
Reviewers: Please see the “Note to Reviewers” on page 14.

Toward a More Carefully Specified Metanotation

author information omitted
for double-blind reviewing

omitted.email.address@nodomain

Abstract
POPL is known for, among other things, papers that present formal
descriptions and rigorous analyses of programming languages. But
an important language has been neglected: the metanotation of
inference rules and BNF that has been used in over 40% of all
POPL papers to describe all the other programming languages. This
metanotation is not completely described in any one place; rather, it
is a folk language that has grown over the years, as paper after paper
tries out variations and extensions. We believe that it is high time
that the tools of the POPL trade be applied to the tools themselves.

Examination of many POPL papers suggests that as the meta-
notation has grown, it has diversified to the point that problems are
surfacing: different notations are in use for the same operation (sub-
stitution); the same notation is in use for different operations; and
in some cases, notations for repetition are ambiguous, or require the
reader to apply knowledge of semantics to interpret the syntax. All
three problems present substantial potential for confusion. No indi-
vidual paper is at fault; rather, this is the natural result of language
growth in a community, producing incompatible dialects.

We back these claims by presenting statistics from a survey of
all past POPL papers, 1973–2016, and examples drawn from those
papers. We propose a set of design principles for metanotation,
and then propose a specific version of the metanotation that can be
always interpreted in a purely formal, syntactic manner and yet is
reasonably compatible with past use. Our goal is to lay a foundation
for complete formalization and mechanization of the metanotation.

Categories and Subject Descriptors D.3.1 [Formal Definitions
and Theory]: Syntax; F.3.1 [Specifying and Verifying and Reason-
ing about Programs]: Assertions; F.4.3 [Formal Languages]

Keywords assertion, BNF, context-free grammar, ellipses, infer-
ence rule, judgment, macro, macro expansion, metanotation, nested
repetition, overline notation, repetition, substitution, template

1. Introduction
What is the most popular programming language at POPL? Not C,
nor Java, nor even Haskell, but the “POPL metanotation” consisting
of inference rules plus the data description language BNF—and,
make no mistake, this metanotation is indeed a programming lan-
guage, or could be, if properly formalized and mechanized. But it
is not completely described in any one place; rather, it is a folk lan-
guage that has grown over the years, as one paper after another tries
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out small variations and extensions. Each paper largely assumes
metanotational conventions established by past papers as custom-
ary and explicitly describes only a few features of specific interest.

But after four decades of this, we now face three problems:
(1) So far, 27 different notations for substitution have been used in

POPL papers, and 14 of them are still in current use.
(2) Many of those same notations are also used for other purposes.
(3) In some cases, repetition notation is ambiguous, or requires the

reader to apply knowledge of semantics to interpret the syntax.
All three problems present substantial potential for confusion.

In this paper, we back these claims by presenting summary and
detailed statistics from a survey of all past POPL papers. We also
present and explain examples drawn from those papers. We propose
a set of design principles for metanotation, and then propose a
specific version of the metanotation that can be interpreted in a
purely formal, syntactic manner and yet is reasonably compatible
with past use (and where it cannot be compatible, we explain why).

In §2, we present the results of our survey. In §3, we analyze the
data and discuss difficulties with the metanotation, with examples
drawn from past POPL papers. In §4, we present design principles
for metanotation and novel extensions to the existing metanotation
intended to address the observed difficulties. In §5, we present a
careful specification of a complete metanotation and a formal ex-
planation of how to expand it. In §6, we present examples of the use
of this extended metanotation. In §7, we present recommendations
to future authors of POPL papers and suggest future work.

The specific novel contributions of this paper are:
(1) A survey of the use of inference rules, substitution notations,

and repetition notations in POPL papers, 1973–2016.
(2) A careful specification and formal interpretation of a complete

metanotation that includes inference rules, BNF, substitution
notation, and repetition notations, including:
(a) certain common uses of ellipses to indicate repetition, and
(b) the widely used overline notation that indicates repetition.

(3) Use of underlines in the overline notation to suppress indices.
(4) Use of harpoons as overlines to indicate repetition without

separating punctuation and to notate certain kinds of recursive
expression heretofore expressible only by using two ellipses.

2. Survey of POPL Papers
We examined manually (well, ocularly) every page of every paper
of every past POPL, 1973–2016 (there was no POPL conference in
1974, so that is 43 volumes). There were 1,401 papers, a total of
17,160 pages. We examined a paper copy of each volume, working
in chronological order; when we identified a paper of interest then
we pulled it up onto a screen from the ACM Digital Library so that
we could search the text for such words as “substitution” (actually,
“subst”). While the OCR is good (and gets better over time), it
does not always distiguish certain pairs of symbols such as→ and
7→, and it does not capture at all the horizontal lines that indicate
inference rules and repetition notation. Fortunately such horizontal
lines are easy to spot even when flipping through pages quickly.
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1 [P77A] e[v/x] 133 [P79D]–[P16Y] e(v/x) 1 [P78B]
[v/x]e 67 [P77B]–[P16S] e[v/x] 6 [P96O]–[P07I] e{v/x} 25 [P90A]–[P16W]
[v/x]e 1 [P97G] e[v/x] 2 [P13J]–[P15L] e{v/x} 5 [P01G]–[P16V]

[x := v]e 2 [P09F]–[P10S] e[v\x] 1 [P14T] e{v/x} 4 [P03D]–[P16L]
[x 7→ v]e 9 [P94M]–[P16B] e[x/v] 5 [P89C]–[P15Y] e{x← v} 4 [P88D]–[P95D]
[x→ v]e 1 [P08A] e[x := v] 21 [P88G]–[P16B] e{x 7→ v} 1 [P02B]

[[v/x]]e 2 [P08V]–[P12Y] e[x← v] 7 [P89E]–[P11F] e{x→ v} 1 [P02K]
{v/x}e 6 [P86D]–[P15P] e[x 7→ v] 12 [P94D]–[P15S] e{|v/x|} 2 [P98R]–[P99G]

{x 7→ v}e 4 [P95B]–[P16Q] e[x→ v] 2 [P12Σ]–[P15Θ] e{{x← v}} 1 [P04G]
Table 1. Twenty-seven substitution notations and the number of POPL papers in which they were observed, also citing the earliest and latest.
Prefix notations are shown right-justified, and postfix notations are shown left-justified. Eight different notations were used in 2016 alone.

At first we tried to identify every paper that used either inference
rules, repetition notation, or substitution notation. By about 1982 it
became clear that most papers using either repetition or substitution
notation also contained inference rules, so from that point on, with
only one or two exceptions that happend to catch our eye, we exam-
ined carefully only papers that contained at least one inference rule.
During such careful examination, we scanned the entire paper, not
just the inference rules themselves, to try to find uses of repetition
notation or substitution notation. By “repetition notation” we mean
either the use of an ellipsis, such as “x1, . . . , xn”, or the use of an
iterator notation, such as “{xi}i∈1..n”, or the use of an overbar or
overarrow or other such symbol to indicate either (1) repetition of
a symbol or syntax fragment, or (2) a vector of elements of which
only one representative is shown. Example of this last category are
x, −→x , x̃, and e[v/x]. By “substitution notation” we mean an ex-
plicit three-argument notation such as [v/x]e (not merely an appli-
cation such as σe of a substitution denoted by σ to an expression e)
that is intended to represent the standard capture-free substitution
of (a copy of) v (or, more typically, an expression denoted by the
metavariable v) for every free occurrence of a variable x (or a vari-
able denoted by the metavariable x) within the expression e (or an
expression denoted by the metavariable e).

Of the 1,401 papers, we identified 609 for careful examination.
For each paper, we recorded an actual example of the substitution
notation used (if any) as well as a schematic template using the
three variables v, x, and e so that the specific symbols used in
the notation could be easily identified. We also recorded whether
inference rules were used (because of our sampling bias, nearly
all did, but we wanted to have an accurate count of how many
papers out of the 1,401 use inference rules), and whether and how
those inference rules were labeled. We recorded whether ellipses,
iterators, and/or over-symbols were used to indicate repetition;
for over-symbol notation, we recorded the precise symbol used,
whether explicit index variables and/or iterators were used as part
of the over-symbols notation, whether the over-symbol was used
only over single symbols or over larger syntax fragments, and
whether the over-symbols were ever stacked or nested.

We recorded these details in a BIBTEX database, and then used
a custom bst file to generate various distillations of the data, some
of which were then pulled into a spreadsheet for further analysis.
The data presentations in Tables 1, 2, and 3 were generated semi-
automatically form this database (additional TEX commands were
hand-inserted for formatting purposes).

For purposes of graphing the data, we divide time into lustra
(five-year intervals), working backward from the present, produc-
ing nine bins of five conferences each, except that the first bin has
just the first POPL three conferences (1973, 1975, and 1976).

2.1 Notations for Substitution
We found that (at least) 27 distinct notations for three-argument
substitution have been used at POPL; these are summarized in
Table 1. We found substitution notation in 327 of the 609 papers we

No use of inference rules
Inference rules, no use of substitution notation
Inference rules, prefix substitution notation
Inference rules, postfix substitution notation
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Figure 1. Substitution notations in POPL papers, 1973–2016

examined closely; of these, 4 [P08V, P09E, P12Y, P16B] used two
different kinds of substitution notation, so we have a total of 331
data points. All 331 data points are listed in Table 2; each paragraph
is one year’s worth of data.

With the exception of the very earliest one, namely e v
x

, all these
notations can be characterized along five axes: (a) are they prefix
(v and x occur to the left of e) or postfix (v and x occur to the
right e)? (b) What symbols enclose v and x? (c) What symbol(s)
separate v from x? (d) Does v occur to the left of x, or to the right
of x? (e) Are v and/or x on the baseline, or are one or both raised
or lowered? Not all possible combinations occur.

By far the most commonly used notation is e[v/x] (postfix,
brackets, slash, v before x, baseline): 133 out of 331. The second
most common notation is [v/x]e (prefix, brackets, slash, v before
x, baseline): 67 out of 331. Two others, e{v/x} and e[x := v],
were used more than 20 times each. Each of the 23 other notations
observed was used in fewer than 10 papers.

Figure 1 shows the usage of inference rules and substitution
notation in POPL papers within each lustrum, and furthermore
breaks down usage of prefix and postfix notations. Observations:
(1) At first only a small percentage of papers presented inference
rules, but their use increased sharply after 1986, and over the last 20
years roughly 60% of POPL papers in each lustrum have presented
inference rules. (2) Of papers that present inference rules, over
half also use substitution notation. (3) Early on, prefix and postfix
notations were used with roughly equal frequency, but after 1986
the relative percentage of postfix notations climbed sharply.

