1111043 549061.

[P06D] Mads Dam. Decidability and proof systems for language-based
noninterference relations. In POPL ’06 [P06], 67–78.
http://doi.acm.org/10.1145/1111037.1111044 549061.

[P06E] Sebastian Hunt and David Sands. On flow-sensitive security types.
In POPL ’06 [P06], 79–90.
http://doi.acm.org/10.1145/1111037.1111045 549061.

[P06F] Torben Amtoft, Sruthi Bandhakavi, and Anindya Banerjee. A
logic for information flow in object-oriented programs. In POPL
’06 [P06], 91–102.
http://doi.acm.org/10.1145/1111037.1111046 549061.

[P06G] Jérôme Vouillon. Polymorphic regular tree types and patterns. In
POPL ’06 [P06], 103–114.
http://doi.acm.org/10.1145/1111037.1111047 549061.

[P06H] Vasileios Koutavas and Mitchell Wand. Small bisimulations for
reasoning about higher-order imperative programs. In POPL ’06
[P06], 141–152.
http://doi.acm.org/10.1145/1111037.1111050 549061.

[P06I] Norman Danner and James S. Royer. Adventures in time and
space. In POPL ’06 [P06], 168–179.
http://doi.acm.org/10.1145/1111037.1111053 549061.

[P06J] Albert Cohen, Marc Duranton, Christine Eisenbeis, Claire Pagetti,
Florence Plateau, and Marc Pouzet. N-synchronous kahn net-
works: A relaxed model of synchrony for real-time systems. In
POPL ’06 [P06], 180–193.
http://doi.acm.org/10.1145/1111037.1111054 549061.

[P06K] Nils Anders Danielsson, John Hughes, Patrik Jansson, and Jeremy
Gibbons. Fast and loose reasoning is morally correct. In POPL
’06 [P06], 206–217.
http://doi.acm.org/10.1145/1111037.1111056 549061.

[P06L] Philippe Meunier, Robert Bruce Findler, and Matthias Felleisen.
Modular set-based analysis from contracts. In POPL ’06 [P06],
218–231. http://doi.acm.org/10.1145/1111037.1111057 549061.

[P06M] François Pottier and Yann Régis-Gianas. Stratified type inference
for generalized algebraic data types. In POPL ’06 [P06], 232–244.
http://doi.acm.org/10.1145/1111037.1111058 549061.

[P06N] Cormac Flanagan. Hybrid type checking. In POPL ’06 [P06],
245–256. http://doi.acm.org/10.1145/1111037.1111059 549061.

[P06O] Ik-Soon Kim, Kwangkeun Yi, and Cristiano Calcagno. A poly-
morphic modal type system for lisp-like multi-staged languages.
In POPL ’06 [P06], 257–268.
http://doi.acm.org/10.1145/1111037.1111060 549061.

[P06P] Erik Ernst, Klaus Ostermann, and William R. Cook. A virtual
class calculus. In POPL ’06 [P06], 270–282.
http://doi.acm.org/10.1145/1111037.1111062 549061.

[P06Q] Jed Liu, Aaron Kimball, and Andrew C. Myers. Interruptible
iterators. In POPL ’06 [P06], 283–294.
http://doi.acm.org/10.1145/1111037.1111063 549061.

For submission to 2017 ACM POPL 22 2016/6/30

http://doi.acm.org/10.1145/1040305.1040306
http://doi.acm.org/10.1145/1040305.1040307
http://doi.acm.org/10.1145/1040305.1040308
http://doi.acm.org/10.1145/1040305.1040309
http://doi.acm.org/10.1145/1040305.1040310
http://doi.acm.org/10.1145/1040305.1040311
http://doi.acm.org/10.1145/1040305.1040312
http://doi.acm.org/10.1145/1040305.1040318
http://doi.acm.org/10.1145/1040305.1040319
http://doi.acm.org/10.1145/1040305.1040320
http://doi.acm.org/10.1145/1040305.1040321
http://doi.acm.org/10.1145/1040305.1040322
http://doi.acm.org/10.1145/1040305.1040323
http://doi.acm.org/10.1145/1040305.1040324
http://doi.acm.org/10.1145/1040305.1040326
http://doi.acm.org/10.1145/1040305.1040327
http://doi.acm.org/10.1145/1040305.1040328
http://doi.acm.org/10.1145/1040305.1040329
http://doi.acm.org/10.1145/1040305.1040330
http://doi.acm.org/10.1145/1040305.1040331
http://doi.acm.org/10.1145/1040305.1040334
http://doi.acm.org/10.1145/1111037.1111039
http://doi.acm.org/10.1145/1111037.1111042
http://doi.acm.org/10.1145/1111037.1111043
http://doi.acm.org/10.1145/1111037.1111044
http://doi.acm.org/10.1145/1111037.1111045
http://doi.acm.org/10.1145/1111037.1111046
http://doi.acm.org/10.1145/1111037.1111047
http://doi.acm.org/10.1145/1111037.1111050
http://doi.acm.org/10.1145/1111037.1111053
http://doi.acm.org/10.1145/1111037.1111054
http://doi.acm.org/10.1145/1111037.1111056
http://doi.acm.org/10.1145/1111037.1111057
http://doi.acm.org/10.1145/1111037.1111058
http://doi.acm.org/10.1145/1111037.1111059
http://doi.acm.org/10.1145/1111037.1111060
http://doi.acm.org/10.1145/1111037.1111062
http://doi.acm.org/10.1145/1111037.1111063

[P06R] Hayo Thielecke. Frame rules from answer types for code pointers.
In POPL ’06 [P06], 309–319.
http://doi.acm.org/10.1145/1111037.1111065 549061.

[P06S] Zhaozhong Ni and Zhong Shao. Certified assembly programming
with embedded code pointers. In POPL ’06 [P06], 320–333.
http://doi.acm.org/10.1145/1111037.1111066 549061.

[P06T] Bill McCloskey, Feng Zhou, David Gay, and Eric Brewer. Au-
tolocker: Synchronization inference for atomic sections. In POPL
’06 [P06], 346–358.
http://doi.acm.org/10.1145/1111037.1111068 549061.

[P06U] Yi Lu and John Potter. Protecting representation with effect
encapsulation. In POPL ’06 [P06], 359–371.
http://doi.acm.org/10.1145/1111037.1111069 549061.

[P06V] Daniel S. Dantas and David Walker. Harmless advice. In POPL
’06 [P06], 383–396.
http://doi.acm.org/10.1145/1111037.1111071 549061.

[P06W] Vijay S. Menon, Neal Glew, Brian R. Murphy, Andrew Mc-
Creight, Tatiana Shpeisman, Ali-Reza Adl-Tabatabai, and Leaf
Petersen. A verifiable ssa program representation for aggressive
compiler optimization. In POPL ’06 [P06], 397–408.
http://doi.acm.org/10.1145/1111037.1111072 549061.

[P06X] Reuben Olinsky, Christian Lindig, and Norman Ramsey. Staged
allocation: A compositional technique for specifying and imple-
menting procedure calling conventions. In POPL ’06 [P06], 409–
421. http://doi.acm.org/10.1145/1111037.1111073 549061.

[P07] POPL ’07: Proc. 34th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, New York, 2007. Associ-
ation for Computing Machinery. ISBN 1-59593-575-4. 549071.

[P07A] Jacob Matthews and Robert Bruce Findler. Operational semantics
for multi-language programs. In POPL ’07 [P07], 3–10.
http://doi.acm.org/10.1145/1190216.1190220 549071.

[P07B] Juan Chen. A typed intermediate language for compiling multiple
inheritance. In POPL ’07 [P07], 25–30.
http://doi.acm.org/10.1145/1190216.1190222 549071.

[P07C] Derek Dreyer, Robert Harper, Manuel M. T. Chakravarty, and
Gabriele Keller. Modular type classes. In POPL ’07 [P07], 63–
70. http://doi.acm.org/10.1145/1190216.1190229 549071.

[P07D] Andrew M. Pitts and Mark R. Shinwell. Generative unbinding of
names. In POPL ’07 [P07], 85–95.
http://doi.acm.org/10.1145/1190216.1190232 549071.

[P07E] Harvey Tuch, Gerwin Klein, and Michael Norrish. Types, bytes,
and separation logic. In POPL ’07 [P07], 97–108.
http://doi.acm.org/10.1145/1190216.1190234 549071.

[P07F] Andrew W. Appel, Paul-André Melliès, Christopher D. Richards,
and Jérôme Vouillon. A very modal model of a modern, major,
general type system. In POPL ’07 [P07], 109–122.
http://doi.acm.org/10.1145/1190216.1190235 549071.

[P07G] Cristiano Calcagno, Philippa Gardner, and Uri Zarfaty. Context
logic as modal logic: Completeness and parametric inexpressivity.
In POPL ’07 [P07], 123–134.
http://doi.acm.org/10.1145/1190216.1190236 549071.

[P07H] Atsushi Ohori and Isao Sasano. Lightweight fusion by fixed point
promotion. In POPL ’07 [P07], 143–154.
http://doi.acm.org/10.1145/1190216.1190241 549071.

[P07I] Kristian Støvring and Soren B. Lassen. A complete, co-inductive
syntactic theory of sequential control and state. In POPL ’07
[P07], 161–172.
http://doi.acm.org/10.1145/1190216.1190244 549071.

[P07J] Daniel K. Lee, Karl Crary, and Robert Harper. Towards a mecha-
nized metatheory of standard ml. In POPL ’07 [P07], 173–184.
http://doi.acm.org/10.1145/1190216.1190245 549071.

[P07K] Matthew Might. Logic-flow analysis of higher-order programs. In
POPL ’07 [P07], 185–198.
http://doi.acm.org/10.1145/1190216.1190247 549071.

[P07L] Ben Wiedermann and William R. Cook. Extracting queries by
static analysis of transparent persistence. In POPL ’07 [P07], 199–
210. http://doi.acm.org/10.1145/1190216.1190248 549071.

[P07M] Dachuan Yu, Ajay Chander, Nayeem Islam, and Igor Serikov.
Javascript instrumentation for browser security. In POPL ’07
[P07], 237–249.
http://doi.acm.org/10.1145/1190216.1190252 549071.

[P07N] Michele Bugliesi and Marco Giunti. Secure implementations of
typed channel abstractions. In POPL ’07 [P07], 251–262.
http://doi.acm.org/10.1145/1190216.1190253 549071.

[P07O] Matthew Parkinson, Richard Bornat, and Peter O’Hearn. Modular
verification of a non-blocking stack. In POPL ’07 [P07], 297–302.
http://doi.acm.org/10.1145/1190216.1190261 549071.

[P07P] John Reppy and Yingqi Xiao. Specialization of cml message-
passing primitives. In POPL ’07 [P07], 315–326.
http://doi.acm.org/10.1145/1190216.1190264 549071.

[P07Q] Mayur Naik and Alex Aiken. Conditional must not aliasing for
static race detection. In POPL ’07 [P07], 327–338.
http://doi.acm.org/10.1145/1190216.1190265 549071.

[P07R] Dan R. Ghica. Geometry of synthesis: A structured approach to
vlsi design. In POPL ’07 [P07], 363–375.
http://doi.acm.org/10.1145/1190216.1190269 549071.