Figure 2 shows the breakdown of enclosers within the 331 data
points for papers that use substitution notation. Plain brackets [ ]
have always been the most commonly used encloser symbols, and
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Each of these notations is intended to represent the result of capture-free substitution of v for all
occurrences of the variable x within expression e. Twenty-seven different styles of notation are presented
in this table. Each example is followed by a bibliographic citation (see the list of references); 327
papers are cited out of 1,401 papers that appeared in POPL from 1973 through 2016, and 4 of them

[P08V, P09E, P12Y, P16B] each used two different notations. Papers using substitution
notation were not found in years 1973, 1975, 1976, 1980, 1981, or 1984. We may have
missed a few; we focused primarily on papers that also use inference rule notation.

e v
x

[P77A], [v/x]e [P77B]
e(v/x) [P78B]
[v/x]e [P79B], e[v/x] [P79D]
[v/x]e [P82A]
e[v/x] [P83B], e[v/x] [P83C]
[v/x]e [P85B], [v/x]e [P85D], e[v/x] [P85E]
{v/x}e [P86D], e[v/x] [P86E]
[v/x]e [P87G]
[v/x]e [P88A], e[v/x] [P88B], e{x← v} [P88D], e[x := v] [P88G], e[x/v] [P89C], e[v/x] [P89D], e[x← v] [P89E],

e[x← v] [P89F]
e{v/x} [P90A], e[v/x] [P90B], e[v/x] [P90D], e[v/x] [P90I], [v/x]e [P90J], [v/x]e [P90K], e[x← v] [P90M]
e[x := v] [P91F], [v/x]e [P91J], e[v/x] [P91K]
e{v/x} [P92D], e[v/x] [P92E], e[v/x] [P92H], [v/x]e [P92I], {v/x}e [P92K]
e[v/x] [P93C], e[v/x] [P93E], e[v/x] [P93F], e[x := v] [P93H], [v/x]e [P93I], e{x← v} [P93J], e[v/x] [P93K],

[v/x]e [P93L], e[x/v] [P93N], [v/x]e [P93P], e{v/x} [P93Q]
[v/x]e [P94A], [v/x]e [P94B], e[x 7→ v] [P94D], e{x← v} [P94F], [v/x]e [P94G], e[x := v] [P94H], e[v/x] [P94I],

e[v/x] [P94K], [x 7→ v]e [P94M], e[v/x] [P94P], e[x := v] [P94R]
[v/x]e [P95A], {x 7→ v}e [P95B], [v/x]e [P95C], e{x← v} [P95D], [v/x]e [P95H], e[v/x] [P95K]
[v/x]e [P96C], [v/x]e [P96D], [v/x]e [P96H], e[v/x] [P96I], e[v/x] [P96L], e{v/x} [P96M], [v/x]e [P96N], e[v/x] [P96O],

e[v/x] [P96Q]
e[v/x] [P97B], e[v/x] [P97C], [v/x]e [P97D], e[x := v] [P97E], e[v/x] [P97F], [v/x]e [P97G], [v/x]e [P97H],

e[x← v] [P97L], e[v/x] [P97Q], {x 7→ v}e [P97S], [v/x]e [P97T]
e[v/x] [P98A], e[v/x] [P98E], e[v/x] [P98H], e[v/x] [P98J], [v/x]e [P98K], e[x 7→ v] [P98M], e[v/x] [P98Q], e{|v/x|} [P98R]
e[x := v] [P99B], [v/x]e [P99C], e[v/x] [P99D], e[x← v] [P99F], e{|v/x|} [P99G], e[v/x] [P99H], e[x := v] [P99I],

e[v/x] [P99K], e[x := v] [P99L], e[v/x] [P99O]
e[x 7→ v] [P00G], e[v/x] [P00I], {x 7→ v}e [P00K], e[v/x] [P00N]
e[v/x] [P01A], e[v/x] [P01B], [v/x]e [P01C], e{v/x} [P01G], [v/x]e [P01I], [v/x]e [P01J], e[v/x] [P01K], {v/x}e [P01M],

e[x/v] [P01P], e{v/x} [P01Q]
e{v/x} [P02A], e{x 7→ v} [P02B], e{v/x} [P02D], [v/x]e [P02G], e[x 7→ v] [P02H], [v/x]e [P02I], e[v/x] [P02J],

e{x→ v} [P02K], e[x← v] [P02L], [v/x]e [P02M]
[v/x]e [P03B], e[x := v] [P03C], e{v/x} [P03D], e[x 7→ v] [P03E], e[x := v] [P03F], e[v/x] [P03G], e[v/x] [P03I],

e[v/x] [P03J], e[x 7→ v] [P03K], e[v/x] [P03L]
[v/x]e [P04B], e[v/x] [P04C], e[v/x] [P04D], e[v/x] [P04E], [x 7→ v]e [P04F], e{{x← v}} [P04G], e{v/x} [P04I],

[v/x]e [P04J], e[v/x] [P04L], e[v/x] [P04M], [v/x]e [P04Q], e[v/x] [P04R]
[v/x]e [P05A], e[v/x] [P05D], [x 7→ v]e [P05E], [v/x]e [P05F], [v/x]e [P05G], e{v/x} [P05I], [v/x]e [P05J],

e[x 7→ v] [P05N], e[v/x] [P05O], e[v/x] [P05Q]
e[v/x] [P06A], e[v/x] [P06G], [v/x]e [P06H], e[x := v] [P06N], e[v/x] [P06R], e[v/x] [P06S], [v/x]e [P06U], e[v/x] [P06V]
e[v/x] [P07B], e[v/x] [P07C], e[v/x] [P07D], e[v/x] [P07F], e{v/x} [P07H], e[v/x] [P07I], [v/x]e [P07J], e[v/x] [P07K],

e{v/x} [P07N], e[v/x] [P07R]
[x→ v]e [P08A], e[v/x] [P08D], e[v/x] [P08E], e[v/x] [P08F], [v/x]e [P08G], e[v/x] [P08H], e[v/x] [P08I], e[x := v] [P08J],

e[v/x] [P08K], e[v/x] [P08N], [v/x]e [P08O], e[v/x] [P08Q], e[v/x] [P08R], [v/x]e [P08V], [[v/x]]e [P08V],
e[v/x] [P08W], e[x/v] [P08X]

e[v/x] [P09A], e[v/x] [P09D], e[v/x] [P09E], e{v/x} [P09E], [x := v]e [P09F], e[v/x] [P09H], {v/x}e [P09I], [v/x]e [P09K],
e[v/x] [P09L], [v/x]e [P09O], e[v/x] [P09P], [v/x]e [P09Q], [x 7→ v]e [P09R], [v/x]e [P09S]

e[x 7→ v] [P10C], e[x 7→ v] [P10E], e[v/x] [P10G], e[v/x] [P10H], e[v/x] [P10I], e[v/x] [P10J], e[x 7→ v] [P10K],
e[v/x] [P10L], e[v/x] [P10M], e{v/x} [P10O], [x 7→ v]e [P10P], e{v/x} [P10Q], e[x := v] [P10R], [x := v]e [P10S],
e[x 7→ v] [P10U], e[v/x] [P10Y], [v/x]e [P10Z]

[x 7→ v]e [P11B], e[x := v] [P11C], [x 7→ v]e [P11D], e[x← v] [P11F], e[x := v] [P11G], {v/x}e [P11H], e[x 7→ v] [P11I],
e[v/x] [P11J], e[v/x] [P11L], e{v/x} [P11M], e[v/x] [P11N], e[v/x] [P11O], e[v/x] [P11S], e{v/x} [P11T],
[v/x]e [P11U], e{v/x} [P11W], e[v/x] [P11Z]

e[v/x] [P12A], [v/x]e [P12C], e[v/x] [P12D], e[v/x] [P12E], e[x 7→ v] [P12F], e{v/x} [P12G], e[x 7→ v] [P12I],
e[v/x] [P12K], e[v/x] [P12M], e[x 7→ v] [P12Q], e[x 7→ v] [P12S], e[v/x] [P12T], e[v/x] [P12U], e[v/x] [P12V],
e[v/x] [P12W], e[v/x] [P12X], [v/x]e [P12Y], [[v/x]]e [P12Y], e[x := v] [P12Π], e[x→ v] [P12Σ], e[v/x] [P12Υ]

e[v/x] [P13A], e[v/x] [P13C], [v/x]e [P13D], e[v/x] [P13E], e[v/x] [P13F], e[v/x] [P13I], e[v/x] [P13J], e[v/x] [P13K],
e[v/x] [P13N], e[v/x] [P13O], e{v/x} [P13P], e[v/x] [P13Q], e[v/x] [P13T], e{v/x} [P13U], e{v/x} [P13V],
e[v/x] [P13X], e[v/x] [P13Y], [x 7→ v]e [P13Γ], [v/x]e [P13∆]

e{v/x} [P14A], e[v/x] [P14B], [v/x]e [P14C], e[v/x] [P14D], e[x := v] [P14L], e{v/x} [P14N], e[v/x] [P14O], [v/x]e [P14R],
e[v\x] [P14T], e[v/x] [P14W], e[v/x] [P14X], [v/x]e [P14Y], e{v/x} [P14Z], e[v/x] [P14Γ], e[v/x] [P14∆],
e[v/x] [P14Σ], e[v/x] [P14Υ], e{v/x} [P14Φ], e[v/x] [P14Ψ]

[v/x]e [P15B], e[v/x] [P15E], e[v/x] [P15H], e{v/x} [P15I], e[v/x] [P15L], [v/x]e [P15M], e{v/x} [P15N], {v/x}e [P15P],
e{v/x} [P15Q], e[v/x] [P15R], e[x 7→ v] [P15S], e{v/x} [P15T], e[x := v] [P15X], e[x/v] [P15Y], e[x→ v] [P15Θ],
[v/x]e [P15Π]

e[x := v] [P16A], [x 7→ v]e [P16B], e[x := v] [P16B], [v/x]e [P16D], e[v/x] [P16G], e[v/x] [P16K], e{v/x} [P16L],
{x 7→ v}e [P16Q], [v/x]e [P16S], e[v/x] [P16T], e{v/x} [P16V], e{v/x} [P16W], e[v/x] [P16X], e[v/x] [P16Y]

Table 2. Substitution notations used in POPL papers (mostly considering only papers that also use inference rules; see text), 1977–2016
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Inference rules, substitution enclosers are braces { }
Inference rules, substitution enclosers are brackets [ ]
Inference rules, other substitution enclosers
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Figure 2. Substitution enclosers in POPL papers, 1973–2016

for the last lustrum were used in 80% of papers that used substi-
tution notation, but plain braces { } may be making a comeback:
their percentage of use was 19% in 1992–1996, then dipped to 13%
for the next three lustra, but for the last lustrum is back to 19%.

Figure 3 shows the breakdown of separators within the same
331 data points. The slash character “/” has always dominated,
and its percentage for the most recent lustrum is over 80% (73 of
89 papers). But “:=” came into use after 1986, and likewise “ 7→”
after 1991; over the last ten years, roughly one paper per year has
used “:=” and almost two papers per year have used “ 7→”. Out of
327 papers, 12 have used “←” and 4 have used “→”; just 1 paper
[P14T] has used the backslash “\”, and of course one paper [P77A]
used the idiosyncratic form “e v

x
”.

Of the 327 papers using substitution notation, 100 used it to
express multiple simultaneous substitution of two or more values
for two more corresponding variables. Of those, 16 used braces { }
or double braces {{ }} as enclosers; the other 84 used brackets [ ].

In many (but not all) papers that use multiple simultaneous
substitution, repetition notation is used as a part of substitu-
tion notation; examples are S[y1/x1, . . . , yn/xn] [P85E, §4.3],
p[~q/~x] [P90D, §4.1], [βn/αn]τ [P93P, Fig. 6], P{~z/~x} [P93Q,
§2], [x 7→ t′]t [P94M, §1.4], E[z/y] [P96L, §1], [ỹ/z̃]P [P96N,
§4.2], Γ{~x 7→ ~y} [P02B, §2.2], {α 7→ φ′}(φ1) [P16Q, Fig. 3].

For comparison, we examined several well-known books and
monographs. Church used SxNM to “stand for the formula which
results by substitution of N for x throughout M” [3, p. 9]. Baren-
dregt used M [x := N ] for the same purpose [1, §2.1], and Bruce
used [N/x]M [2, p. 128]. Gunter (reversing the use of M and N )
used {M/x}N to mean a substitution of M for x within N that
does not avoid variable capture, and then immediately used it to
define [M/x]N to mean a substitution of M for x in N that does
avoid variable capture (by using α-conversion as appropriate) [5,
pp. 35–37]. Winskel used A[a/i] to represent the result of substi-
tuting a for i within A [13, pp. 82–83]. Reynolds wrote, “p/v → e
denotes the result of substituting e for v in p (after replacing these
metavariables by particular phrases)” [9, p. 18]; while we other-
wise admire his book, we feel that this particular choice of notation
is ill-advised because in the book, as here, the extra space around
the arrow visually makes p and v bind tightly to the slash, making
it seems as if p/v, not just v, somehow maps to or becomes e.

Subsitution separator is slash /
Subsitution separator is colon-equals :=
Subsitution separator is \mapsto 
Subsitution separator is \leftarrow 
Subsitution separator is \rightarrow 
Other substitution separator
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Figure 3. Substitution separators in POPL papers, 1973–2016

2.2 Notations for Repetition
Out of 609 papers selected for careful examination, 184 used el-
lipses to indicate repetition and 174 used some form of overline to
indicate repetition. There was overlap: 57 papers used both ellipses
and overlines. We observed exactly three forms of overline: overbar
(used in 94 papers), −−−−−−→overarrow (used in 60 papers), and t̃ilde (used
in 20 papers). Our impression was that almost every paper that used
tilde to indicate repetition addressed either the π-calculus or bisim-
ulation (π-calculus notation uses overbars for another purpose).

Table 3 contains an entry for each of the 609 papers; each
paragraph is one year’s worth of data.

Figure 4 shows the usage of inference rules and substitution
notation in POPL papers within each lustrum, and furthermore
breaks down usage of overline and ellipsis notations. Its vertical
axis matches that of Figure 1 and so those two figures may be com-
pared directly. Observations: (1) Over the last 15 years, of papers
that present inference rules, over half also use some repetition nota-
tion. (2) Repetition notations were rarely used before 1992, but af-
ter that their use increased sharply. (3) From 1992 to 2006, ellipses
were used much more frequently than overline notations, but in the
last ten years overline notations have come to dominate slightly.

Figure 5 shows the breakdown of kinds of overline (tilde, over-
arrow, or overbar) within just the 174 papers that used overline
notation for repetition. Over the last 20 years, an average of one
paper per year has used tilde. During 1997–2001 and 2007–2011,
the numbers of papers using overarrow and overbar were roughly
the same; during 2002–2006 and 2012–2016, the number of papers
using overbar was about twice the number using overarrow.

Of the 174 papers that used overline notation, 27 (15.5%) used
overline notation over syntax fragments rather than just single
symbols. Of these, 4 used overarrows [P06Q, P11S, P12Y, P16I]
and 23 used overbars [P05A, P05S, P06H, P08M, P10J, P10O,
P11I, P12D, P12M, P12Q, P12Π, P13P, P13T, P13Y, P14B, P14E,
P14Ξ, P14Ψ, P15G, P15I, P15N, P16B, P16Y].

Of the 174 papers that used overline notation, just 13 (7%) used
explicit index variables in conjunction with the overline notation
[P05U, P09H, P10J, P10O, P11I, P12Z, P13V, P15G, P15I, P15M,
P16B, P16R, P16Y]. While the yearly number of papers using this
combination is small, it has been increasing. Of these 13 papers,
3 also used an explicit iterator notation as part of the overline
notation; we quote an example or two from each:Ki ⇒ ei

i
[P11I],

Ci ‖ Di : Ti
i

and Ci
i∈{1,...,n}

[P15I], Ci x→ ei
i∈m

[P16Y].

For submission to 2017 ACM POPL 4 2016/6/30



This table contains bibliographic citations to 609 POPL papers, each decorated to indicate whether the paper contains
inference rules and whether it uses a repetition metanotation. Brackets [ ] around a citation indicate the presence of at least
one inference rule; parentheses ( ) indicate no inference rule was seen. If a paper uses some sort of overline notation,

then such a notation appears above the citation. Only three distinct forms of overline were observed: overbar,
right-pointing overarrow, and tilde. (While collecting data, we made no distinction between the tiny
overarrow produced by \vec and the larger overarrow produced by \overrightarrow, nor between

the tiny tilde \tilde and the larger tilde \widetilde.) If a paper uses overlines only over monograms, then
an overbar or \vec or \tilde is shown over the first character “P” of the citation, and if it uses dual overlines
then two overlines are shown; on the other hand, if a paper uses overlines over larger syntax fragments, then an
overbar or \overrightarrow or \widetilde is shown over the entire citation, and if it uses nested overlines,

then a second overline appears over just the middle two characters. If a paper uses explicit subscripted
index variables in conjunction with the overline notation, then a subscripted i appears. If a paper

uses an explicit iterator notation in conjunction with the overline notation, then a
superscripted i appears. Independently of whether a paper uses an overline notation, if
it uses an ellipsis, then three dots appear beneath the citation, and if it uses an iterator

notation, then a superscripted ∀ appears
(but the paper itself may or may not use
the “∀” symbol in its iterator notation).

(~P75A)(P75B)
(~P76A)
[P77A](~P77B)
[P78A][P78B][P78C]
(P79A)[P79B][P79C][P79D][P79E]
[P80A]
(P81A)(P81B)[P81C]
[P82A][P82B]
[P83A][ . . .P83B][P83C∀]
[P84A][P84B][P84C]
[P85A][P85B][P85C][P85D][ . . .P85E]
[P86A][P86B](P86C)[P86D][P86E]
[P87A][P87B][P87C][P87D][P87E][P87F][P87G]
[P88A][P88B][P88C][P88D](~P88E)[ . . .P88F][P88G]
[P89A][P89B][P89C][P89D][ . . .~P89E][P89F]
[P90A][P90B][P90C][~P90D][P90E][P90F][P90G][~P90H][P90I][P90J][P90K][P90L][P90M]
[P91A][P91B][P91C][P91D][P91E][P91F][P91G][P91H][P91I][P91J][P91K][P91L]
[P92A][P92B][P92C][P92D][ . . .P92E][P92F][P92G][ . . .P92H][P92I][P92J][P92K]
[P93A][P93B][P93C][ . . .P93D][P93E][ . . .P93F][P93G][ . . .P93H][P93I][ . . .P93J][ . . .P93K][ . . .P93L][P93M][ . . .P93N][P93O][ . . .P93P][P93Q][ . . .P93R]
[P94A][P94B][ . . .P94C][ . . .P94D][P94E][P94F][ . . .P94G][P94H][ . . .P94I][ . . .P94J][ . . .P94K][ . . .P94L][P94M](P94Ni) [P94O][ . . .P94P][P94Q][P94R]
[ . . .P95A][P95B][ . . .P95C][ . . .P95D][P95E][P95F][P95G][P95H][P95I][P95J][P95K][P95L][P95M]
[ . . .P96A][P96B][ . . .P96C][P96D][P96E][ . . .~P96F][ . . .P96G][P96H][ . . .P96I][ . . .P96J][P96K][P96L][ . . .P96M][P̃96N][P96O][P96P∀] [ . . .P96Q]
[P97A][P97B∀] [P97C][P97D][P97E][P97F][P̃97G][P̃97H][P97I][P97J][P97K][P97L][ . . .P97M][ . . .P97N][P97O][ . . .P97P][ . . .P97Q][ . . .~P97R]

[ . . .P97S∀] [P97T]
[ . . .P98A][P98B][P98C][P98D][ . . .~P98E][P98F][P98G][ . . .P98H∀] [P98I][P98J][P98K][ . . .P98L][P98M][P98N][ . . .P98O][P98P][P98Q][P̃98R]

[P98S]
[ . . .P99A][ . . .P99B][P99C][~P99D][ . . .P99E][ . . .P99F][P99G][ . . .P99H][~P99I][P99J][P99K][~P99L][ . . .P99M][ . . .P99N][ . . .P99O∀] [P99P][ . . .P99Q]
[P00A][P00B][ . . .P00C][P00D][P00E][ . . .P00F][P00G][P00H][ . . .P00I][ . . .P00J][P00K][ . . .~P00L][P00M][ . . .P00N][P00O][ . . .P00P][P00Q][ . . .P00R][ . . .P00S]
[P01A][P01B][ . . .P01C][P01D][P01E][P01F][P̃01G][P01H][P̃01I][P01J][~P01K][P01L][P01M][ . . .P01N][P01O][P01P][P01Q]
[ . . .P02A][~P02B][P̃02C][~P02D][P02E][P02F][ . . .~P02G][P02H][ . . .P02I][P02J][P02K][P02L][P02M]
[P03A][P03B][ . . .P03C][ . . .P̃03D][P03E][ . . .P03F][ . . .P03G][ . . .P03H][ . . .P03I][ . . .P03J][ . . .~P03K][P03L][P03M]
[P04A][P04B][P04C][P04D][P04E][P04F][ . . .P04G][ . . .P04H][ . . .~P04I][ . . .P04J][P04K][P04L][~P04M][P04N][P04O][P04P][P04Q][P04R][ . . .P04S]
[P05A][ . . .P05B][ . . .P05C][ . . .P05D∀] [P05E][ . . .P05F][P05G][ . . .P̃05H][P05I][P05J][ . . .P05K][P05L][P05M][ . . .P̃05N∀] [ . . .P05O][ . . .P05P][~P05Q][ . . .P05R]

[ . . .P05S][ . . .P05T][ . . .P05Ui]
[ . . .~P06A][~P06B][P06C][ . . .P06D][P06E][ . . .P06F][P06G][ . . .P06H][P06I][P06J][P06K][ . . .P06L][ . . .P06M][P06N][ . . .P06O∀] [P06P][

−−−→
P06Q][P06R]

[ . . .P06S][P06T][P06U][ . . .P06V∀] [ . . .P06W][ . . .P06X]
[P07A][~P07B][P07C][~P07D][P07E][P07F][P07G][P07H][P07I][P07J][ . . .P07K][ . . .P07L][~P07M∀] [P̃07N][P07O][P07P][P07Q][P07R]
[P08A][~P08B][P08C][P08D][P08E][ . . .P08F][P08G∀] [P08H][ . . .P08I][P08J][P08K][ . . .P08L][ . . .P08M][P08N][ . . .~P08O][P08P][ . . .P̃08Q][ . . .P08R]

[ . . .~P08S][ . . .P08T][P08U][P08V][P08W][P08X][P08Y]
[ . . .P09A][~P09B][P09C][~P09D][P09E][P09F][P09G][P09Hi][P09I][P09J][ . . .P09K][~P09L][ . . .P09M][P09N][P09O][P09P][~P09Q][P09R][P̃09S]
[ . . .P10A][ . . .P10B][ . . .P10C][~P10D][P10E][P10F][~P10G][ . . .P10H][P10I][P10Ji] [~P10K][~P10L][ . . .~P10M][P10N][P10Oi] [P10P][~P10Q][P10R]