[P08] POPL ’08: Proc. 35th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, volume 43, New York,
2008. Association for Computing Machinery. ISBN 978-1-59593-
689-9. 549081.

[P08A] Brian Aydemir, Arthur Charguéraud, Benjamin C. Pierce, Randy
Pollack, and Stephanie Weirich. Engineering formal metatheory.
In POPL ’08 [P08], 3–15.
http://doi.acm.org/10.1145/1328438.1328443 549081.

[P08B] Jean-Baptiste Tristan and Xavier Leroy. Formal verification of
translation validators: A case study on instruction scheduling op-
timizations. In POPL ’08 [P08], 17–27.
http://doi.acm.org/10.1145/1328438.1328444 549081.

[P08C] Iulian Neamtiu, Michael Hicks, Jeffrey S. Foster, and Polyvios
Pratikakis. Contextual effects for version-consistent dynamic soft-
ware updating and safe concurrent programming. In POPL ’08
[P08], 37–49.
http://doi.acm.org/10.1145/1328438.1328447 549081.

[P08D] Katherine F. Moore and Dan Grossman. High-level small-step
operational semantics for transactions. In POPL ’08 [P08], 51–
62. http://doi.acm.org/10.1145/1328438.1328448 549081.

[P08E] Martı́n Abadi, Andrew Birrell, Tim Harris, and Michael Isard. Se-
mantics of transactional memory and automatic mutual exclusion.
In POPL ’08 [P08], 63–74.
http://doi.acm.org/10.1145/1328438.1328449 549081.

[P08F] Matthew J. Parkinson and Gavin M. Bierman. Separation logic,
abstraction and inheritance. In POPL ’08 [P08], 75–86.
http://doi.acm.org/10.1145/1328438.1328451 549081.

[P08G] Wei-Ngan Chin, Cristina David, Huu Hai Nguyen, and Shengchao
Qin. Enhancing modular oo verification with separation logic. In
POPL ’08 [P08], 87–99.
http://doi.acm.org/10.1145/1328438.1328452 549081.

[P08H] James Brotherston, Richard Bornat, and Cristiano Calcagno.
Cyclic proofs of program termination in separation logic. In POPL
’08 [P08], 101–112.
http://doi.acm.org/10.1145/1328438.1328453 549081.

[P08I] Marco Gaboardi, Jean-Yves Marion, and Simona Ronchi Della Rocca.
A logical account of pspace. In POPL ’08 [P08], 121–131.
http://doi.acm.org/10.1145/1328438.1328456 549081.

[P08J] Nils Anders Danielsson. Lightweight semiformal time complexity
analysis for purely functional data structures. In POPL ’08 [P08],
133–144. http://doi.acm.org/10.1145/1328438.1328457 549081.

[P08K] Shuvendu Lahiri and Shaz Qadeer. Back to the future: Revisiting
precise program verification using smt solvers. In POPL ’08
[P08], 171–182.
http://doi.acm.org/10.1145/1328438.1328461 549081.

[P08L] Christopher Unkel and Monica S. Lam. Automatic inference of
stationary fields: A generalization of java’s final fields. In POPL

For submission to 2017 ACM POPL 23 2016/6/30

http://doi.acm.org/10.1145/1111037.1111065
http://doi.acm.org/10.1145/1111037.1111066
http://doi.acm.org/10.1145/1111037.1111068
http://doi.acm.org/10.1145/1111037.1111069
http://doi.acm.org/10.1145/1111037.1111071
http://doi.acm.org/10.1145/1111037.1111072
http://doi.acm.org/10.1145/1111037.1111073
http://doi.acm.org/10.1145/1190216.1190220
http://doi.acm.org/10.1145/1190216.1190222
http://doi.acm.org/10.1145/1190216.1190229
http://doi.acm.org/10.1145/1190216.1190232
http://doi.acm.org/10.1145/1190216.1190234
http://doi.acm.org/10.1145/1190216.1190235
http://doi.acm.org/10.1145/1190216.1190236
http://doi.acm.org/10.1145/1190216.1190241
http://doi.acm.org/10.1145/1190216.1190244
http://doi.acm.org/10.1145/1190216.1190245
http://doi.acm.org/10.1145/1190216.1190247
http://doi.acm.org/10.1145/1190216.1190248
http://doi.acm.org/10.1145/1190216.1190252
http://doi.acm.org/10.1145/1190216.1190253
http://doi.acm.org/10.1145/1190216.1190261
http://doi.acm.org/10.1145/1190216.1190264
http://doi.acm.org/10.1145/1190216.1190265
http://doi.acm.org/10.1145/1190216.1190269
http://doi.acm.org/10.1145/1328438.1328443
http://doi.acm.org/10.1145/1328438.1328444
http://doi.acm.org/10.1145/1328438.1328447
http://doi.acm.org/10.1145/1328438.1328448
http://doi.acm.org/10.1145/1328438.1328449
http://doi.acm.org/10.1145/1328438.1328451
http://doi.acm.org/10.1145/1328438.1328452
http://doi.acm.org/10.1145/1328438.1328453
http://doi.acm.org/10.1145/1328438.1328456
http://doi.acm.org/10.1145/1328438.1328457
http://doi.acm.org/10.1145/1328438.1328461

’08 [P08], 183–195.
http://doi.acm.org/10.1145/1328438.1328463 549081.

[P08M] Marius Nita, Dan Grossman, and Craig Chambers. A theory of
platform-dependent low-level software. In POPL ’08 [P08], 209–
220. http://doi.acm.org/10.1145/1328438.1328465 549081.

[P08N] Sumit Gulwani, Bill McCloskey, and Ashish Tiwari. Lifting ab-
stract interpreters to quantified logical domains. In POPL ’08
[P08], 235–246.
http://doi.acm.org/10.1145/1328438.1328468 549081.

[P08O] Bor-Yuh Evan Chang and Xavier Rival. Relational inductive shape
analysis. In POPL ’08 [P08], 247–260.
http://doi.acm.org/10.1145/1328438.1328469 549081.

[P08P] Giuseppe Castagna, Nils Gesbert, and Luca Padovani. A theory of
contracts for web services. In POPL ’08 [P08], 261–272.
http://doi.acm.org/10.1145/1328438.1328471 549081.

[P08Q] Kohei Honda, Nobuko Yoshida, and Marco Carbone. Multiparty
asynchronous session types. In POPL ’08 [P08], 273–284.
http://doi.acm.org/10.1145/1328438.1328472 549081.

[P08R] Umut A. Acar, Amal Ahmed, and Matthias Blume. Imperative
self-adjusting computation. In POPL ’08 [P08], 309–322.
http://doi.acm.org/10.1145/1328438.1328476 549081.

[P08S] Cédric Fournet and Tamara Rezk. Cryptographically sound im-
plementations for typed information-flow security. In POPL ’08
[P08], 323–335.
http://doi.acm.org/10.1145/1328438.1328478 549081.

[P08T] Peeter Laud. On the computational soundness of cryptographi-
cally masked flows. In POPL ’08 [P08], 337–348.
http://doi.acm.org/10.1145/1328438.1328479 549081.

[P08U] Noam Zeilberger. Focusing and higher-order abstract syntax. In
POPL ’08 [P08], 359–369.
http://doi.acm.org/10.1145/1328438.1328482 549081.

[P08V] Brigitte Pientka. A type-theoretic foundation for programming
with higher-order abstract syntax and first-class substitutions. In
POPL ’08 [P08], 371–382.
http://doi.acm.org/10.1145/1328438.1328483 549081.

[P08W] Hugo Herbelin and Silvia Ghilezan. An approach to call-by-name
delimited continuations. In POPL ’08 [P08], 383–394.
http://doi.acm.org/10.1145/1328438.1328484 549081.

[P08X] Sam Tobin-Hochstadt and Matthias Felleisen. The design and
implementation of typed scheme. In POPL ’08 [P08], 395–406.
http://doi.acm.org/10.1145/1328438.1328486 549081.

[P08Y] Aaron Bohannon, J. Nathan Foster, Benjamin C. Pierce, Alexan-
dre Pilkiewicz, and Alan Schmitt. Boomerang: Resourceful lenses
for string data. In POPL ’08 [P08], 407–419.
http://doi.acm.org/10.1145/1328438.1328487 549081.

[P09] POPL ’09: Proc. 36th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, volume 44, New York,
2009. Association for Computing Machinery. ISBN 978-1-60558-
379-2. 549091.

[P09A] Tayfun Elmas, Shaz Qadeer, and Serdar Tasiran. A calculus of
atomic actions. In POPL ’09 [P09], 2–15.
http://doi.acm.org/10.1145/1480881.1480885 549091.

[P09B] Alexey Gotsman, Byron Cook, Matthew Parkinson, and Viktor
Vafeiadis. Proving that non-blocking algorithms don’t block. In
POPL ’09 [P09], 16–28.
http://doi.acm.org/10.1145/1480881.1480886 549091.

[P09C] Martin Abadi and Gordon Plotkin. A model of cooperative
threads. In POPL ’09 [P09], 29–40.
http://doi.acm.org/10.1145/1480881.1480887 549091.

[P09D] Dana N. Xu, Simon Peyton Jones, and Koen Claessen. Static
contract checking for haskell. In POPL ’09 [P09], 41–52.
http://doi.acm.org/10.1145/1480881.1480889 549091.

[P09E] Xin Qi and Andrew C. Myers. Masked types for sound object
initialization. In POPL ’09 [P09], 53–65.
http://doi.acm.org/10.1145/1480881.1480890 549091.

[P09F] Daan Leijen. Flexible types: Robust type inference for first-class
polymorphism. In POPL ’09 [P09], 66–77.
http://doi.acm.org/10.1145/1480881.1480891 549091.

[P09G] Gilles Barthe, Benjamin Grégoire, and Santiago Zanella Béguelin.
Formal certification of code-based cryptographic proofs. In POPL
’09 [P09], 90–101.
http://doi.acm.org/10.1145/1480881.1480894 549091.

[P09H] Ronald Garcia, Andrew Lumsdaine, and Amr Sabry. Lazy evalu-
ation and delimited control. In POPL ’09 [P09], 153–164.
http://doi.acm.org/10.1145/1480881.1480903 549091.

[P09I] Ruy Ley-Wild, Umut A. Acar, and Matthew Fluet. A cost seman-
tics for self-adjusting computation. In POPL ’09 [P09], 186–199.
http://doi.acm.org/10.1145/1480881.1480907 549091.

[P09J] Akihiko Tozawa, Michiaki Tatsubori, Tamiya Onodera, and Ya-
suhiko Minamide. Copy-on-write in the php language. In POPL
’09 [P09], 200–212.
http://doi.acm.org/10.1145/1480881.1480908 549091.

[P09K] Peter A. Jonsson and Johan Nordlander. Positive supercompilation
for a higher order call-by-value language. In POPL ’09 [P09],
277–288. http://doi.acm.org/10.1145/1480881.1480916 549091.

[P09L] Cristiano Calcagno, Dino Distefano, Peter O’Hearn, and Hongseok
Yang. Compositional shape analysis by means of bi-abduction. In
POPL ’09 [P09], 289–300.
http://doi.acm.org/10.1145/1480881.1480917 549091.

[P09M] Xinyu Feng. Local rely-guarantee reasoning. In POPL ’09 [P09],
315–327. http://doi.acm.org/10.1145/1480881.1480922 549091.