[P10S][ . . .P10T][ . . .P10U][ . . .P10V][ . . .P10W][ . . .P10X][P10Y][ . . .P̃10Z]
[P11A][P11B][P11C][P11D][P11E][ . . .P11F][P11G][P11H][P11I

i
i] [P11J][ . . .P11K][P11L][~P11M][P11N][P11O][P11P][P11Q][ . . .P11R]

[
−−→
P11S][~P11T∀] [P11U][P11V][P̃11W][P11X][ . . .P11Y][ . . .P11Z]

[ . . .P12A][ . . .P12B][P12C][P12D][P12E][P12F][P12G][P12H][P12I][P12J][P12K][ . . .~P12L][P12M∀] [P12N][ . . .P12O][P12P][P12Q][P12R]
[P12S][ . . .P12T][P12U][P12V][P12W][ . . .P12X][

−−−→
P12Y][P12Zi] [P12Γ] [ . . .P12∆∀] [P12Θ] [ . . .P12Λ] [P12Ξ] [ . . .P12Π∀] [P12Σ] [P12Υ]

[P13A][ . . .P13B][~P13C][P13D][~P13E][ . . .P13F∀] [ . . .P13G][~P13H][P13I][ . . .P13J][P13K][P13L][P13M][P13N][ . . .P̃13O][ . . .P13P][P13Q][P13R]
[P13S][P13T][ . . .P13U][P13Vi] [ . . .P13W][ . . .P13X]( . . .P13Y)[P13Z][P13Γ] [P13∆]

[P14A∀] [P14B][P14C][ . . .P14D][P14E][P14F][~P14G][ . . .P14H][P14I][P14J][P14K][ . . .P14L][P14M][P14N][P14O][ . . .P14P∀] [ . . .P14Q][P14R]
[P14S][P14T][P14U][P14V][P14W][P14X][P14Y][ . . .P14Z∀] [P14Γ] [ . . .~P14∆] [ . . .~P14Θ] [ . . .P14Λ] [P14Ξ] [ . . .P14Π] [P14Σ] [ . . .P14Υ] [~P14Φ]
[P14Ψ]

[ . . .P15A][P15B][P15C][P15D][P15E][ . . .P15F][P15Gi] [ . . .P15H∀] [P15I
i
i] [~P15J][~P15K][P15L∀] [P15Mi] [ . . .P15N][P15O][ . . .P15P](P15Q)[ . . .~P15R]

[ . . .P15S][P̃15T∀] [ . . .P15U][P15V][~~P15W][ . . .P15X][P15Y][P15Z][~P15Γ] [P15∆] [P15Θ] [ . . .P15Λ] [P15Ξ] [P15Π] [P15Σ]
[P16A][P16Bi] [P16C][ . . .P̃16D][P16E][ . . .P16F][P16G][ . . .P16H][ . . .

−−→
P16I∀] [~P16J][P16K][ . . .~P16L][ . . .P16M][P16N][ . . .P16O][P16P][P16Q][P16Ri]

[P16S][P̃16T∀] [P16U][P̃16V][P16W][ . . .P16X∀] [ . . .P16Yi
i]

Table 3. Repetition notations used in POPL papers (mostly considering only papers that also use inference rules; see text), 1977–2016
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No use of inference rules
Inference rules, no use of overlines or ellipses
Inference rules, overlines only
Inference rules, both overlines and ellipses
Inference rules, ellipses only
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Figure 4. Repetition notations in POPL papers, 1973–2016

Overline repetition notation uses tilde
Overline repetition notation uses overarrow
Overline repetition notation uses overbar
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Figure 5. Kinds of overlines in POPL papers, 1973–2016

We observed 9 papers that used nested overline notation; of
these, 8 used nested overbars [P94N, P99B, P05A, P13Y, P14E,
P14Ψ, P16R, P16Y] and 1 used nested overarrows [P15W].

For comparison, we examined several well-known books. Baren-
dregt [1, §2.1.3] wrote “Let ~N ≡ N1, . . . , Nn. ThenMN1 · · ·Nn ≡
M ~N ≡ (· · · ((MN1)N2) · · ·Nn)”; note that he clearly does not
intend that ~N necessarily literally include separating commas in
its expansion. Milner et al. [7, p. 44] used ellipses not only within
an assertion but also to indicate a sequence of premisses in an
inference rule:

E(longstrid1) = E1 · · · E(longstridn) = En

E ` open longstrid1 · · · longstridn ⇒ E1 + · · ·+ En

and Gunter [5, p. 292] did the same:
H `M1 : t1 · · · H `Mn : tn

H ` {l1 = M1, . . . , ln = Mn} : {l1 : t1, . . . , ln : tn}
and so did Reynolds [9, p. 227] (using zero-origin indexing):

e0 ⇒ Z0 · · · en−1 ⇒ zn−1

〈e0, . . . , en−1〉 ⇒ 〈z0, . . . , zn−1〉
Bruce [2, p. 164] used both ellipses and iterator notation:
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Figure 6. Substitution variety in POPL papers, 1973–2016

E `Mi : Ti, for 1 ≤ i ≤ n
E ` 〈M1, . . . ,Mn〉 : T1 × . . .× Tn

3. Analysis
Based on the data reported in Section 2 plus other observations
about the papers, we infer this story about metanotation in POPL
papers: Before 1987, there was relatively little use of metanotation
for formal specification of the behaviors and type systems of lan-
guages. In the late 1980s, there was a shift from studying small lan-
guages (such as various forms of the λ-calculus) in which functions
took only one argument to explaining larger, more realistic lan-
guages in which sequences of items (parameters, arguments, dec-
larations, statements, . . . ) played a role, and so there was a sharply
increased need for metanotation to describe such sequences. More-
over, the use of inference-rule metanotation became increasingly
popular, to the point that over 60% of POPL papers now use in-
ference rules for some descriptive purpose. Different subjects have
had slightly different descriptive needs, and so there has been a
natural experimentation with alternative extensions to the metano-
tation, leading to an ever-increasing diversity of notations.

This is how languages grow—but we believe that it has reached
the point where it is causing problems, and it is time to apply the
tools of our trade (including formalism and critical analysis), which
we normally apply to programming languages, to the metanotation.

In this section we point out specific problems we have observed
with three aspects of the metanotation: substitution notations, over-
line notations, and ellipses. We cite specific examples from specific
papers for concreteness, to document the existence of these prob-
lems, but it is not our intent to single out individual papers as “bad
examples”; rather, we believe the problems exist as a natural con-
sequence of language evolution, as cutting-edge pioneers try out
different (and experimental) modes of expression, and the nature
of the problems observed is a global inconsistency across a large
body of work rather than defects in particular papers.

3.1 Substitution Notations
We don’t believe that there is an inherent problem with any one
of the 27 specific notations for substitution listed in Table 1. The
difficulties we see are social rather than technical, and twofold.

The first problem is that authors use a wide variety of substi-
tution notations, but some take them for granted; many, many pa-
pers use substitution notation without explaining what it means. For
each notation, enough other POPL papers use the same notation (or
a very similar notation) for substitution that any individual author
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might well feel justified in assuming that readers will recognize it.
But the diversity of notations has been increasing over time (see
Figure 6); during the last five years alone, 14 different notations
have been used, making it less likely that a reader will instantly
recognize any one of them as intended to denote substitution.

Some general comments about the notations observed: (1) Both
e[v/x] and e[x/v] are in use, identical except as to whether v pre-
cedes or follows x. Therefore a reader who sees a[b/c] cannot be
sure which is meant. (2) Focusing only on separators, 4 papers use
x → v and 12 papers use x ← v. A reader who had already seen
one (say, x → v) might well think that the rule is that the arrow
points from the variable to the replacement value, and on encoun-
tering the other, say in the form a[b← c], might well think that c is
the variable and b the replacement value, when in fact the opposite
was intended. (3) The very fact that most notations that use “/” as
a separator (including the two most popular notations, e[v/x] and
[v/x]e) have v to the left of x, whereas notations that use “:=” or
some form of arrow as a separator have v to the right of x, is itself a
potential source of confusion. (4) We speculated that the increasing
use of braces might reflect a desire to emphasize that a substitution
conceptually includes a set, not an ordered list, of variable-value
pairs when multiple substitution is involved. However, our obser-
vations provide little statistical support for this conjecture: of the
327 papers that use substitution notation, 100 papers (30.5%) use
multiple simultaneous substitution, and of the 50 papers out of 327
that uses braces as enclosers, just 16 (32%, almost exactly the same
percentage) use multiple simultaneous substitution.

The second problem, which exacerbates the first, is that many
of these notations are also used for completely different purposes
in other POPL papers. As a result, the reader cannot even be cer-
tain, on seeing a notation such as e[v/x] or e[x := v], whether it
is intended to denote substitution or some other operation. For ex-
ample, paper [P86C, §5] uses the notation one e[x̂/x] to mean en-
vironment extension, not substitution; the notation is not explicitly
explained, but from its use we infer that if e is an environment then(

e[x̂/x]
)[[

id
]]

=

{
x̂ if id is x
e
[[
id
]]

otherwise

Another paper [P88E, §4.3.1] gives the explicit definition

f [a→ b]
def
= λx.if x = a then b else f(x)

and so f [a→ b] denotes function update, not substitution. In a third
paper [P89E], the authors write “To denote the extension of a type
environment TE by a binding of x to T, we write TE [x ← T].” A
fourth paper [P12Π] uses ρ{xi 7→ x′i} to indicate “repeated exten-
sion of the environment ρwith variable mappings”; thus e{x 7→ v}
would indicate a single environment extension, not substitution.
These are but a handful of the many papers we observed that use
substitution-like notations for other purposes.

3.2 Overline Notations
The earliest uses of overline notation were over single symbols,
and the interpretation was straightforward: one may regard A as
standing for an empty sequence, or a singleton sequence “A1” or a
length-2 sequence “A1, A2” or a length-3 sequence “A1, A2, A3”
and so on for any finite length of sequence desired. Typically such
expansions are described using ellipsis notation: we say that “A”
stands for “A1, . . . , An”. Often this notation is used in the context
of abstract syntax, where the need for parentheses is often fudged
away or glossed over, and the need for commas to separate the
copies of the symbol can be similarly fudged away or glossed over.
It is completely clear what to replicate and where to attach the in-
dices: the unit of replication is the single symbol under the overline,
and an integer index is attached to each copy of that symbol. It is

assumed that separate occurrences of the same overlined symbol
will expand into sequences of the same length.

Over time the notation was extended in three significant ways,
which we will refer to as pointwise clustering, expression replica-
tion, and nesting. Each of these extensions solved a problem at the
expense of introducing a different problem.

The first extension, pointwise clustering, uses multiple overline
repetitions within a specific syntactic context to indicate that the
unit of replication should be not just individual symbols, but the
entire context. At first this convention was described explicitly, but
then came to be taken for granted and extended to situations not
previously documented, creating the potential for confusion. We
quote a typical explanation of the convention [P97E, Appendix B]:

We use vector notation A to indicate a sequence A1, . . . , An.
If A = A1, . . . , An and B = B1, . . . , Bn and ⊕ is a binary
operator then A⊕B stands forA1⊕B1, . . . , An⊕Bn. If A if B
have different lengths then A⊕B is not defined. Each predicate
p is promoted to a predicate over vectors: p(A1, . . . , An) is
interpreted as p(A1) ∧ . . . ∧ p(An).