[P09N] James Brotherston and Cristiano Calcagno. Classical bi: A logic
for reasoning about dualising resources. In POPL ’09 [P09], 328–
339. http://doi.acm.org/10.1145/1480881.1480923 549091.

[P09O] Amal Ahmed, Derek Dreyer, and Andreas Rossberg. State-
dependent representation independence. In POPL ’09 [P09], 340–
353. http://doi.acm.org/10.1145/1480881.1480925 549091.

[P09P] Benoı̂t Montagu and Didier Rémy. Modeling abstract types in
modules with open existential types. In POPL ’09 [P09], 354–
365. http://doi.acm.org/10.1145/1480881.1480926 549091.

[P09Q] Neelakantan R. Krishnaswami. Focusing on pattern matching. In
POPL ’09 [P09], 366–378.
http://doi.acm.org/10.1145/1480881.1480927 549091.

[P09R] Gérard Boudol and Gustavo Petri. Relaxed memory models: An
operational approach. In POPL ’09 [P09], 392–403.
http://doi.acm.org/10.1145/1480881.1480930 549091.

[P09S] Naoki Kobayashi. Types and higher-order recursion schemes for
verification of higher-order programs. In POPL ’09 [P09], 416–
428. http://doi.acm.org/10.1145/1480881.1480933 549091.

[P10] POPL ’10: Proc. 37th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, volume 45, New York,
2010. Association for Computing Machinery. ISBN 978-1-60558-
479-9. 549101.

[P10A] Eric Koskinen, Matthew Parkinson, and Maurice Herlihy. Coarse-
grained transactions. In POPL ’10 [P10], 19–30.
http://doi.acm.org/10.1145/1706299.1706304 549101.

[P10B] Patrice Godefroid, Aditya V. Nori, Sriram K. Rajamani, and
Sai Deep Tetali. Compositional may-must program analysis: Un-
leashing the power of alternation. In POPL ’10 [P10], 43–56.
http://doi.acm.org/10.1145/1706299.1706307 549101.

[P10C] Swarat Chaudhuri, Sumit Gulwani, and Roberto Lublinerman.
Continuity analysis of programs. In POPL ’10 [P10], 57–70.
http://doi.acm.org/10.1145/1706299.1706308 549101.

[P10D] Jean-Baptiste Tristan and Xavier Leroy. A simple, verified valida-
tor for software pipelining. In POPL ’10 [P10], 83–92.
http://doi.acm.org/10.1145/1706299.1706311 549101.

[P10E] Adam Chlipala. A verified compiler for an impure functional
language. In POPL ’10 [P10], 93–106.
http://doi.acm.org/10.1145/1706299.1706312 549101.

[P10F] Magnus O. Myreen. Verified just-in-time compiler on x86. In
POPL ’10 [P10], 107–118.
http://doi.acm.org/10.1145/1706299.1706313 549101.

For submission to 2017 ACM POPL 24 2016/6/30

http://doi.acm.org/10.1145/1328438.1328463
http://doi.acm.org/10.1145/1328438.1328465
http://doi.acm.org/10.1145/1328438.1328468
http://doi.acm.org/10.1145/1328438.1328469
http://doi.acm.org/10.1145/1328438.1328471
http://doi.acm.org/10.1145/1328438.1328472
http://doi.acm.org/10.1145/1328438.1328476
http://doi.acm.org/10.1145/1328438.1328478
http://doi.acm.org/10.1145/1328438.1328479
http://doi.acm.org/10.1145/1328438.1328482
http://doi.acm.org/10.1145/1328438.1328483
http://doi.acm.org/10.1145/1328438.1328484
http://doi.acm.org/10.1145/1328438.1328486
http://doi.acm.org/10.1145/1328438.1328487
http://doi.acm.org/10.1145/1480881.1480885
http://doi.acm.org/10.1145/1480881.1480886
http://doi.acm.org/10.1145/1480881.1480887
http://doi.acm.org/10.1145/1480881.1480889
http://doi.acm.org/10.1145/1480881.1480890
http://doi.acm.org/10.1145/1480881.1480891
http://doi.acm.org/10.1145/1480881.1480894
http://doi.acm.org/10.1145/1480881.1480903
http://doi.acm.org/10.1145/1480881.1480907
http://doi.acm.org/10.1145/1480881.1480908
http://doi.acm.org/10.1145/1480881.1480916
http://doi.acm.org/10.1145/1480881.1480917
http://doi.acm.org/10.1145/1480881.1480922
http://doi.acm.org/10.1145/1480881.1480923
http://doi.acm.org/10.1145/1480881.1480925
http://doi.acm.org/10.1145/1480881.1480926
http://doi.acm.org/10.1145/1480881.1480927
http://doi.acm.org/10.1145/1480881.1480930
http://doi.acm.org/10.1145/1480881.1480933
http://doi.acm.org/10.1145/1706299.1706304
http://doi.acm.org/10.1145/1706299.1706307
http://doi.acm.org/10.1145/1706299.1706308
http://doi.acm.org/10.1145/1706299.1706311
http://doi.acm.org/10.1145/1706299.1706312
http://doi.acm.org/10.1145/1706299.1706313

[P10G] Tachio Terauchi. Dependent types from counterexamples. In
POPL ’10 [P10], 119–130.
http://doi.acm.org/10.1145/1706299.1706315 549101.

[P10H] Patrick Maxim Rondon, Ming Kawaguchi, and Ranjit Jhala. Low-
level liquid types. In POPL ’10 [P10], 131–144.
http://doi.acm.org/10.1145/1706299.1706316 549101.

[P10I] Andrew M. Pitts. Nominal system t. In POPL ’10 [P10], 159–
170. http://doi.acm.org/10.1145/1706299.1706321 549101.

[P10J] Derek Dreyer, Georg Neis, Andreas Rossberg, and Lars Birkedal.
A relational modal logic for higher-order stateful adts. In POPL
’10 [P10], 185–198.
http://doi.acm.org/10.1145/1706299.1706323 549101.

[P10K] Philippe Suter, Mirco Dotta, and Viktor Kuncak. Decision pro-
cedures for algebraic data types with abstractions. In POPL ’10
[P10], 199–210.
http://doi.acm.org/10.1145/1706299.1706325 549101.

[P10L] Stephen Magill, Ming-Hsien Tsai, Peter Lee, and Yih-Kuen Tsay.
Automatic numeric abstractions for heap-manipulating programs.
In POPL ’10 [P10], 211–222.
http://doi.acm.org/10.1145/1706299.1706326 549101.

[P10M] Steffen Jost, Kevin Hammond, Hans-Wolfgang Loidl, and Martin
Hofmann. Static determination of quantitative resource usage for
higher-order programs. In POPL ’10 [P10], 223–236.
http://doi.acm.org/10.1145/1706299.1706327 549101.

[P10N] Aleksandar Nanevski, Viktor Vafeiadis, and Josh Berdine. Struc-
turing the verification of heap-manipulating programs. In POPL
’10 [P10], 261–274.
http://doi.acm.org/10.1145/1706299.1706331 549101.

[P10O] Limin Jia, Jianzhou Zhao, Vilhelm Sjöberg, and Stephanie Weirich.
Dependent types and program equivalence. In POPL ’10 [P10],
275–286. http://doi.acm.org/10.1145/1706299.1706333 549101.

[P10P] DeLesley S. Hutchins. Pure subtype systems. In POPL ’10 [P10],
287–298. http://doi.acm.org/10.1145/1706299.1706334 549101.

[P10Q] Simon J. Gay, Vasco T. Vasconcelos, António Ravara, Nils Ges-
bert, and Alexandre Z. Caldeira. Modular session types for dis-
tributed object-oriented programming. In POPL ’10 [P10], 299–
312. http://doi.acm.org/10.1145/1706299.1706335 549101.

[P10R] Michael Greenberg, Benjamin C. Pierce, and Stephanie Weirich.
Contracts made manifest. In POPL ’10 [P10], 353–364.
http://doi.acm.org/10.1145/1706299.1706341 549101.

[P10S] Jeremy G. Siek and Philip Wadler. Threesomes, with and without
blame. In POPL ’10 [P10], 365–376.
http://doi.acm.org/10.1145/1706299.1706342 549101.

[P10T] Tobias Wrigstad, Francesco Zappa Nardelli, Sylvain Lebresne,
Johan Östlund, and Jan Vitek. Integrating typed and untyped code
in a scripting language. In POPL ’10 [P10], 377–388.
http://doi.acm.org/10.1145/1706299.1706343 549101.

[P10U] João Dias and Norman Ramsey. Automatically generating instruc-
tion selectors using declarative machine descriptions. In POPL
’10 [P10], 403–416.
http://doi.acm.org/10.1145/1706299.1706346 549101.

[P10V] Trevor Jim, Yitzhak Mandelbaum, and David Walker. Semantics
and algorithms for data-dependent grammars. In POPL ’10 [P10],
417–430. http://doi.acm.org/10.1145/1706299.1706347 549101.

[P10W] Niklas Broberg and David Sands. Paralocks: Role-based informa-
tion flow control and beyond. In POPL ’10 [P10], 431–444.
http://doi.acm.org/10.1145/1706299.1706349 549101.

[P10X] Jean-Phillipe Martin, Michael Hicks, Manuel Costa, Periklis Akri-
tidis, and Miguel Castro. Dynamically checking ownership poli-
cies in concurrent c/c++ programs. In POPL ’10 [P10], 457–470.
http://doi.acm.org/10.1145/1706299.1706351 549101.

[P10Y] Andrzej Filinski. Monads in action. In POPL ’10 [P10], 483–494.
http://doi.acm.org/10.1145/1706299.1706354 549101.

[P10Z] Naoki Kobayashi, Naoshi Tabuchi, and Hiroshi Unno. Higher-
order multi-parameter tree transducers and recursion schemes for
program verification. In POPL ’10 [P10], 495–508.
http://doi.acm.org/10.1145/1706299.1706355 549101.

[P11] POPL ’11: Proc. 38th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, volume 46, New York,
2011. Association for Computing Machinery. ISBN 978-1-4503-
0490-0. 549111.

[P11A] Tahina Ramananandro, Gabriel Dos Reis, and Xavier Leroy. For-
mal verification of object layout for c++ multiple inheritance. In
POPL ’11 [P11], 67–80.
http://doi.acm.org/10.1145/1926385.1926395 549111.

[P11B] Wontae Choi, Baris Aktemur, Kwangkeun Yi, and Makoto Tat-
suta. Static analysis of multi-staged programs via unstaging trans-
lation. In POPL ’11 [P11], 81–92.
http://doi.acm.org/10.1145/1926385.1926397 549111.

[P11C] Lars Birkedal, Bernhard Reus, Jan Schwinghammer, Kristian
Støvring, Jacob Thamsborg, and Hongseok Yang. Step-indexed
kripke models over recursive worlds. In POPL ’11 [P11], 119–
132. http://doi.acm.org/10.1145/1926385.1926401 549111.

[P11D] François Pottier. A typed store-passing translation for general
references. In POPL ’11 [P11], 147–158.
http://doi.acm.org/10.1145/1926385.1926403 549111.

[P11E] Xavier Rival and Bor-Yuh Evan Chang. Calling context abstrac-
tion with shapes. In POPL ’11 [P11], 173–186.
http://doi.acm.org/10.1145/1926385.1926406 549111.

[P11F] Isil Dillig, Thomas Dillig, and Alex Aiken. Precise reasoning for
programs using containers. In POPL ’11 [P11], 187–200.
http://doi.acm.org/10.1145/1926385.1926407 549111.

[P11G] Amal Ahmed, Robert Bruce Findler, Jeremy G. Siek, and Philip
Wadler. Blame for all. In POPL ’11 [P11], 201–214.
http://doi.acm.org/10.1145/1926385.1926409 549111.

[P11H] Christos Dimoulas, Robert Bruce Findler, Cormac Flanagan, and
Matthias Felleisen. Correct blame for contracts: No more scape-
goating. In POPL ’11 [P11], 215–226.
http://doi.acm.org/10.1145/1926385.1926410 549111.

[P11I] Stephanie Weirich, Dimitrios Vytiniotis, Simon Peyton Jones, and
Steve Zdancewic. Generative type abstraction and type-level com-
putation. In POPL ’11 [P11], 227–240.
http://doi.acm.org/10.1145/1926385.1926411 549111.

[P11J] Aaron Joseph Turon and Mitchell Wand. A separation logic for
refining concurrent objects. In POPL ’11 [P11], 247–258.
http://doi.acm.org/10.1145/1926385.1926415 549111.

[P11K] Mike Dodds, Suresh Jagannathan, and Matthew J. Parkinson.
Modular reasoning for deterministic parallelism. In POPL ’11
[P11], 259–270.
http://doi.acm.org/10.1145/1926385.1926416 549111.

[P11L] Bart Jacobs and Frank Piessens. Expressive modular fine-grained
concurrency specification. In POPL ’11 [P11], 271–282.
http://doi.acm.org/10.1145/1926385.1926417 549111.

[P11M] Nikos Tzevelekos. Fresh-register automata. In POPL ’11 [P11],
295–306. http://doi.acm.org/10.1145/1926385.1926420 549111.

[P11N] Dan R. Ghica and Alex Smith. Geometry of synthesis iii: Resource
management through type inference. In POPL ’11 [P11], 345–
356. http://doi.acm.org/10.1145/1926385.1926425 549111.

[P11O] Jan Hoffmann, Klaus Aehlig, and Martin Hofmann. Multivariate
amortized resource analysis. In POPL ’11 [P11], 357–370.
http://doi.acm.org/10.1145/1926385.1926427 549111.

[P11P] Martin Hofmann, Benjamin Pierce, and Daniel Wagner. Symmet-
ric lenses. In POPL ’11 [P11], 371–384.
http://doi.acm.org/10.1145/1926385.1926428 549111.

[P11Q] Fritz Henglein and Lasse Nielsen. Regular expression contain-
ment: Coinductive axiomatization and computational interpreta-
tion. In POPL ’11 [P11], 385–398.
http://doi.acm.org/10.1145/1926385.1926429 549111.

[P11R] Byron Cook and Eric Koskinen. Making prophecies with decision
predicates. In POPL ’11 [P11], 399–410.
http://doi.acm.org/10.1145/1926385.1926431 549111.

[P11S] Michael Emmi, Shaz Qadeer, and Zvonimir Rakamarić. Delay-
bounded scheduling. In POPL ’11 [P11], 411–422.
http://doi.acm.org/10.1145/1926385.1926432 549111.

For submission to 2017 ACM POPL 25 2016/6/30

http://doi.acm.org/10.1145/1706299.1706315
http://doi.acm.org/10.1145/1706299.1706316
http://doi.acm.org/10.1145/1706299.1706321
http://doi.acm.org/10.1145/1706299.1706323
http://doi.acm.org/10.1145/1706299.1706325
http://doi.acm.org/10.1145/1706299.1706326
http://doi.acm.org/10.1145/1706299.1706327
http://doi.acm.org/10.1145/1706299.1706331
http://doi.acm.org/10.1145/1706299.1706333
http://doi.acm.org/10.1145/1706299.1706334
http://doi.acm.org/10.1145/1706299.1706335
http://doi.acm.org/10.1145/1706299.1706341
http://doi.acm.org/10.1145/1706299.1706342
http://doi.acm.org/10.1145/1706299.1706343
http://doi.acm.org/10.1145/1706299.1706346
http://doi.acm.org/10.1145/1706299.1706347
http://doi.acm.org/10.1145/1706299.1706349
http://doi.acm.org/10.1145/1706299.1706351
http://doi.acm.org/10.1145/1706299.1706354
http://doi.acm.org/10.1145/1706299.1706355
http://doi.acm.org/10.1145/1926385.1926395
http://doi.acm.org/10.1145/1926385.1926397
http://doi.acm.org/10.1145/1926385.1926401
http://doi.acm.org/10.1145/1926385.1926403
http://doi.acm.org/10.1145/1926385.1926406
http://doi.acm.org/10.1145/1926385.1926407
http://doi.acm.org/10.1145/1926385.1926409
http://doi.acm.org/10.1145/1926385.1926410
http://doi.acm.org/10.1145/1926385.1926411
http://doi.acm.org/10.1145/1926385.1926415
http://doi.acm.org/10.1145/1926385.1926416
http://doi.acm.org/10.1145/1926385.1926417
http://doi.acm.org/10.1145/1926385.1926420
http://doi.acm.org/10.1145/1926385.1926425
http://doi.acm.org/10.1145/1926385.1926427
http://doi.acm.org/10.1145/1926385.1926428
http://doi.acm.org/10.1145/1926385.1926429
http://doi.acm.org/10.1145/1926385.1926431
http://doi.acm.org/10.1145/1926385.1926432

[P11T] Pierre-Malo Deniélou and Nobuko Yoshida. Dynamic multirole
session types. In POPL ’11 [P11], 435–446.
http://doi.acm.org/10.1145/1926385.1926435 549111.

[P11U] Jesse A. Tov and Riccardo Pucella. Practical affine types. In POPL
’11 [P11], 447–458.
http://doi.acm.org/10.1145/1926385.1926436 549111.

[P11V] Jong-hoon (David) An, Avik Chaudhuri, Jeffrey S. Foster, and
Michael Hicks. Dynamic inference of static types for ruby. In
POPL ’11 [P11], 459–472.
http://doi.acm.org/10.1145/1926385.1926437 549111.

[P11W] Yuan Feng, Runyao Duan, and Mingsheng Ying. Bisimulation for
quantum processes. In POPL ’11 [P11], 523–534.
http://doi.acm.org/10.1145/1926385.1926446 549111.

[P11X] Robert L. Bocchino, Jr., Stephen Heumann, Nima Honarmand,
Sarita V. Adve, Vikram S. Adve, Adam Welc, and Tatiana Shpeis-
man. Safe nondeterminism in a deterministic-by-default parallel
language. In POPL ’11 [P11], 535–548.
http://doi.acm.org/10.1145/1926385.1926447 549111.

[P11Y] Norman Ramsey and João Dias. Resourceable, retargetable,
modular instruction selection using a machine-independent, type-
based tiling of low-level intermediate code. In POPL ’11 [P11],
575–586. http://doi.acm.org/10.1145/1926385.1926451 549111.

[P11Z] C.-H. Luke Ong and Steven J. Ramsay. Verifying higher-order
functional programs with pattern-matching algebraic data types.
In POPL ’11 [P11], 587–598.
http://doi.acm.org/10.1145/1926385.1926453 549111.

[P12] POPL ’12: Proc. 39th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, New York, 2012. Asso-
ciation for Computing Machinery. ISBN 978-1-4503-1083-3.
549121.

[P12A] Stephan van Staden, Cristiano Calcagno, and Bertrand Meyer.
Freefinement. In POPL ’12 [P12], 7–18.
http://doi.acm.org/10.1145/2103656.2103661 549121.

[P12B] Philippa Anne Gardner, Sergio Maffeis, and Gareth David Smith.
Towards a program logic for javascript. In POPL ’12 [P12], 31–
44. http://doi.acm.org/10.1145/2103656.2103663 549121.

[P12C] Neelakantan R. Krishnaswami, Nick Benton, and Jan Hoffmann.
Higher-order functional reactive programming in bounded space.
In POPL ’12 [P12], 45–58.
http://doi.acm.org/10.1145/2103656.2103665 549121.

[P12D] Chung-Kil Hur, Derek Dreyer, Georg Neis, and Viktor Vafeiadis.
The marriage of bisimulations and kripke logical relations. In
POPL ’12 [P12], 59–72.
http://doi.acm.org/10.1145/2103656.2103666 549121.

[P12E] Roshan P. James and Amr Sabry. Information effects. In POPL
’12 [P12], 73–84.
http://doi.acm.org/10.1145/2103656.2103667 549121.

[P12F] Jean Yang, Kuat Yessenov, and Armando Solar-Lezama. A lan-
guage for automatically enforcing privacy policies. In POPL ’12
[P12], 85–96.
http://doi.acm.org/10.1145/2103656.2103669 549121.

[P12G] Gilles Barthe, Boris Köpf, Federico Olmedo, and Santiago Zanella Béguelin.
Probabilistic relational reasoning for differential privacy. In POPL
’12 [P12], 97–110.
http://doi.acm.org/10.1145/2103656.2103670 549121.

[P12H] Phillip Heidegger, Annette Bieniusa, and Peter Thiemann. Access
permission contracts for scripting languages. In POPL ’12 [P12],
111–122. http://doi.acm.org/10.1145/2103656.2103671 549121.

[P12I] Ali Sinan Köksal, Viktor Kuncak, and Philippe Suter. Constraints
as control. In POPL ’12 [P12], 151–164.
http://doi.acm.org/10.1145/2103656.2103675 549121.

[P12J] Thomas H. Austin and Cormac Flanagan. Multiple facets for
dynamic information flow. In POPL ’12 [P12], 165–178.
http://doi.acm.org/10.1145/2103656.2103677 549121.

[P12K] Ahmed Bouajjani and Michael Emmi. Analysis of recursively
parallel programs. In POPL ’12 [P12], 203–214.
http://doi.acm.org/10.1145/2103656.2103681 549121.

[P12L] Christopher Monsanto, Nate Foster, Rob Harrison, and David
Walker. A compiler and run-time system for network program-
ming languages. In POPL ’12 [P12], 217–230.
http://doi.acm.org/10.1145/2103656.2103685 549121.

[P12M] Ravi Chugh, Patrick M. Rondon, and Ranjit Jhala. Nested refine-
ments: A logic for duck typing. In POPL ’12 [P12], 231–244.
http://doi.acm.org/10.1145/2103656.2103686 549121.

[P12N] Patrick Cousot and Radhia Cousot. An abstract interpretation
framework for termination. In POPL ’12 [P12], 245–258.
http://doi.acm.org/10.1145/2103656.2103687 549121.

[P12O] Krystof Hoder, Laura Kovacs, and Andrei Voronkov. Playing in
the grey area of proofs. In POPL ’12 [P12], 259–272.
http://doi.acm.org/10.1145/2103656.2103689 549121.

[P12P] Antonis Stampoulis and Zhong Shao. Static and user-extensible
proof checking. In POPL ’12 [P12], 273–284.
http://doi.acm.org/10.1145/2103656.2103690 549121.