So far, so good. However, the same paper goes on to use the same
convention for declarations of function parameters: Ax(B y){S}
is intended to be interpreted as Ax(B1 y1, . . . , Bn yn){S}. Per-
haps the whitespace that separates the type B from the parameter
name y is to be construed as a “binary operator”?

Many papers have used this convention; by 2006 at least one set
of authors regarded this convention as widespread, but still worth
explaining: “Following common convention, T f represents a list
of pairs T1 f · · ·Tn fn rather than a pair of lists” [P06P, §3.1].

Pointwise clustering may induce transitive constraints: if, within
some context, we have T f and elsewhere T : κ, f and κ must
have the same length even though they nowhere appear together.
(Following Einstein, we call this “spooky action at a distance.”)

Pointwise clustering solves the problem of wanting to replicate
syntactic units larger than single symbols, with the effect of being
able to “zip together multiple lists of the same length” in construct-
ing the copies. The downside is that the unit of replication is not
indicated explicitly, and so must be explained separately.

But consider now this example [P04J, Ex. 4.7], one of the
clearest illustrations of the difficulty that arises when the contexts
to be replicated are not explicitly marked or explained:

Take any w = [v/x]e and w′ = [v′/x]e with (v, v′) ∈ R

There are five different vectors involved: w, w′, v, v′, and e.
Which pairs of vectors must be of the same length? All of them?
We soon realize that to answer this, we need to understand what
are the intended units of syntactic replication. For the first two
equations, a plausible answer is “the entire equation,” leading to
the interpretation

Take any w1 = [v1/x1]e1, . . . , wn = [vn/xn]en
and w′1 = [v′1/x1]e1, . . . , w

′
n = [v′n/xn]en with . . .

However, careful consideration of the rest of the paper leads one to
conclude that the intended interpretation is:

Take any w1 = [v1/x1, . . . , vm/xm]e1, . . . ,
wn = [v1/x1, . . . , vm/xm]en

and w′1 = [v′1/x1, . . . , v
′
m/xm]e1, . . . ,

w′n = [v′1/x1, . . . , v
′
m/xm]en with . . .

That last is quite a mouthful, so we can understand why the authors
chose to use abbreviate it using a repetition notation. But this
particular form of overline notation, which fails to mark the units
of replication, is not quite up to the task. The same problem shows
up elsewhere in the example: how is (v, v′) ∈ R to be interpreted?
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Here is a clear example of the sort of special-purpose explana-
tion that is required when using pointwise clustering, particularly
with substitution notation [P11I, §3.3]:

The notation a : κ zips together a list of type variables and a
list of kinds to create a type variable context ∆. These two lists
must have the same length for the notation to be well-defined.
The notation ϕ[a 7→ ψ] applies a multi-substitution of the types
ψ for each of the corresponding variables in the list a.

The second extension, which we call expression replication,
solves these problems by writing the overline over an entire expres-
sion, not just individual symbols, thereby indicating quite precisely
what is the unit of replication. This works very well for multiple
substitution notation such as {α 7→ φ′}(φ1) [P16Q, Fig. 3], but in
the general case it comes at a cost: the precise points at which to
attach the integer subscripts are no longer explicitly marked. For
the previous example, we could try writing (v, v′) ∈ R; the unit
of replication is clearly “(v, v′) ∈ R” but it is not at all clear
that v and v′ should receive subscripts in each copy but R should
not—for that matter, we might even ask whether ∈ should also re-
ceive subscripts. Some authors have solved this problem by explic-
itly marking the subscript attachment points, typically using either
i or j or k, intended to represent a “typical index value” (exam-
ple: (Gi, ψi) [P05U, Fig. 3]) or m or m, intended to do double
duty by also indicating the intended length of the sequence (ex-
ample: θ = {Xn 7→ tn} [P94N, §3]). In the former case, au-
thors may also provide a binding of the index variable that indi-
cates the attachment points, for example Ki ⇒ ei

i
[P11I, Fig. 2]

or Ci x→ ei
i∈m

[P16Y, Fig. 8]. This makes the attachment points
quite clear, but with less conciseness than a pure overline notation.

We did find this clear description of a pure overline notation
with implicit subscript attachment points [P06H, §2]:

We will also use an overbar as a syntactic meta-operator to
denote a comma-separated sequence of syntax fragments: σ =
σ1, . . . , σn where σ is a syntax fragment and σi is the same
fragment with i-subscripts on all meta-identifiers it contains. For
example we will write [u/x]e instead of [u1/x1, . . . , un/xn]e,
and (v, v′) ∈ R instead of (v1, v

′
1), . . . , (vn, v

′
n) ∈ R.

The third extension, nesting, effectively provides “nested loops.”
The earliest example we found, σ′ = {F 7→ λyn .a(Hm(yn))}
[P94N, Fig. 1], explicitly marks the index attachment points but
provides no bindings, thereby removing all ambiguity as to where
subscripts are to be attached but not entirely eliminating all confu-
sion as to which subscript attachment points correspond to which
overline (it can easily be figured out, but it requires a deduc-
tion step). The same is true of data T αk = Ciτij [P99B,
Fig. 1], which uses three distinct index variables i, j, and k to
correspond to the three overbars. A more complex example is
yi : (∀αk.τi)ui 7→ Λαk.ei[S] [P99B, Fig. 1]; note the occurrence
of the index variable i within the superscripted expression ui. Such
an example would be difficult to understand without explicit index
variables or some specific conventions about index attachment.

An interesting example of apparently mixed conventions is
Ω ` [τ ′/α]τ  v [P05A, Fig. 4]. Elsewhere the authors gener-
ally use expression replication in such situations as data D α ⇒
S α β = C τ [P05A, Fig. 1] and ∆→ d : θ [P05A, Fig. 3], so we
assume that the authors believed that [τ ′/α]τ rather than [τ ′/α]τ
was the appropriate notation for multiple substitution.

A different example of mixed conventions within a single asser-
tion is β = {|(G0, null), (Gi, oi.f1. · · · .fn)|} [P05U, Fig. 5]. Here
there is nested repetition: a use of an ellipsis within an overline
cluster that uses the index variable i to indicate attachment points.

Nothing wrong with that; this may be the clearest way to express
this situation. It is in fact clearly the intent of the authors that the se-
quence of field accesses .f1. · · · .fn be the same for every value of
i. This example does suggest that in some other scenario one might
wish to have a different set of field accessors for each value of i;
this could be expressed as (Gi, oi.fi 1. · · · .fi ni). Can this example
be expressed more concisely using nested overlines? We answer
this question in §6. (This example also illustrates a conventional
treatment of the overline notation as concrete syntax or “macro ex-
pansion” rather than abstract syntax: the intent is that the copies
produced by the overline cluster be comma-separated but not sur-
rounded by enclosers, so that β has n+ 1 pairs as its elements.)

3.3 Ellipses
We wish to provide a formal specification of the meaning of such
notations as “x1, . . . , xn” and “x1, x2, . . .” and “x1 ⊕ · · · ⊕ xn”
and “[v1/x1, . . . , vn/xn]e”. Sometimes two ellipses are used
together, for example when nested function calls are involved:
f1(f2(· · · fn(x) · · · )). Ellipsis notation is sometimes used in tricky
ways, for example C = [p1, s1, . . . , pn, sn] [P06X, Fig. 6]. In any
case, it won’t do simply to assume that the repeated pattern is
comma-separated and contains no commas.

4. A Specific Proposal, with Three Novelties
We propose these design principles as desirable for future POPL
metanotation: (1) Be compatible with past usage. (2) Obey the prin-
ciples of abstract syntax (that is, a correct concrete syntax can be
obtained purely by inserting enclosers and commas, but only as
needed to maintain the integrity of the parse tree). (3) Provide a
range of notational choices, allowing authors to make the choices
about conciseness and readability. (4) Avoid context-dependent be-
havior. (5) Be as agnostic as possible about the structure and mean-
ing of the assertion language. (6) Be as agnostic as possible about
the structure and meaning of the object language. (7) Provide a
purely formal explanation of the interpretation of the metanotation
(in particular, the interpretation should not depend on types or se-
mantics of either the assertion language or the object language).

In this section we present an informal description of a few as-
pects of our proposed metanotation, including some novel features.
In §5.2 we present a definition and formal interpretation.

In general, an inference rule consists of zero or more premisses
and a single conclusion. . . . The premisses and conclusion are
each a scheme for an assertion, that is, a pattern containing
metavariables that each range over some type of phrase, such
that one obtains an assertion by replacing each metavariable by
any phrase in its range. . . . An instance of an inference rule is
obtained by replacing all occurrences of each metavariable by
a phrase in its range. (Sometimes, there will be side conditions
on the rule that must be satisfied by the replacement. Also, there
may be syntactic operations, such as substitution, that must be
carried out after the replacement.) A proof —more precisely, a
formal proof —is a sequence of assertions, each of which is the
conclusion of some instance of an inference rule whose pre-
misses all occur earlier in the sequence. —Reynolds [9, §1.3]

Each of the assertions (sometimes called judgments) is written in
an assertion language, which is typically the standard language
of mathematics and logic, possibly augmented with substitution
and/or repetition notations, and also with the possibility of men-
tioning tokens of some object language (Reynold’s term) and/or
nonterminals of a context-free grammar defined in some BNF no-
tation (of which there are many variations); such nonterminals are
one kind of metavariable. Examples of possible object languages
are Java [4] and Featherweight Java [6].
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We will use the term monogram to refer to a single letter that,
rather than being used for decorative purposes, is itself possibly
“decorated” with one or more prime marks and/or a sequence of
one or more integer subscripts. We will define this term formally
in §5; for now, consider as examples the monograms x, β, e′, α2,
and τ ′15 27. The decorations are part of the monogram; thus x and x′

and x3 are distinct monograms. Multicharacter identifiers such as
expr and type and if are not monograms; neither are nonalphabetic
symbols such as = and + and &.

Our basic approach to making overline notation unambiguous:
(1) Implicit pointwise clustering is never used. The material be-
neath (that is, within) an overline is the unit of replication. Thus”
T f ” expands to “T1, . . . , Tn f1, . . . , fn”. If “T1 f1, . . . , Tn fn”
is the desired expansion, the correct way to write that is “T f ”.
(2) If explicit index variables are to be used, then the overline no-
tation must include an explicit binding of that variable, so that
the correspondence of index variables to overlines will be unam-
biguous. For example, we cannot write vi/xi ; instead we must
write at least vi/xi

i
, and perhaps more explicitly vi/xi

i≤n
or

vi/xi
p≤i≤q

. Index variables are the way to go if it is necessary
to attach subscripts to symbols or multicharacter identifiers.
(3) If no explicit index variables are to be used, then integer indices
will be implicitly attached to all monograms (but see §4.1 below),
and only to monograms. Thus f(x) will mean f1(x1), . . . , fn(xn),
not f(x1), . . . , f(xn), because f , like x, is a monogram.

We allow any combination of three optional notations at the up-
per right of an overline: an explicit separator, a multiplicity marker
(which may be + or ?), and a variable binding. The explicit sep-
arator is used instead of a comma to separate copies; if s repre-
sents statements, then a notation such as s ; could be useful when
describing an object language that uses semicolons as separators
rather than terminators. The multiplicity marker + means that the
expanded sequence must not be empty; ? means that the expanded
sequence must contain either zero or one copy (and therefore in
this case also specifying an explicit separator would be pointless).
A variable binding may provide bounds, or may consist of just the
variable name, in which case bounds will be inferred. Examples are
x ;+, x+ i, x?, x i, x j<i, x max , x 1≤i≤n, x⊗+ i≤n, and x i∈1..n.