[P12Q] Casey Klein, John Clements, Christos Dimoulas, Carl Eastlund,
Matthias Felleisen, Matthew Flatt, Jay A. McCarthy, Jon Rafkind,
Sam Tobin-Hochstadt, and Robert Bruce Findler. Run your re-
search: On the effectiveness of lightweight mechanization. In
POPL ’12 [P12], 285–296.
http://doi.acm.org/10.1145/2103656.2103691 549121.

[P12R] Azadeh Farzan and Zachary Kincaid. Verification of parameter-
ized concurrent programs by modular reasoning about data and
control. In POPL ’12 [P12], 297–308.
http://doi.acm.org/10.1145/2103656.2103693 549121.

[P12S] Matko Botincan, Mike Dodds, and Suresh Jagannathan. Resource-
sensitive synchronization inference by abduction. In POPL ’12
[P12], 309–322.
http://doi.acm.org/10.1145/2103656.2103694 549121.

[P12T] Uday S. Reddy and John C. Reynolds. Syntactic control of
interference for separation logic. In POPL ’12 [P12], 323–336.
http://doi.acm.org/10.1145/2103656.2103695 549121.

[P12U] Daniel R. Licata and Robert Harper. Canonicity for 2-dimensional
type theory. In POPL ’12 [P12], 337–348.
http://doi.acm.org/10.1145/2103656.2103697 549121.

[P12V] Ohad Kammar and Gordon D. Plotkin. Algebraic foundations for
effect-dependent optimisations. In POPL ’12 [P12], 349–360.
http://doi.acm.org/10.1145/2103656.2103698 549121.

[P12W] Julien Cretin and Didier Rémy. On the power of coercion abstrac-
tion. In POPL ’12 [P12], 361–372.
http://doi.acm.org/10.1145/2103656.2103699 549121.

[P12X] Mikolaj Bojanczyk, Laurent Braud, Bartek Klin, and Slawomir
Lasota. Towards nominal computation. In POPL ’12 [P12], 401–
412. http://doi.acm.org/10.1145/2103656.2103704 549121.

[P12Y] Andrew Cave and Brigitte Pientka. Programming with binders and
indexed data-types. In POPL ’12 [P12], 413–424.
http://doi.acm.org/10.1145/2103656.2103705 549121.

[P12Z] Jianzhou Zhao, Santosh Nagarakatte, Milo M.K. Martin, and
Steve Zdancewic. Formalizing the llvm intermediate represen-
tation for verified program transformations. In POPL ’12 [P12],
427–440. http://doi.acm.org/10.1145/2103656.2103709 549121.

[P12Γ] Hongjin Liang, Xinyu Feng, and Ming Fu. A rely-guarantee-based
simulation for verifying concurrent program transformations. In
POPL ’12 [P12], 455–468.
http://doi.acm.org/10.1145/2103656.2103711 549121.

[P12∆] Aseem Rastogi, Avik Chaudhuri, and Basil Hosmer. The ins and
outs of gradual type inference. In POPL ’12 [P12], 481–494.
http://doi.acm.org/10.1145/2103656.2103714 549121.

[P12Θ] Martin Hofmann, Benjamin Pierce, and Daniel Wagner. Edit
lenses. In POPL ’12 [P12], 495–508.
http://doi.acm.org/10.1145/2103656.2103715 549121.

[P12Λ] Tahina Ramananandro, Gabriel Dos Reis, and Xavier Leroy. A
mechanized semantics for c++ object construction and destruc-
tion, with applications to resource management. In POPL ’12
[P12], 521–532.
http://doi.acm.org/10.1145/2103656.2103718 549121.

For submission to 2017 ACM POPL 26 2016/6/30

http://doi.acm.org/10.1145/1926385.1926435
http://doi.acm.org/10.1145/1926385.1926436
http://doi.acm.org/10.1145/1926385.1926437
http://doi.acm.org/10.1145/1926385.1926446
http://doi.acm.org/10.1145/1926385.1926447
http://doi.acm.org/10.1145/1926385.1926451
http://doi.acm.org/10.1145/1926385.1926453
http://doi.acm.org/10.1145/2103656.2103661
http://doi.acm.org/10.1145/2103656.2103663
http://doi.acm.org/10.1145/2103656.2103665
http://doi.acm.org/10.1145/2103656.2103666
http://doi.acm.org/10.1145/2103656.2103667
http://doi.acm.org/10.1145/2103656.2103669
http://doi.acm.org/10.1145/2103656.2103670
http://doi.acm.org/10.1145/2103656.2103671
http://doi.acm.org/10.1145/2103656.2103675
http://doi.acm.org/10.1145/2103656.2103677
http://doi.acm.org/10.1145/2103656.2103681
http://doi.acm.org/10.1145/2103656.2103685
http://doi.acm.org/10.1145/2103656.2103686
http://doi.acm.org/10.1145/2103656.2103687
http://doi.acm.org/10.1145/2103656.2103689
http://doi.acm.org/10.1145/2103656.2103690
http://doi.acm.org/10.1145/2103656.2103691
http://doi.acm.org/10.1145/2103656.2103693
http://doi.acm.org/10.1145/2103656.2103694
http://doi.acm.org/10.1145/2103656.2103695
http://doi.acm.org/10.1145/2103656.2103697
http://doi.acm.org/10.1145/2103656.2103698
http://doi.acm.org/10.1145/2103656.2103699
http://doi.acm.org/10.1145/2103656.2103704
http://doi.acm.org/10.1145/2103656.2103705
http://doi.acm.org/10.1145/2103656.2103709
http://doi.acm.org/10.1145/2103656.2103711
http://doi.acm.org/10.1145/2103656.2103714
http://doi.acm.org/10.1145/2103656.2103715
http://doi.acm.org/10.1145/2103656.2103718

[P12Ξ] Chucky Ellison and Grigore Ros,u. An executable formal seman-
tics of c with applications. In POPL ’12 [P12], 533–544.
http://doi.acm.org/10.1145/2103656.2103719 549121.

[P12Π] Sooraj Bhat, Ashish Agarwal, Richard Vuduc, and Alexander
Gray. A type theory for probability density functions. In POPL
’12 [P12], 545–556.
http://doi.acm.org/10.1145/2103656.2103721 549121.

[P12Σ] Karl Naden, Robert Bocchino, Jonathan Aldrich, and Kevin Bier-
hoff. A type system for borrowing permissions. In POPL ’12
[P12], 557–570.
http://doi.acm.org/10.1145/2103656.2103722 549121.

[P12Υ] Pierre-Yves Strub, Nikhil Swamy, Cedric Fournet, and Juan Chen.
Self-certification: Bootstrapping certified typecheckers in f* with
coq. In POPL ’12 [P12], 571–584.
http://doi.acm.org/10.1145/2103656.2103723 549121.

[P13] POPL ’13: Proc. 40th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, New York, 2013. Associ-
ation for Computing Machinery. ISBN 978-1-4503-1832-7.

[P13A] Steffen Lösch and Andrew M. Pitts. Full abstraction for nominal
scott domains. In POPL ’13 [P13], 3–14.
http://doi.acm.org/10.1145/2429069.2429073

[P13B] Ross Tate. The sequential semantics of producer effect systems.
In POPL ’13 [P13], 15–26.
http://doi.acm.org/10.1145/2429069.2429074

[P13C] Andreas Abel, Brigitte Pientka, David Thibodeau, and Anton Set-
zer. Copatterns: Programming infinite structures by observations.
In POPL ’13 [P13], 27–38.
http://doi.acm.org/10.1145/2429069.2429075

[P13D] Guy E. Blelloch and Robert Harper. Cache and i/o efficent func-
tional algorithms. In POPL ’13 [P13], 39–50.
http://doi.acm.org/10.1145/2429069.2429077

[P13E] Hiroshi Unno, Tachio Terauchi, and Naoki Kobayashi. Automat-
ing relatively complete verification of higher-order functional pro-
grams. In POPL ’13 [P13], 75–86.
http://doi.acm.org/10.1145/2429069.2429081

[P13F] Robert Atkey, Patricia Johann, and Andrew Kennedy. Abstraction
and invariance for algebraically indexed types. In POPL ’13 [P13],
87–100. http://doi.acm.org/10.1145/2429069.2429082

[P13G] Véronique Benzaken, Giuseppe Castagna, Kim Nguyen, and
Jérôme Siméon. Static and dynamic semantics of nosql languages.
In POPL ’13 [P13], 101–114.
http://doi.acm.org/10.1145/2429069.2429083

[P13H] Alexis Goyet. The lambda lambda-bar calculus: A dual calculus
for unconstrained strategies. In POPL ’13 [P13], 155–166.
http://doi.acm.org/10.1145/2429069.2429089

[P13I] Ugo Dal lago and Barbara Petit. The geometry of types. In POPL
’13 [P13], 167–178.
http://doi.acm.org/10.1145/2429069.2429090

[P13J] Sam Staton and Paul Blain Levy. Universal properties of impure
programming languages. In POPL ’13 [P13], 179–192.
http://doi.acm.org/10.1145/2429069.2429091

[P13K] Chung-Kil Hur, Georg Neis, Derek Dreyer, and Viktor Vafeiadis.
The power of parameterization in coinductive proof. In POPL ’13
[P13], 193–206. http://doi.acm.org/10.1145/2429069.2429093

[P13L] Benjamin Delaware, Bruno C. d. S. Oliveira, and Tom Schrijvers.
Meta-theory à la carte. In POPL ’13 [P13], 207–218.
http://doi.acm.org/10.1145/2429069.2429094

[P13M] Jonghyun Park, Jeongbong Seo, and Sungwoo Park. A theorem
prover for boolean bi. In POPL ’13 [P13], 219–232.
http://doi.acm.org/10.1145/2429069.2429095

[P13N] Ganesan Ramalingam and Kapil Vaswani. Fault tolerance via
idempotence. In POPL ’13 [P13], 249–262.
http://doi.acm.org/10.1145/2429069.2429100

[P13O] Marco Carbone and Fabrizio Montesi. Deadlock-freedom-by-
design: Multiparty asynchronous global programming. In POPL
’13 [P13], 263–274.
http://doi.acm.org/10.1145/2429069.2429101

[P13P] Luı́s Caires and João C. Seco. The type discipline of behavioral
separation. In POPL ’13 [P13], 275–286.
http://doi.acm.org/10.1145/2429069.2429103

[P13Q] Thomas Dinsdale-Young, Lars Birkedal, Philippa Gardner, Matthew
Parkinson, and Hongseok Yang. Views: Compositional reasoning
for concurrent programs. In POPL ’13 [P13], 287–300.
http://doi.acm.org/10.1145/2429069.2429104

[P13R] Jonas B. Jensen, Nick Benton, and Andrew Kennedy. High-level
separation logic for low-level code. In POPL ’13 [P13], 301–314.
http://doi.acm.org/10.1145/2429069.2429105

[P13S] Delphine Demange, Vincent Laporte, Lei Zhao, Suresh Jagan-
nathan, David Pichardie, and Jan Vitek. Plan b: A buffered mem-
ory model for java. In POPL ’13 [P13], 329–342.
http://doi.acm.org/10.1145/2429069.2429110

[P13T] Aaron J. Turon, Jacob Thamsborg, Amal Ahmed, Lars Birkedal,
and Derek Dreyer. Logical relations for fine-grained concurrency.
In POPL ’13 [P13], 343–356.
http://doi.acm.org/10.1145/2429069.2429111

[P13U] Marco Gaboardi, Andreas Haeberlen, Justin Hsu, Arjun Narayan,
and Benjamin C. Pierce. Linear dependent types for differential
privacy. In POPL ’13 [P13], 357–370.
http://doi.acm.org/10.1145/2429069.2429113

[P13V] Cedric Fournet, Nikhil Swamy, Juan Chen, Pierre-Evariste Da-
gand, Pierre-Yves Strub, and Benjamin Livshits. Fully abstract
compilation to javascript. In POPL ’13 [P13], 371–384.
http://doi.acm.org/10.1145/2429069.2429114

[P13W] Andrew D. Gordon, Mihhail Aizatulin, Johannes Borgstrom, Guil-
laume Claret, Thore Graepel, Aditya V. Nori, Sriram K. Rajamani,
and Claudio Russo. A model-learner pattern for bayesian reason-
ing. In POPL ’13 [P13], 403–416.
http://doi.acm.org/10.1145/2429069.2429119

[P13X] Kohei Suenaga, Hiroyoshi Sekine, and Ichiro Hasuo. Hyperstream
processing systems: Nonstandard modeling of continuous-time
signals. In POPL ’13 [P13], 417–430.
http://doi.acm.org/10.1145/2429069.2429120

[P13Y] Dimitrios Vytiniotis, Simon Peyton Jones, Koen Claessen, and
Dan Rosén. Halo: Haskell to logic through denotational seman-
tics. In POPL ’13 [P13], 431–442.
http://doi.acm.org/10.1145/2429069.2429121

[P13Z] Ali Sinan Koksal, Yewen Pu, Saurabh Srivastava, Rastislav Bodik,
Jasmin Fisher, and Nir Piterman. Synthesis of biological models
from mutation experiments. In POPL ’13 [P13], 469–482.
http://doi.acm.org/10.1145/2429069.2429125

[P13Γ] Aquinas Hobor and Jules Villard. The ramifications of sharing in
data structures. In POPL ’13 [P13], 523–536.
http://doi.acm.org/10.1145/2429069.2429131

[P13∆] Ruy Ley-Wild and Aleksandar Nanevski. Subjective auxiliary
state for coarse-grained concurrency. In POPL ’13 [P13], 561–
574. http://doi.acm.org/10.1145/2429069.2429134

[P14] POPL ’14: Proc. 41st ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, New York, 2014. Associ-
ation for Computing Machinery. ISBN 978-1-4503-2544-8.

[P14A] Giuseppe Castagna, Kim Nguyen, Zhiwu Xu, Hyeonseung Im,
Sergueı̈ Lenglet, and Luca Padovani. Polymorphic functions with
set-theoretic types: Part 1: Syntax, semantics, and evaluation. In
POPL ’14 [P14], 5–17.
http://doi.acm.org/10.1145/2535838.2535840

[P14B] Scott Kilpatrick, Derek Dreyer, Simon Peyton Jones, and Simon
Marlow. Backpack: Retrofitting haskell with interfaces. In POPL
’14 [P14], 19–31. http://doi.acm.org/10.1145/2535838.2535884

[P14C] Chris Casinghino, Vilhelm Sjöberg, and Stephanie Weirich. Com-
bining proofs and programs in a dependently typed language. In
POPL ’14 [P14], 33–45.
http://doi.acm.org/10.1145/2535838.2535883

[P14D] Steven J. Ramsay, Robin P. Neatherway, and C.-H. Luke Ong.
A type-directed abstraction refinement approach to higher-order
model checking. In POPL ’14 [P14], 61–72.
http://doi.acm.org/10.1145/2535838.2535873

For submission to 2017 ACM POPL 27 2016/6/30

http://doi.acm.org/10.1145/2103656.2103719
http://doi.acm.org/10.1145/2103656.2103721
http://doi.acm.org/10.1145/2103656.2103722
http://doi.acm.org/10.1145/2103656.2103723
http://doi.acm.org/10.1145/2429069.2429073
http://doi.acm.org/10.1145/2429069.2429074
http://doi.acm.org/10.1145/2429069.2429075
http://doi.acm.org/10.1145/2429069.2429077
http://doi.acm.org/10.1145/2429069.2429081
http://doi.acm.org/10.1145/2429069.2429082
http://doi.acm.org/10.1145/2429069.2429083
http://doi.acm.org/10.1145/2429069.2429089
http://doi.acm.org/10.1145/2429069.2429090
http://doi.acm.org/10.1145/2429069.2429091
http://doi.acm.org/10.1145/2429069.2429093
http://doi.acm.org/10.1145/2429069.2429094
http://doi.acm.org/10.1145/2429069.2429095
http://doi.acm.org/10.1145/2429069.2429100
http://doi.acm.org/10.1145/2429069.2429101
http://doi.acm.org/10.1145/2429069.2429103
http://doi.acm.org/10.1145/2429069.2429104
http://doi.acm.org/10.1145/2429069.2429105
http://doi.acm.org/10.1145/2429069.2429110
http://doi.acm.org/10.1145/2429069.2429111
http://doi.acm.org/10.1145/2429069.2429113
http://doi.acm.org/10.1145/2429069.2429114
http://doi.acm.org/10.1145/2429069.2429119
http://doi.acm.org/10.1145/2429069.2429120
http://doi.acm.org/10.1145/2429069.2429121
http://doi.acm.org/10.1145/2429069.2429125
http://doi.acm.org/10.1145/2429069.2429131
http://doi.acm.org/10.1145/2429069.2429134
http://doi.acm.org/10.1145/2535838.2535840
http://doi.acm.org/10.1145/2535838.2535884
http://doi.acm.org/10.1145/2535838.2535883
http://doi.acm.org/10.1145/2535838.2535873

[P14E] Devin Coughlin and Bor-Yuh Evan Chang. Fissile type analysis:
Modular checking of almost everywhere invariants. In POPL ’14
[P14], 73–85. http://doi.acm.org/10.1145/2535838.2535855

[P14F] Martin Bodin, Arthur Chargueraud, Daniele Filaretti, Philippa
Gardner, Sergio Maffeis, Daiva Naudziuniene, Alan Schmitt, and
Gareth Smith. A trusted mechanised javascript specification. In
POPL ’14 [P14], 87–100.
http://doi.acm.org/10.1145/2535838.2535876

[P14G] Robbert Krebbers. An operational and axiomatic semantics for
non-determinism and sequence points in c. In POPL ’14 [P14],
101–112. http://doi.acm.org/10.1145/2535838.2535878

[P14H] Vijay D’Silva, Leopold Haller, and Daniel Kroening. Abstract
satisfaction. In POPL ’14 [P14], 139–150.
http://doi.acm.org/10.1145/2535838.2535868

[P14I] Arthur Azevedo de Amorim, Nathan Collins, André DeHon, Del-
phine Demange, Cătălin Hriţcu, David Pichardie, Benjamin C.
Pierce, Randy Pollack, and Andrew Tolmach. A verified information-
flow architecture. In POPL ’14 [P14], 165–178.
http://doi.acm.org/10.1145/2535838.2535839

[P14J] Ramana Kumar, Magnus O. Myreen, Michael Norrish, and Scott
Owens. Cakeml: A verified implementation of ml. In POPL ’14
[P14], 179–191. http://doi.acm.org/10.1145/2535838.2535841

[P14K] Gilles Barthe, Cédric Fournet, Benjamin Grégoire, Pierre-Yves
Strub, Nikhil Swamy, and Santiago Zanella-Béguelin. Probabilis-
tic relational verification for cryptographic implementations. In
POPL ’14 [P14], 193–205.
http://doi.acm.org/10.1145/2535838.2535847

[P14L] Lindsey Kuper, Aaron Turon, Neelakantan R. Krishnaswami, and
Ryan R. Newton. Freeze after writing: Quasi-deterministic paral-
lel programming with lvars. In POPL ’14 [P14], 257–270.
http://doi.acm.org/10.1145/2535838.2535842

[P14M] Sebastian Burckhardt, Alexey Gotsman, Hongseok Yang, and
Marek Zawirski. Replicated data types: Specification, verifica-
tion, optimality. In POPL ’14 [P14], 271–284.
http://doi.acm.org/10.1145/2535838.2535848

[P14N] Ugo Dal Lago, Davide Sangiorgi, and Michele Alberti. On coin-
ductive equivalences for higher-order probabilistic functional pro-
grams. In POPL ’14 [P14], 297–308.
http://doi.acm.org/10.1145/2535838.2535872

[P14O] Thomas Ehrhard, Christine Tasson, and Michele Pagani. Proba-
bilistic coherence spaces are fully abstract for probabilistic pcf. In
POPL ’14 [P14], 309–320.
http://doi.acm.org/10.1145/2535838.2535865

[P14P] Andrew D. Gordon, Thore Graepel, Nicolas Rolland, Claudio
Russo, Johannes Borgstrom, and John Guiver. Tabular: A schema-
driven probabilistic programming language. In POPL ’14 [P14],
321–334. http://doi.acm.org/10.1145/2535838.2535850

[P14Q] Ilya Sergey, Dimitrios Vytiniotis, and Simon Peyton Jones. Mod-
ular, higher-order cardinality analysis in theory and practice. In
POPL ’14 [P14], 335–347.
http://doi.acm.org/10.1145/2535838.2535861

[P14R] Andrew Cave, Francisco Ferreira, Prakash Panangaden, and
Brigitte Pientka. Fair reactive programming. In POPL ’14 [P14],
361–372. http://doi.acm.org/10.1145/2535838.2535881

[P14S] Nathan Chong, Alastair F. Donaldson, and Jeroen Ketema. A
sound and complete abstraction for reasoning about parallel prefix
sums. In POPL ’14 [P14], 397–409.
http://doi.acm.org/10.1145/2535838.2535882

[P14T] Andrew Miller, Michael Hicks, Jonathan Katz, and Elaine Shi.
Authenticated data structures, generically. In POPL ’14 [P14],
411–423. http://doi.acm.org/10.1145/2535838.2535851

[P14U] Nikhil Swamy, Cedric Fournet, Aseem Rastogi, Karthikeyan
Bhargavan, Juan Chen, Pierre-Yves Strub, and Gavin Bierman.
Gradual typing embedded securely in javascript. In POPL ’14
[P14], 425–437. http://doi.acm.org/10.1145/2535838.2535889

[P14V] Fan Long, Stelios Sidiroglou-Douskos, Deokhwan Kim, and Mar-
tin Rinard. Sound input filter generation for integer overflow er-

rors. In POPL ’14 [P14], 439–452.
http://doi.acm.org/10.1145/2535838.2535888

[P14W] James Brotherston and Jules Villard. Parametric completeness for
separation theories. In POPL ’14 [P14], 453–464.
http://doi.acm.org/10.1145/2535838.2535844

[P14X] Zhé Hóu, Ranald Clouston, Rajeev Goré, and Alwen Tiu. Proof
search for propositional abstract separation logics via labelled
sequents. In POPL ’14 [P14], 465–476.
http://doi.acm.org/10.1145/2535838.2535864

[P14Y] Wonyeol Lee and Sungwoo Park. A proof system for separation
logic with magic wand. In POPL ’14 [P14], 477–490.
http://doi.acm.org/10.1145/2535838.2535871