4.1 Underlining
What if we want an expansion such as f(x1), . . . , f(xn)? We can
always use explicit indices, as in f(xi)

i
, but what if we want fur-

ther conciseness? We take inspiration from the α notation for par-
allel computation in Connection Machine Lisp [12], which was in
turn inspired by the backquote notation of Common Lisp [11]. In
each of these notations, an expression is marked for special treat-
ment (making a copy; executing many copies in parallel), but there
is also a way to mark subexpressions as exceptional (use the value
of the subexpression instead of making a copy; use correspond-
ing elements of a vector rather than replicating a single value). The
overline notation attaches subscripts to every monogram; we need a
way to say “except here,” and for this we use underlines. Just as ev-
ery comma must correspond to a governing backquote in Common
Lisp, just as every bullet must correspond to a governing α, so in
our metanotation every underline must fall beneath a corresponding
overline. As simple examples, for f(x1), . . . , f(xn) we can write
f(x), and for f(x1 + z, . . . , xn + z) we can write f(x+ z).

Consider again this example [P04J, Ex. 4.7] from §3.2:

Take any w = [v/x]e and w′ = [v′/x]e with (v, v′) ∈ R

With our proposed notation, we use nested overlines to indicate the
(nested) units of replication and underlines to indicate where the
uppermost overline should not attach indices:

Take any w = [v/x]e and w′ = [v′/x]e with (v, v′) ∈ R

Thus, in each of the two equalities, v and v′ and x receive indices
only from the inner overline. Note also the underline under R to
indicate that there is just one R, not a subscripted sequence of R’s.

4.2 Harpoons and Boxes
Harpoons used as overlines do not provide separators between the
copies. (We use harpoons so as to avoid conflict with past usage
of overarrows; besides, harpoons take less vertical space.) The di-
rection of the harpoon indicates whether copies are numbered in
forward or reverse order. If a harpoon overline cluster immediately
contains a single boxed cluster, then the material in the boxed clus-
ter is used as is. and the material to its left and right is replicated;
this provides a concise way to notation certain expressions that
would otherwise require two ellipses. We illustrate with examples:

−⇀x ≡ x1x2x3 . . . xn−1xn
↼−x ≡ xnxn−1xn−2 . . . x2x1−−−−−−−−⇀

let x = v in e ≡ let x1 = v1 in . . . let xn = vn in e
↼−−−−−−−−
let x = v in e ≡ let xn = vn in . . . let x1 = v1 in e

↼−
e .f ≡ e.f1.f2.f3 · · · .fn−1.fn−⇀
e .f ≡ e.fn.fn−1.fn−2 · · · .f2.f1

−−−−−⇀
h(x, e , z) ≡ h1(x1, h2(x2, . . . hn(xn, e, zn) . . . , z2), z1)
↼−−−−−
h(x, e , z) ≡ hn(xn, . . . h2(x2, h1(x1, e, z1), z2) . . . , zn)

4.3 Explaining Ellipses Rigorously
We provide the overline notation because it is concise, mentioning
the repeated material just once. But we also wish to provide ellipsis
notation, despite the fact that it typically mentions (variations of)
the repeated material two or more times, because it is often more
readable. In §5.2 we will explain the formal interpretation of several
ellipsis idioms by transforming them into instances of overline
notation. Here are some illustrative examples:

x1, x2, . . . becomes x , x1, . . . , xn becomes xi
, 1≤i≤n

x1x2 . . . becomes −⇀x x1; . . . ;xn becomes xi
; 1≤i≤n

f1(x1, y), . . . , fn(xn, y) becomes fi(xi, y)
, 1≤i≤n

x3 ⊕ · · · ⊕ x7 becomes xi
⊕ 3≤i≤7

x1 . . . xn becomes −⇀xi 1≤i≤n

f(x1, . . . f(xn, e) . . .) becomes
−−−−⇀
f(x, e )

5. A Careful Specification
Our description of metanotation builds on that of Reynolds [9, §1].

5.1 Syntax
Assertions, inference rules, and BNF are all built from tokens.

5.1.1 Monograms and Other Tokens
A letter is a single letter (Latin, Greek, or perhaps from some other
alphabet), for example x, A, Z, β, and Γ. An accented letter is ei-
ther a letter, or an accented letter to which a depending or surmount-
ing or superscripted symbol (other than an overbar or harpoon) has
been added; examples are x, ç, é, x̂, A′, Z̃′, β†, and Γ′′. A mono-
gram is either an accented letter, or a monogram to which an inte-
ger subscript has been attached; examples of monograms are x, x̂,
x1, A2 2, and ψ′′1 3 2. Here we use whitespace between subscripts,
so that the monogram τ4 12 (having subscripts 4 and 12) is clearly
different from τ41 2 (which has subscripts 41 and 2). An indexed
monogram is either a monogram to which a subscript other than
an integer has been attached, or an indexed monogram to which a
subscript has been attached; examples are xi, x3 j , and x′k 3 k.
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Monograms may be used as names of metanotation index vari-
ables and as BNF nonterminals. They may also be used within the
assertion language and the object language for other purposes.

We assume that the syntax of the assertion language (which
may include part or all of the syntax of the object language) may
be regarded abstractly as a linear sequence of tokens, some of
which may have a compound structure that may include tokens
or sequences of tokens. We also assume that such tokens may be
divided into five classes: monograms, commas, left enclosers, right
enclosers, and all other tokens, which we will call common tokens.
The assertion template language has six additional classes of token:
ellipses such as “. . .” or “· · · ”, overline clusters, underline clusters,
boxed clusters, the don’t-care symbol “ ”, and the empty-sequence
symbol “•”. An overline cluster consists of a nonempty sequence
of assertion template tokens surmounted by an overline, where an
overline is either an overbar, a left-pointing harpoon, or a right-
pointing harpoon; such an overline cluster may have additional
information attached at the upper right, as described below. An
underline cluster consists of a nonempty sequence of assertion
template tokens with an underbar beneath. A boxed cluster consists
of a nonempty sequence of assertion template tokens within a
rectangular box. In each case, a cluster is said to contain the token
sequence, which is sometimes referred to as the material within
the cluster, and to immediately contain each of the tokens in the
material. A cluster also contains any token contained by any token
in the material; thus (non-immediate) containment is recursive.

Some tokens in the assertion language may belong to the object
language. The assertion language comma token is “,”; there may
also be a separate object language comma token such as “,”.
Possible examples of left enclosers are “ ( ” and “(” and “ [ ” and
“[” and “ 〈 ” and “begin” and “if”; examples of right enclosers
are “ ) ” and “)” and “ ] ” and “]” and “ 〉 ” and “end” and “fi”.

As an example, the assertion “Γ ` f(y + z) : τ” might be
regarded as a sequence of eight tokens: “Γ” and “f” and “τ” are
monograms, “`” and “:” are common tokens, “ ( ” is a left encloser,
“ ) ” is a right encloser, and “y + z” is an overline cluster that
happens to contain a sequence of three other tokens, namely the
monogram “y”, the common token “+”, and an underline cluster
“z”that contains the monogram “z”.

We say that a sequence of tokens is an entire sequence if it
constitutes the whole of an assertion or a BNF alternative or a
formula mentioned within text, or if it constitutes all of the material
within an overline cluster or underline cluster.

We say that a token is left-delimited if either (a) it is the leftmost
of an entire sequence of tokens, or (b) the token immediately to its
left is either a comma or a left encloser. Similarly, we say that a
token is right-delimited if either (a) it is the rightmost of an entire
sequence of tokens, or (b) the token immediately to its right is either
a comma or a right encloser.

We say that a sequence of tokens is left-balanced if (a) the ma-
terial in every overline cluster and every underline cluster immedi-
ately contained in the sequence is balanced, and (b) there is no pre-
fix of the sequence (including the sequence itself) that immediately
contains more right enclosers than left enclosers. Similarly, a se-
quence of tokens is right-balanced if (a) the material in every over-
line cluster and every underline cluster immediately contained in
the sequence is balanced, and (b) there is no suffix of the sequence
(including the sequence itself) that immediately contains more left
enclosers than right enclosers. A sequence of tokens is balanced
if it is both left-balanced and right-balanced, left-enclosing if it is
left-balanced but not right-balanced, right-enclosing if it is right-
balanced but not left-balanced. A token z is unenclosed if either the
maximal subsequence to the left of z in the immediately containing
token sequence is not left-enclosing or the maximal subsequence to
the right of z in that token sequence is not right-enclosing.

5.1.2 Assertions and Inference Rules
A assertion is a sentence of the assertion language that may be
determined to be valid or invalid. We rely critically on only one
characteristic of assertion language syntax: that it have a comma
token. The assertion language may use a notation such as e[v/x] or
e[v1/x1, . . . , vn/xn] to indicate substitution, where e and v and
every vi represent phrases of the object language, x and every
xi represent single-token identifiers of the object language, and
“ [ ”and “ ] ”and “/ ” are tokens of the assertion language but not of
the object language. The assertion language may include a function
# that can take any number of arguments and returns a nonnegative
integer indicating now many arguments it was given; for example,
#(a, zi, x > y) = 3.1

An inference rule consists of a set of assertions called the pre-
misses and a second, nonempty set of assertions called the conclu-
sions2; it is customary to notate an inference rule as a horizontal
line with the premisses above the line and the conclusion(s) below
the line. The premisses (and conclusions) may be stacked vertically
and/or separated by commas [P78A, §1.5ff.], but more recent cus-
tom is to put multiple premisses on a line, separated only by wide
whitespace (2 ems or more), while trying to minimize the number
of lines required. If an inference rule has no premisses, one may
either (1) leave whitespace above the horizontal line, (2) write “ • ”
above the horizontal line, or (3) omit the horizontal line.

A possibly repeated inference rule is either an inference rule or
an overline cluster whose overline is an overbar and whose material
is a possibly repeated inference rule (rather than a set of tokens).

5.1.3 BNF
A BNF (Backus-Naur Form) description of an object language con-
sists of one or more productions. Each production has a nonter-
minal on its left-hand side3 and a set of alternatives on its right-
hand side. Each nonterminal is typically an identifier, and may be
a monogram. Each alternative is a BNF token sequence annotated
by a set of constraints. Each token in a BNF token sequence must
be either an object-language token, a nonterminal appearing in the
left-hand side of some BNF production, a monogram that matches
a nonterminal appearing in the left-hand side of some BNF produc-
tion, an ellipsis, or an overline cluster, underline cluster, or boxed
cluster whose material is a BNF token sequence. (Thus, all repeti-
tion notations may eb used in BNF alternatives.) Each constraint is
an assertion. Typically each production is written as the symbol ::=
with the nonterminals written to its left, separated by commas, and
the alternatives written to its right, separated by vertical bars “ | ”.

A monogram is said to match a nonterminal if the nonterminal is
also a monogram and a sequence of decorations of the nonterminal
can produce the original monogram, where a decoration operation
consists of either adding an accent or attaching an integer subscript.
(For example, x′ matches x, x̂3 matches x, and x̂′3 8 matches any
of x̂′3, x̂′, x̂3 8, x̂3, x̂, x′3 8, x′3, x′, x3 8, x3, and x.) If a monogram
matches more than one nonterminal, the best match is the one

1 We dislike the use of |x| to denote the length of the sequence x because
if we happen to choose x = x1, then it is not clear whether |x| = 1 (using
abstract syntax) or |x| = |x1| = (if x1 ≥ 0 then xi else − xi) (using
concrete syntax). A similar convention with big operators is less dangerous,
because when #(x) = 1,

∧
x = x1 under either interpretation.

2 In most cases an inference rule will have only a single conclusion, but
in some cases it is useful to allow several, particularly when they may be
generated by a repetition notation. It is as if there were multiple inference
rules, each with one conclusion and each having all the same premisses.
3 As an abbreviation, one may write a comma-separated sequence of non-
terminals on the left-hand side of a BNF production; it is as if several copies
of the production were written, one for each of the nonterminals listed, with
just that nonterminal on its left-hand side.
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(if any) that matches all the others. For example, if τ and τ ′ are
nonterminals, then τ ′ is the best match for the monogram τ ′3, but τ
is the best match for τ3.

5.2 Interpretation
Metanotation is interpreted by expanding a template into a specific
instance, which may have constraints attached; the instance is rele-
vant only if the constraints are satisfied. Interpretation proceeds in
three steps: macro-expanding repetition notations, replacing BNF
nonterminals, and performing substitutions. Each of the first two
steps may involve making free choices. In effect, a template is re-
garded as representing all possible expansions.

5.2.1 Expand Repetition Tokens
Repetition expansion can be performed within any of the following
contexts: an inference rule template, one alternative of a BNF
production, or a sentence or paragraph of text. Repetition expansion
proceeds in eight steps:

Initialize bookkeeping. Create two data structures, each initially
empty: C (Constraints) is a set of equalities, and P (Pairs) is a set
of pairs (m, v) where m is a monogram and v is a variable.

Transform ellipses to overbars. In this section we use greek-
letter monograms to denote sequences of tokens and p and q to
represent integer-valued expressions of the assertion language. We
use “. . .” to denote an ellipsis, though it might actually have an-
other appearance such as “· · · ” or “ :: ”.

Repeat the following sentence until execution of the sentence
results in no changes to the context: For every ellipsis in the context
(visiting them as if in some sequential order), attempt a left-and-
right single-ellipsis replacement (see below); if it does not succeed,
attempt a left-only single-ellipsis replacement (see below). if it does
not succeed, attempt a double-ellipsis replacement (see below).4

After the preceding repetition has completed, then every re-
maining ellipsis that is both left-delimited and right-delimited is
replaced with “ ” (an overline cluster containing the don’t-care
symbol). It is an error if this process does not eliminate all remain-
ing ellipses in the context.

To attempt a left-and-right single-ellipsis replacement with re-
spect to a given ellipsis: Let x be a fresh variable, and examine the
tokens to the left and right of the ellipsis to identify material having
the pattern α′κ . . . κα′′ such that (a) the “. . .” in the pattern corre-
sponds to the given ellipsis; (b) each of α′κ and κα′′ is maximal
(as long as possible), is balanced, and contains no ellipsis; (c) all
the material lies within the span of any overline or underline that is
above or below the given ellipsis; and (d) there exist α and p and q
such that x occurs at least once in α, and p 6= q, and the result of
replacing every occurrence of x with p in α is α′, and the result of
replacing every occurrence of x with q in α is α′′, and p and q are
minimal balanced substrings (or subexpressions) of the assertion
language. (Note that κ may be empty.) If such material is identi-
fied, replace it with −⇀α p≤x≤q if κ is empty or with α κ p≤x≤q if κ
is not empty, and the attempt succeeds.

To attempt a left-only single-ellipsis replacement with respect
to a given ellipsis: Examine the tokens to the left of the ellipsis to
identify material having the pattern α′κα′′κ . . . such that (a) the
“. . .” in the pattern corresponds to the given ellipsis; (b) each of
α′κα′′κ is maximal, is balanced, and contains no ellipsis; (c) all
the material lies within the span of any overline or underline that
is above or below the given ellipsis; and (d) there exists α such

4 Other patterns of ellipsis usage, such as “x1, . . .” and “x1, x2, . . . , xn”
and “x1, x2, . . . , xn−1, xn” may easily be interpreted in a similar manner.
We omit the handling of such additional patterns for lack of space, but may
include them in the final paper.

that x occurs at least once in α, and the result of replacing every
occurrence of x with 1 in α is α′, and the result of replacing every
occurrence of x with 2 in α is α′′. (Note that κ may be empty.) If
such material is identified, replace it with −⇀α if κ is empty or with
α κ if κ is not empty, and the attempt succeeds.

To attempt a double-ellipsis replacement with respect to a given
ellipsis: Let x and y be fresh variables, and examine the tokens
to the left and right of the ellipsis to identify material having the
pattern α′ . . . α′′ωγ′′ . . . γ′ (note that γ′′ precedes γ′) such that
(a) the material is balanced, the first “. . .” in the pattern corresponds
to the given ellipsis and the second “. . .” in the pattern corresponds
to another ellipsis of the same kind; (b) each of α′ and α′′ is
maximal, is left-enclosing, and contains no ellipsis, and each of
γ′ and γ′′ is maximal, is right-enclosing, and contains no ellipsis,
and ω is balanced and contains no ellipsis; (c) all the material lies
within the span of any overline or underline that is above or below
the given ellipsis; and (d) there exist α and γ and p and q such that
x occurs at least once in either α or γ, and p 6= q, and the result of
replacing every occurrence of x with p in α is α′, and the result of
replacing every occurrence of x with q in α is α′′, and the result of
replacing every occurrence of x with p in γ is γ′, and the result of
replacing every occurrence of x with q in γ is γ′′, and p and q are
minimal balanced substrings (or subexpressions) of the assertion
language. If such material is identified, replace it with −−⇀

αωγ
p≤x≤q

,
and the attempt succeeds.

Make implicit indices explicit. Repeat the following sentence un-
til the context contains no plain overline (an overbar or overharpoon
with no explicit variable binding): For some plain overline cluster
in the context that has no plain overline above it, do five things:
(1) choose a fresh variable i; (2) for every monogram m that is un-
der that plain overline and has no underline below it, attach i to m
as an additional subscript; (3) within the span of the plain overline,
identify every underline cluster that has no other underline below it;
(4) replace each underline cluster identified in step (3) with the ma-
terial it contains; (5) add the variable binding i to the plain overline
(thereby making it no longer plain).

It is an error if the context now contains any underlines.

Normalize separators. For every overline cluster in the context,
if it has an explicit separator that is a common token, replace it with
a boxed cluster containing that common token.

For every overline cluster in the context, if the overline is an
overbar and the overline cluster has no explicit separator, then add
an explicit separator that is a boxed cluster containing a single
comma token. If there is an object-language comma that is different
from the assertion-language comma token, and either (1) there is
an object-language comma or left encloser immediately to the left
of the overline cluster, or (2) there is an object-language comma
or right encloser immediately to the right of the overline cluster, or
(3) the overline cluster appears in a BNF alternative, then the single
comma token shall be an object-language comma, and otherwise an
assertion-language comma.5

At this point, every overline cluster for which the overline is an
overbar has an explicit separator that is a boxed cluster.

Normalize variable bindings. For every overline in the context, if
its variable binding is of the form i < n, replace it with 1 ≤ i < n;
if of the form i ≤ n, replace it with 1 ≤ i ≤ n; if of the form
n > i, replace it with n > i ≥ 1; if of the form n ≥ i, replace it
with n ≥ i ≥ 1; if of the form i ∈ p..q, replace it with p ≤ i ≤ q.

At this point, every overline cluster has a variable binding that
has one of the nine forms i, p ≤ i ≤ q, p ≤ i < q, p < i ≤ q,

5 This rule is context-sensitive. We explored context-free rules for deciding
which comma to use and found that none covered all cases of interest.
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p < i < q, p ≥ i ≥ q, p ≥ i > q, p > i ≥ q, p > i > q. Bindings
of the first five forms are called upward bindings; bindings of the
last four forms are called downward bindings. In all nine cases we
say that i is the bound variable.

Create repetitions. Let
�� ��e denote (the decimal representation of)

the integer value of the expression e. Repeat the following sentence
until the context contains no overline: For some overline cluster in
the context that has an overbar for its overline and has no over-
line above it, do five things: (1) freely choose an integer b; (2) if the
overline cluster has no multiplicity marker, freely choose a nonneg-
ative integer `, or if the overline cluster has a multiplicity marker
+, freely choose a positive integer `, or if the overline cluster has
a multiplicity marker ?, freely choose ` to be either 0 or 1;6 (3) if
the variable binding of the overline is of the form i, then do three
things: (a) choose a fresh variable n; (b) for every occurrence of
i within the material below the overline, if it occurs as a subscript
within an indexed monogram m and the result of removing that
occurrence and all following subscripts from m results in a mono-
gram m′, then add7 the pair (m,n) to P ; (c) replace the variable
binding i with 1 ≤ i ≤ n; (4) replace the overline cluster with `
consecutive copies of the material within the overline, where within
the first copy (if any) i is everywhere replaced by

�� ��b , within the sec-
ond copy (if any) i is everywhere replaced by

�� ��b+ 1 (if the binding
is an upward binding) or

�� ��b− 1 (if the binding is a downward bind-
ing), and in general within the jth copy (if any) i is everywhere
replaced by

�� ��b− 1 + j (if the binding is an upward binding) or�� ��b+ 1− j (if the binding is a downward binding), so that within
the last copy (if any) i is everywhere replaced by

�� ��b− 1 + ` (if
the binding is an upward binding) or

�� ��b+ 1− ` (if the binding is a
downward binding), and where if ` > 1 then adjacent copies of the
material within the overline are separated by copies of the material
within the boxed cluster that is the explicit separator of the overline
cluster; (5) add to C two constraints, depending on the form of the
variable binding, according to the following table:

binding form the two constraints to be added to C
p < i < q p equals

�� ��b− 1 q equals
�� ��b+ `

p < i ≤ q p equals
�� ��b− 1 q equals

�� ��b+ `− 1
p ≤ i < q p equals

�� ��b q equals
�� ��b+ `

p ≤ i ≤ q p equals
�� ��b q equals

�� ��b+ `− 1
p > i > q p equals

�� ��b+ 1 q equals
�� ��b− `

p > i ≥ q p equals
�� ��b+ 1 q equals

�� ��b− `+ 1
p ≥ i > q p equals

�� ��b q equals
�� ��b− `

p ≥ i ≥ q p equals
�� ��b q equals

�� ��b− `+ 1

Overline clusters are handled in a similar manner (we omit the
details for lack of space, but may include them in the final paper).

Create length constraints. For all (m,n) in P and all (m′, n′)
in P , if m and m′ are the same monogram and the associated
variables n and n′ are not the same variable, then add to C a
constraint8 that the value of n must equal the value of n′. (Once
this is done, P is no longer needed.)