[P14Z] Robert Atkey. From parametricity to conservation laws, via
noether’s theorem. In POPL ’14 [P14], 491–502.
http://doi.acm.org/10.1145/2535838.2535867

[P14Γ] Robert Atkey, Neil Ghani, and Patricia Johann. A relationally
parametric model of dependent type theory. In POPL ’14 [P14],
503–515. http://doi.acm.org/10.1145/2535838.2535852

[P14∆] Andrzej S. Murawski and Nikos Tzevelekos. Game semantics for
interface middleweight java. In POPL ’14 [P14], 517–528.
http://doi.acm.org/10.1145/2535838.2535880

[P14Θ] Swarat Chaudhuri, Azadeh Farzan, and Zachary Kincaid. Consis-
tency analysis of decision-making programs. In POPL ’14 [P14],
555–567. http://doi.acm.org/10.1145/2535838.2535858

[P14Λ] Danfeng Zhang and Andrew C. Myers. Toward general diagnosis
of static errors. In POPL ’14 [P14], 569–581.
http://doi.acm.org/10.1145/2535838.2535870

[P14Ξ] Sheng Chen and Martin Erwig. Counter-factual typing for debug-
ging type errors. In POPL ’14 [P14], 583–594.
http://doi.acm.org/10.1145/2535838.2535863

[P14Π] Yi Li, Aws Albarghouthi, Zachary Kincaid, Arie Gurfinkel, and
Marsha Chechik. Symbolic optimization with smt solvers. In
POPL ’14 [P14], 607–618.
http://doi.acm.org/10.1145/2535838.2535857

[P14Σ] Nick Benton, Martin Hofmann, and Vivek Nigam. Abstract effects
and proof-relevant logical relations. In POPL ’14 [P14], 619–631.
http://doi.acm.org/10.1145/2535838.2535869

[P14Υ] Shin-ya Katsumata. Parametric effect monads and semantics of
effect systems. In POPL ’14 [P14], 633–645.
http://doi.acm.org/10.1145/2535838.2535846

[P14Φ] Michele Pagani, Peter Selinger, and Benoı̂t Valiron. Applying
quantitative semantics to higher-order quantum computing. In
POPL ’14 [P14], 647–658.
http://doi.acm.org/10.1145/2535838.2535879

[P14Ψ] Richard A. Eisenberg, Dimitrios Vytiniotis, Simon Peyton Jones,
and Stephanie Weirich. Closed type families with overlapping
equations. In POPL ’14 [P14], 671–683.
http://doi.acm.org/10.1145/2535838.2535856

[P15] POPL ’15: Proc. 42nd ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, New York, 2015. Associ-
ation for Computing Machinery. ISBN 978-1-4503-3300-9.

[P15A] Paul-André Melliès and Noam Zeilberger. Functors are type
refinement systems. In POPL ’15 [P15], 3–16.
http://doi.acm.org/10.1145/2676726.2676970

[P15B] Neelakantan R. Krishnaswami, Pierre Pradic, and Nick Benton.
Integrating linear and dependent types. In POPL ’15 [P15], 17–
30. http://doi.acm.org/10.1145/2676726.2676969

[P15C] Kristina Sojakova. Higher inductive types as homotopy-initial
algebras. In POPL ’15 [P15], 31–42.
http://doi.acm.org/10.1145/2676726.2676983

[P15D] Minh Ngo, Fabio Massacci, Dimiter Milushev, and Frank Piessens.
Runtime enforcement of security policies on black box reactive
programs. In POPL ’15 [P15], 43–54.
http://doi.acm.org/10.1145/2676726.2676978

[P15E] Gilles Barthe, Marco Gaboardi, Emilio Jesús Gallego Arias, Justin
Hsu, Aaron Roth, and Pierre-Yves Strub. Higher-order approxi-
mate relational refinement types for mechanism design and differ-

For submission to 2017 ACM POPL 28 2016/6/30

http://doi.acm.org/10.1145/2535838.2535855
http://doi.acm.org/10.1145/2535838.2535876
http://doi.acm.org/10.1145/2535838.2535878
http://doi.acm.org/10.1145/2535838.2535868
http://doi.acm.org/10.1145/2535838.2535839
http://doi.acm.org/10.1145/2535838.2535841
http://doi.acm.org/10.1145/2535838.2535847
http://doi.acm.org/10.1145/2535838.2535842
http://doi.acm.org/10.1145/2535838.2535848
http://doi.acm.org/10.1145/2535838.2535872
http://doi.acm.org/10.1145/2535838.2535865
http://doi.acm.org/10.1145/2535838.2535850
http://doi.acm.org/10.1145/2535838.2535861
http://doi.acm.org/10.1145/2535838.2535881
http://doi.acm.org/10.1145/2535838.2535882
http://doi.acm.org/10.1145/2535838.2535851
http://doi.acm.org/10.1145/2535838.2535889
http://doi.acm.org/10.1145/2535838.2535888
http://doi.acm.org/10.1145/2535838.2535844
http://doi.acm.org/10.1145/2535838.2535864
http://doi.acm.org/10.1145/2535838.2535871
http://doi.acm.org/10.1145/2535838.2535867
http://doi.acm.org/10.1145/2535838.2535852
http://doi.acm.org/10.1145/2535838.2535880
http://doi.acm.org/10.1145/2535838.2535858
http://doi.acm.org/10.1145/2535838.2535870
http://doi.acm.org/10.1145/2535838.2535863
http://doi.acm.org/10.1145/2535838.2535857
http://doi.acm.org/10.1145/2535838.2535869
http://doi.acm.org/10.1145/2535838.2535846
http://doi.acm.org/10.1145/2535838.2535879
http://doi.acm.org/10.1145/2535838.2535856
http://doi.acm.org/10.1145/2676726.2676970
http://doi.acm.org/10.1145/2676726.2676969
http://doi.acm.org/10.1145/2676726.2676983
http://doi.acm.org/10.1145/2676726.2676978

ential privacy. In POPL ’15 [P15], 55–68.
http://doi.acm.org/10.1145/2676726.2677000

[P15F] Hamid Ebadi, David Sands, and Gerardo Schneider. Differential
privacy: Now it’s getting personal. In POPL ’15 [P15], 69–81.
http://doi.acm.org/10.1145/2676726.2677005

[P15G] Aseem Rastogi, Nikhil Swamy, Cédric Fournet, Gavin Bierman,
and Panagiotis Vekris. Safe & efficient gradual typing for
typescript. In POPL ’15 [P15], 167–180.
http://doi.acm.org/10.1145/2676726.2676971

[P15H] Michael Greenberg. Space-efficient manifest contracts. In POPL
’15 [P15], 181–194.
http://doi.acm.org/10.1145/2676726.2676967

[P15I] Taro Sekiyama, Yuki Nishida, and Atsushi Igarashi. Manifest
contracts for datatypes. In POPL ’15 [P15], 195–207.
http://doi.acm.org/10.1145/2676726.2676996

[P15J] Roberto Giacobazzi, Francesco Logozzo, and Francesco Ranzato.
Analyzing program analyses. In POPL ’15 [P15], 261–273.
http://doi.acm.org/10.1145/2676726.2676987

[P15K] Gordon Stewart, Lennart Beringer, Santiago Cuellar, and An-
drew W. Appel. Compositional compcert. In POPL ’15 [P15],
275–287. http://doi.acm.org/10.1145/2676726.2676985

[P15L] Giuseppe Castagna, Kim Nguyen, Zhiwu Xu, and Pietro Abate.
Polymorphic functions with set-theoretic types: Part 2: Local type
inference and type reconstruction. In POPL ’15 [P15], 289–302.
http://doi.acm.org/10.1145/2676726.2676991

[P15M] Ronald Garcia and Matteo Cimini. Principal type schemes for
gradual programs. In POPL ’15 [P15], 303–315.
http://doi.acm.org/10.1145/2676726.2676992

[P15N] Luı́sa Lourenço and Luı́s Caires. Dependent information flow
types. In POPL ’15 [P15], 317–328.
http://doi.acm.org/10.1145/2676726.2676994

[P15O] Nate Foster, Dexter Kozen, Matthew Milano, Alexandra Silva, and
Laure Thompson. A coalgebraic decision procedure for netkat. In
POPL ’15 [P15], 343–355.
http://doi.acm.org/10.1145/2676726.2677011

[P15P] Vilhelm Sjöberg and Stephanie Weirich. Programming up to
congruence. In POPL ’15 [P15], 369–382.
http://doi.acm.org/10.1145/2676726.2676974

[P15Q] Kazunori Tobisawa. A meta lambda calculus with cross-level
computation. In POPL ’15 [P15], 383–393.
http://doi.acm.org/10.1145/2676726.2676976

[P15R] Sam Staton. Algebraic effects, linearity, and quantum program-
ming languages. In POPL ’15 [P15], 395–406.
http://doi.acm.org/10.1145/2676726.2676999

[P15S] Azadeh Farzan, Zachary Kincaid, and Andreas Podelski. Proof
spaces for unbounded parallelism. In POPL ’15 [P15], 407–420.
http://doi.acm.org/10.1145/2676726.2677012

[P15T] Davide Sangiorgi. Equations, contractions, and unique solutions.
In POPL ’15 [P15], 421–432.
http://doi.acm.org/10.1145/2676726.2676965

[P15U] Ashutosh Gupta, Thomas A. Henzinger, Arjun Radhakrishna,
Roopsha Samanta, and Thorsten Tarrach. Succinct representation
of concurrent trace sets. In POPL ’15 [P15], 433–444.
http://doi.acm.org/10.1145/2676726.2677008

[P15V] Denis Bogdănas, and Grigore Ros,u. K-java: A complete semantics
of java. In POPL ’15 [P15], 445–456.
http://doi.acm.org/10.1145/2676726.2676982

[P15W] Michael D. Adams. Towards the essence of hygiene. In POPL ’15
[P15], 457–469. http://doi.acm.org/10.1145/2676726.2677013

[P15X] Matt Brown and Jens Palsberg. Self-representation in girard’s
system u. In POPL ’15 [P15], 471–484.
http://doi.acm.org/10.1145/2676726.2676988

[P15Y] Luis Marı́a Ferrer Fioriti and Holger Hermanns. Probabilistic
termination: Soundness, completeness, and compositionality. In
POPL ’15 [P15], 489–501.
http://doi.acm.org/10.1145/2676726.2677001

[P15Z] Fei He, Xiaowei Gao, Bow-Yaw Wang, and Lijun Zhang. Lever-
aging weighted automata in compositional reasoning about con-
current probabilistic systems. In POPL ’15 [P15], 503–514.
http://doi.acm.org/10.1145/2676726.2676998

[P15Γ] Filippo Bonchi, Pawel Sobocinski, and Fabio Zanasi. Full abstrac-
tion for signal flow graphs. In POPL ’15 [P15], 515–526.
http://doi.acm.org/10.1145/2676726.2676993

[P15∆] Osbert Bastani, Saswat Anand, and Alex Aiken. Specification
inference using context-free language reachability. In POPL ’15
[P15], 553–566. http://doi.acm.org/10.1145/2676726.2676977

[P15Θ] Pieter Agten, Bart Jacobs, and Frank Piessens. Sound modular
verification of c code executing in an unverified context. In POPL
’15 [P15], 581–594.
http://doi.acm.org/10.1145/2676726.2676972

[P15Λ] Ronghui Gu, Jérémie Koenig, Tahina Ramananandro, Zhong
Shao, Xiongnan (Newman) Wu, Shu-Chun Weng, Haozhong
Zhang, and Yu Guo. Deep specifications and certified abstraction
layers. In POPL ’15 [P15], 595–608.
http://doi.acm.org/10.1145/2676726.2676975

[P15Ξ] Adam Chlipala. From network interface to multithreaded web
applications: A case study in modular program verification. In
POPL ’15 [P15], 609–622.
http://doi.acm.org/10.1145/2676726.2677003

[P15Π] Karl Crary and Michael J. Sullivan. A calculus for relaxed mem-
ory. In POPL ’15 [P15], 623–636.
http://doi.acm.org/10.1145/2676726.2676984

[P15Σ] Ralf Jung, David Swasey, Filip Sieczkowski, Kasper Svendsen,
Aaron Turon, Lars Birkedal, and Derek Dreyer. Iris: Monoids
and invariants as an orthogonal basis for concurrent reasoning. In
POPL ’15 [P15], 637–650.
http://doi.acm.org/10.1145/2676726.2676980

[P16] POPL ’16: Proc. 43rd ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, New York, 2016. Associ-
ation for Computing Machinery. ISBN 978-1-4503-3549-2.