Add constraints to context. The set of equality constraints C
is implicitly added to the expansion of the entire context. If the

6 The number of copies ` is freely chosen, and then constraints are added to
ensure that this choice ` satisfies any stated bounds. In this way, the process
of expanding repetitions does not rely on the semantics of the assertion-
language expressions that denote the bounds; instead, interpretation of such
expressions is deferred until after the expansion process is complete.
7 Adding (m,n) to P may eventually result in creating contraints equating
n to other variables, each of which also represents the number of copies
produced by expanding an overline cluster. These constraints implement
the “spooky action at a distance” aspect of the overline notation.
8 Spooky!

context is an inference rule template, then the constraints may be
considered to be additional premisses; because an inference rule
has no effect if any of its premisses is not valid, it is as if expansions
for which the constraints are not satisfied are never produced at all.
If the context is an alternative of a BNF production, then when
expanding a nonterminal, an expansion of that alternative may be
chosen only if the constraints are satisfied; it is as if expansions
for which the constraints are not satisfied are not present at all. If
the context is a declarative sentence or paragraph of text, then the
claims of that sentence or paragraph should be regarded as true
only for expansions for which the constraints are satisfied; it is as if
expansions for which the constraints are not satisfied do not occur
in the text.

5.2.2 Expand BNF Nonterminals and Other Symbols
If the context is not a BNF alternative, then consider the set of all
distinct tokens in the context such that each such token is either
a BNF nonterminal or a monogram (possibly both). For each one:
(1) if it is a BNF nonterminal, then freely choose some phrase of
the object language generated by that nonterminal; (2) if it is not
a BNF nonterminal but is a monogram that matches at least one
BNF nonterminal, then freely choose some phrase of the object
language generated by the nonterminal that is the best match for
the monogram (it is an error if there is no best match); (3) if it is a
monogram that does not match any BNF nonterminal, then choose
(a copy of) the monogram itself as its “freely chosen phrase.”

A phrase of the object language is generated by a BNF nonter-
minal (call it α), if it can be produced by an instance of the follow-
ing process that terminates after a finite number of steps: (1) first
freely choose a production that has the nonterminal on its left-hand
side and has at least one alternative whose constraints are satisfied;
(2) then freely choose some alternative from that production whose
constraints are satisfied; (3) then replace each nonterminal in the
token sequence of the alternative with a freely chosen phrase gen-
erated by that nonterminal (thus this is a recursive process)—the
result is a phrase freely chosen for α.

5.2.3 Perform Substitutions
For every occurrence in the context of a substitution notation (say
e[v1/x1, . . . , vn/vn]), replace each of e and each vi and each xi
with the result of replacing each BNF nonterminal or monogram
within it by the phrase freely chosen for it in the previous step.
Then perform the indicated capture-avoiding substitution using the
corresponding results, and finally use the result to replace that
occurrence of the substitution notation within the context.

For every occurrence of the don’t-care symbol “ ” in the con-
text, replace it with a freely chosen balanced sequence of object-
language tokens that contains no unenclosed comma tokens.

Delete the token “•” everywhere it occurs within the context.
The result is a completely expanded instance of the context.

6. Examples
We believe that our metanotation gives the intended interpretation
to the following example [P07D, Fig. 3], which uses ellipses both
between assertions and within an assertion:

δ = C1 of τ1 | · · · | Cn of τn
Γ ` v : δ Γ, x1 : τ1 ` e1 : τ · · · Γ, xn : τn ` en : τ

Γ ` match v with (C1 x1 → e1 | · · · | Cn xn → en) : τ

but also allows further abbreviation using overline notation (and we
choose to rename τ to τ ′ for clarity):

Γ ` v : δ δ = C of τ
|

Γ, x : τ ` e : τ ′

Γ ` match v with (Cx→ e) : τ ′
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and if we don’t like the look of that explicit separator “|” then we
can write it this way, using a left-only ellipsis:

Γ ` v : δ δ = C1 of τ1 | C2 of τ2 | · · · Γ, x : τ ` e : τ ′

Γ ` match v with (Cx→ e) : τ ′

One paper [P09E, §4.1] explains “We use the notation a for both
the list a1, . . . , an and the set {a1, . . . , an}, for n ≥ 0. We abbre-
viate terms with list subterms in the obvious way, e.g., T x stands
for T1 x1, . . . , Tn xn, T\M stands for T\M1\ . . . \Mn, and
p.S stands for p.S1, . . . , p.Sn.” But it is not obvious on syntactic
grounds alone why T\M should not stand for T\M1, . . . , T\Mn,
or p.S for p.S1. · · · .Sn. The metanotation we propose allows one
to write

↼−−−
T \M for T\M1\ . . . \Mn and p.S for p.S1, . . . , p.Sn.

Another paper [P16L, §3.3] states “We write [for ~z < ~e → E]
short for [for z1 < e1 → . . . [for zn < en → E] . . .], and
E[~z] for E[z1]...[zn].” There are fine ad hoc notations when well
explained (as here), but such patterns are also easily captured by
our harpoon overline notation as

−−−−−−−−−−⇀
[for z < e→ E ] and

↼−−
E [z] (or

perhaps E
−⇀
[z]), and moreover the syntactic process we present

in §5.2 provides appropriate interpretations for the ellipsis forms
[for z1 < e1 → . . . [for zn < en → E] . . .] and E[z1]...[zn].

A good example of double ellipses: “We write δ(q,D(ti, pi))
for δ(. . . (δ(q,D(t1, p1)), . . .),D(tn, pn)).” [P02H, §6.1] (Note
the use of the index variable i with the overline, but with no
explicit indication that i is bound.) Using harpoons, we write
↼−−−−−−−−
δ(q ,D(ti, pi)) for δ(. . . (δ(q,D(t1, p1)), . . .),D(tn, pn)).

To answer a question we pose near the end of §3.2: using nested
overline notation, we write β = {|(G0, null), (Gi, oi.f1. · · · .fn)|}

[P05U, Fig. 5] as β = {|(G0, null), (G,↼−o .f )|}, and we write our

alternative example (Gi, oi.fi 1. · · · .fi ni) as (G,↼−o .f ).
Here is a complex example of nested repetition notation [P14Ψ,

Fig. 4]:

C:Ψ ∈ Σ Ψ = [α:κ]. F (ρ) ∼ υ
Σ; ∆ t̀y τ : κi c̀tx Σ; ∆
∀j < i, no conflict(Ψ, i, τ , j)

Σ; ∆ c̀o C[i] τ : F (ρi[τ/αi ]) ∼ υi[τ/αi ]
CO AXIOM

As the authors explain in the text [P14Ψ, §4.3], the free variable i
indicates which of the equations in Ψ (the list of equations of axiom
C) is to be instantiated. Elsewhere in the text [P14Ψ, §4.1] we see:

Although our notation for lists does not make it apparent, we
restrict the form of the equations to require that F refers to only
one type family—that is, there are no independent Fi. We use
subscripts on metavariables to denote which equation they refer
to, and we refer to the types ρi as the type patterns of the ith
equation. We assume that the variables α bound in each equation
are distinct from the variables bound in other equations.

A little thought then shows that we must regard α, κ, and ρ as two-
dimensional (that is, doubly indexed) aggregates, but F is not to
be regarded as a vector or sequence, despite the fact that in one
place it occurs beneath an overline, and τ must be regarded as one-
dimensional, despite the fact that in one place it occurs beneath
two overlines. The inference rule is perfectly consistent, but cannot
be interpreted on a purely syntactic basis; some understanding
of the dimensions or types of the metavariables is required. We
believe that the following version, expressed in the metanotation
presented in this paper, accurately conveys the intention of that
paper’s authors, but can be interpreted (that is, correctly expanded)
using the purely formal, syntactic process we present in §5.2:

C:Ψ ∈ Σ Ψ =
〈
[α:κ]. F (ρ) ∼ υ

〉
Σ; ∆ t̀y τ : κi c̀tx Σ; ∆

no conflict(Ψ, i, 〈τ 〉, j)
j<i

Σ; ∆ c̀o C[i]〈τ 〉 : F
(
ρi[τ/αi ]

)
∼ υi[τ/αi ]

CO AXIOMi

i

We have added enclosers 〈 〉 where otherwise a concrete-syntax
interpretation might differ from an abstract-syntax interpretation.
Underlines make explicit where an overline should not attach sub-
scripts (for example, F and Σ and ∆). An overline cluster replaces
the notation ∀j < i. Finally, an overline over the entire inference
rule provides a binding point for the variable i, making clear that
this is really a set of inference rules and that they differ according
to the value of i (therefore we added a subscript i to the rule la-
bel). Because i is used to index α and κ and ρ and υ, they are all
constrained to have the same length n, and the number of inference
rules is also constrained to be n, exactly as desired.

7. Recommendations and Future Work
We make no recommendation to prefer one form of metanotation
over another, although we do hope that the one we have outlined
will prove attractive. We do, however, strongly recommend to fu-
ture authors that, whatever notations you use for repetition and es-
pecially substitution, do not take them for granted, but explain them
carefully to readers. By way of example, here are sentences that we
plan to use in future papers; they happen to illustrate our notational
preferences, but you can easily use them as models for describing
any notation you prefer:

We use e[v/x] to denote the standard capture-avoiding substitu-
tion of (a copy of) v for every free occurrence of x within e.
We use e[v/x] to denote the standard capture-avoiding simulta-
neous substitution of (copies of) vi for every free occurrence of
xi within e, for all 1 ≤ i ≤ #(x).
We use σ[x → v] to denote a substitution σ′ that is identical to
σ except that σ′ substitutes v for free occurrences of x.
We use f [x 7→ v] to denote a function f ′ that is identical to
function f except that f ′(x) = v.
We use M [x := v] to denote a memory M ′ that is identical to
memory M except that M ′[x] = v.
We use x to mean the sequence x1, . . . , xn; more generally,
we use token-sequence to denote a (possibly empty) comma-
separated sequence of copies of the token-sequence, where
within the ith copy, i is attached as a subscript to every mono-
gram that is not underlined. (A monogram is any single letter,
possibly with accents and/or subscripts.)

As for future work: It remains to survey and systematically an-
alyze the use of metanotation in other conference series; we be-
lieve the most illuminating would be OOPSLA, ICFP, and PLDI.
It would be also interesting to trace the development of changes in
metanotation notation by examining the connections among papers,
including common co-authors, institutional influence, and biblio-
graphic citation; such considerations were beyond the scope of this
paper. There may be other useful ways to extend the metanota-
tion presented here, including the accommodation of other patterns
for using ellipses. In this paper we primarily used English as the
metametanotation, but we should explore using the metanotation
itself to define its own syntax and semantics, in the style of one of
Reynolds’ metacircular definitional interpreters [8]. Finally, there
are great opportunities for mechanizing the metanotation, one pos-
sible goal being to produce appropriate input for theorem provers
such as Coq; one line of research [10, P12Ξ, P15V] has already
taken steps in this direction.
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Note to reviewers: As required by the 2017 POPL call for papers,
our paper is no more than 12 pages in length, excluding the bibli-
ography, in (at least) 9pt format. We have done our best to format
the bibliography so as to minimize the total number of pages while
maximizing its usefulness.

We are aware that many of the bibliographic entries are in
bad shape. That’s because we took the BIBTEX entries for all the
POPL papers straight off the ACM Digital Library website. We are
working to clean them up to acceptable standards by comparing
them to the original paper proceedings, and expect to complete the
process well before the author response period. (We regard this as
the normal process that any author must go through to clean up
third-party BIBTEX data; it’s just that this time we need to clean up
over 600 of them.)
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