[P16A] Matt Brown and Jens Palsberg. Breaking through the normaliza-
tion barrier: A self-interpreter for f-omega. In POPL ’16 [P16],
5–17. http://doi.acm.org/10.1145/2837614.2837623

[P16B] Yufei Cai, Paolo G. Giarrusso, and Klaus Ostermann. System
f-omega with equirecursive types for datatype-generic program-
ming. In POPL ’16 [P16], 30–43.
http://doi.acm.org/10.1145/2837614.2837660

[P16C] Pierre-Louis Curien, Marcelo Fiore, and Guillaume Munch-
Maccagnoni. A theory of effects and resources: Adjunction mod-
els and polarised calculi. In POPL ’16 [P16], 44–56.
http://doi.acm.org/10.1145/2837614.2837652

[P16D] Akihiro Murase, Tachio Terauchi, Naoki Kobayashi, Ryosuke
Sato, and Hiroshi Unno. Temporal verification of higher-order
functional programs. In POPL ’16 [P16], 57–68.
http://doi.acm.org/10.1145/2837614.2837667

[P16E] James Brotherston, Nikos Gorogiannis, Max Kanovich, and
Reuben Rowe. Model checking for symbolic-heap separation
logic with inductive predicates. In POPL ’16 [P16], 84–96.
http://doi.acm.org/10.1145/2837614.2837621

[P16F] Eric Koskinen and Junfeng Yang. Reducing crash recoverability
to reachability. In POPL ’16 [P16], 97–108.
http://doi.acm.org/10.1145/2837614.2837648

[P16G] Dominique Devriese, Marco Patrignani, and Frank Piessens.
Fully-abstract compilation by approximate back-translation. In
POPL ’16 [P16], 164–177.
http://doi.acm.org/10.1145/2837614.2837618

[P16H] Jeehoon Kang, Yoonseung Kim, Chung-Kil Hur, Derek Dreyer,
and Viktor Vafeiadis. Lightweight verification of separate compi-
lation. In POPL ’16 [P16], 178–190.
http://doi.acm.org/10.1145/2837614.2837642

[P16I] Ed Robbins, Andy King, and Tom Schrijvers. From minx to minc:
Semantics-driven decompilation of recursive datatypes. In POPL
’16 [P16], 191–203.
http://doi.acm.org/10.1145/2837614.2837633

For submission to 2017 ACM POPL 29 2016/6/30

http://doi.acm.org/10.1145/2676726.2677000
http://doi.acm.org/10.1145/2676726.2677005
http://doi.acm.org/10.1145/2676726.2676971
http://doi.acm.org/10.1145/2676726.2676967
http://doi.acm.org/10.1145/2676726.2676996
http://doi.acm.org/10.1145/2676726.2676987
http://doi.acm.org/10.1145/2676726.2676985
http://doi.acm.org/10.1145/2676726.2676991
http://doi.acm.org/10.1145/2676726.2676992
http://doi.acm.org/10.1145/2676726.2676994
http://doi.acm.org/10.1145/2676726.2677011
http://doi.acm.org/10.1145/2676726.2676974
http://doi.acm.org/10.1145/2676726.2676976
http://doi.acm.org/10.1145/2676726.2676999
http://doi.acm.org/10.1145/2676726.2677012
http://doi.acm.org/10.1145/2676726.2676965
http://doi.acm.org/10.1145/2676726.2677008
http://doi.acm.org/10.1145/2676726.2676982
http://doi.acm.org/10.1145/2676726.2677013
http://doi.acm.org/10.1145/2676726.2676988
http://doi.acm.org/10.1145/2676726.2677001
http://doi.acm.org/10.1145/2676726.2676998
http://doi.acm.org/10.1145/2676726.2676993
http://doi.acm.org/10.1145/2676726.2676977
http://doi.acm.org/10.1145/2676726.2676972
http://doi.acm.org/10.1145/2676726.2676975
http://doi.acm.org/10.1145/2676726.2677003
http://doi.acm.org/10.1145/2676726.2676984
http://doi.acm.org/10.1145/2676726.2676980
http://doi.acm.org/10.1145/2837614.2837623
http://doi.acm.org/10.1145/2837614.2837660
http://doi.acm.org/10.1145/2837614.2837652
http://doi.acm.org/10.1145/2837614.2837667
http://doi.acm.org/10.1145/2837614.2837621
http://doi.acm.org/10.1145/2837614.2837648
http://doi.acm.org/10.1145/2837614.2837618
http://doi.acm.org/10.1145/2837614.2837642
http://doi.acm.org/10.1145/2837614.2837633

[P16J] Florian Lorenzen and Sebastian Erdweg. Sound type-dependent
syntactic language extension. In POPL ’16 [P16], 204–216.
http://doi.acm.org/10.1145/2837614.2837644

[P16K] Nikhil Swamy, Cătălin Hriţcu, Chantal Keller, Aseem Rastogi,
Antoine Delignat-Lavaud, Simon Forest, Karthikeyan Bharga-
van, Cédric Fournet, Pierre-Yves Strub, Markulf Kohlweiss, Jean-
Karim Zinzindohoue, and Santiago Zanella-Béguelin. Dependent
types and multi-monadic effects in f*. In POPL ’16 [P16], 256–
270. http://doi.acm.org/10.1145/2837614.2837655

[P16L] Johannes Borgström, Andrew D. Gordon, Long Ouyang, Claudio
Russo, Adam Ścibior, and Marcin Szymczak. Fabular: Regression
formulas as probabilistic programming. In POPL ’16 [P16], 271–
283. http://doi.acm.org/10.1145/2837614.2837653

[P16M] Fan Long and Martin Rinard. Automatic patch generation by
learning correct code. In POPL ’16 [P16], 298–312.
http://doi.acm.org/10.1145/2837614.2837617

[P16N] Mohsen Lesani, Christian J. Bell, and Adam Chlipala. Chapar:
Certified causally consistent distributed key-value stores. In POPL
’16 [P16], 357–370.
http://doi.acm.org/10.1145/2837614.2837622

[P16O] Hongjin Liang and Xinyu Feng. A program logic for concurrent
objects under fair scheduling. In POPL ’16 [P16], 385–399.
http://doi.acm.org/10.1145/2837614.2837635

[P16P] Cezara Drăgoi, Thomas A. Henzinger, and Damien Zufferey.
Psync: A partially synchronous language for fault-tolerant dis-
tributed algorithms. In POPL ’16 [P16], 400–415.
http://doi.acm.org/10.1145/2837614.2837650

[P16Q] Sheng Chen and Martin Erwig. Principal type inference for gadts.
In POPL ’16 [P16], 416–428.
http://doi.acm.org/10.1145/2837614.2837665

[P16R] Ronald Garcia, Alison M. Clark, and Éric Tanter. Abstracting
gradual typing. In POPL ’16 [P16], 429–442.
http://doi.acm.org/10.1145/2837614.2837670

[P16S] Matteo Cimini and Jeremy G. Siek. The gradualizer: A methodol-
ogy and algorithm for generating gradual type systems. In POPL
’16 [P16], 443–455.
http://doi.acm.org/10.1145/2837614.2837632

[P16T] Dominic Orchard and Nobuko Yoshida. Effects as sessions, ses-
sions as effects. In POPL ’16 [P16], 568–581.
http://doi.acm.org/10.1145/2837614.2837634

[P16U] Limin Jia, Hannah Gommerstadt, and Frank Pfenning. Monitors
and blame assignment for higher-order session types. In POPL ’16
[P16], 582–594. http://doi.acm.org/10.1145/2837614.2837662

[P16V] Davide Sangiorgi and Valeria Vignudelli. Environmental bisim-
ulations for probabilistic higher-order languages. In POPL ’16
[P16], 595–607. http://doi.acm.org/10.1145/2837614.2837651

[P16W] Ori Lahav, Nick Giannarakis, and Viktor Vafeiadis. Taming
release-acquire consistency. In POPL ’16 [P16], 649–662.
http://doi.acm.org/10.1145/2837614.2837643

[P16X] Koko Muroya, Naohiko Hoshino, and Ichiro Hasuo. Memoryful
geometry of interaction ii: Recursion and adequacy. In POPL ’16
[P16], 748–760. http://doi.acm.org/10.1145/2837614.2837672

[P16Y] Jonathan Frankle, Peter-Michael Osera, David Walker, and Steve
Zdancewic. Example-directed synthesis: A type-theoretic inter-
pretation. In POPL ’16 [P16], 802–815.
http://doi.acm.org/10.1145/2837614.2837629

For submission to 2017 ACM POPL 30 2016/6/30

http://doi.acm.org/10.1145/2837614.2837644
http://doi.acm.org/10.1145/2837614.2837655
http://doi.acm.org/10.1145/2837614.2837653
http://doi.acm.org/10.1145/2837614.2837617
http://doi.acm.org/10.1145/2837614.2837622
http://doi.acm.org/10.1145/2837614.2837635
http://doi.acm.org/10.1145/2837614.2837650
http://doi.acm.org/10.1145/2837614.2837665
http://doi.acm.org/10.1145/2837614.2837670
http://doi.acm.org/10.1145/2837614.2837632
http://doi.acm.org/10.1145/2837614.2837634
http://doi.acm.org/10.1145/2837614.2837662
http://doi.acm.org/10.1145/2837614.2837651
http://doi.acm.org/10.1145/2837614.2837643
http://doi.acm.org/10.1145/2837614.2837672
http://doi.acm.org/10.1145/2837614.2837629

	Introduction
	Survey of POPL Papers
	Notations for Substitution
	Notations for Repetition

	Analysis
	Substitution Notations
	Overline Notations
	Ellipses

	A Specific Proposal, with Three Novelties
	Underlining
	Harpoons and Boxes
	Explaining Ellipses Rigorously

	A Careful Specification
	Syntax
	Monograms and Other Tokens
	Assertions and Inference Rules
	BNF

	Interpretation
	Expand Repetition Tokens
	Expand BNF Nonterminals and Other Symbols
	Perform Substitutions

	Examples
	Recommendations and Future Work

