

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

The	following	is	intended	to	provide	some	insight	into	a	line	of	research	in	Oracle	Labs.	
It	is	intended	for	informaFon	purposes	only,	and	may	not	be	incorporated	into	any	
contract.	It	is	not	a	commitment	to	deliver	any	material,	code,	or	funcFonality,	and	
should	not	be	relied	upon	in	making	purchasing	decisions.	Oracle	reserves	the	right	to	
alter	its	development	plans	and	pracFces	at	any	Fme,	and	the	development,	release,	
and	Fming	of	any	features	or	funcFonality	described	in	connecFon	with	any	Oracle	
product	or	service	remains	at	the	sole	discreFon	of	Oracle.		Any	views	expressed	in	this	
presentaFon	are	my	own	and	do	not	necessarily	reflect	the	views	of	Oracle.	

2	

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

It’s	Time	For	Secure	Languages	

CrisFna	Cifuentes	
Oracle	Labs	Australia	
October	2017	

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

exploited	vulnerabiliFes	in	1995	

4	

25	

NaFonal	Vulnerability	Database,	hTp://nvd.nist.gov	

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

exploited	vulnerabiliFes	in	2013-2016	

5	

27287	

NaFonal	Vulnerability	Database,	hTp://nvd.nist.gov	

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

exploited	vulnerabiliFes	due	to		
buffer	errors	(2013-2016)	

6	

3781	
NaFonal	Vulnerability	Database,	hTp://nvd.nist.gov	

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

exploited	vulnerabiliFes	due	to		
cross-site	scrip4ng	(2013-2016)	

7	

2861	
NaFonal	Vulnerability	Database,	hTp://nvd.nist.gov	

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

exploited	vulnerabiliFes	due	to	
informa4on	leak	(2013-2016)	

8	

2094	
NaFonal	Vulnerability	Database,	hTp://nvd.nist.gov	

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

exploited	vulnerabiliFes	in	NVD	were	
buffer	errors,	injecFons	and	
informaFon	leak	(2013-2016)	

9	

50%	
NaFonal	Vulnerability	Database,	hTp://nvd.nist.gov	

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Java	
28%	

C	
15%	

C++	
11%	

Python	
7%	

C#	
7%	

PHP	
6%	

Visual	Basic	
6%	

JavaScript	
5%	

Object	Pascal	
5%	 Go	

5%	

Perl	
5%	

Top	Mainstream	Languages	

10	

Tiobe	index,	July	2017	

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	 11	

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

average	cost	of	a	data	breach	

12	

$4M	
2016	Ponemon	Cost	of	Data	Breach	Study		

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Why	Is	This	Happening?	

13	

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	 14	

pe
rf
or
m
an
ce
	o
ve
rh
ea
d	

cogniFve	load	

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	 15	

Buffer	Errors	–	The	Problem:	Unsafe	AbstracFon	

pe
rf
or
m
an
ce
	o
ve
rh
ea
d	

Manual	
management	
of	pointers	
(C,	C++,	…)	

cogniFve	load	

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

We	have	designed	languages	that	prevent	
buffer	errors	

16	

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

•  Managed	memory	
•  Garbage	collecFon	
•  First	introduced	in	LISP	in	1958	

•  Now	used	in	
•  OO	languages:	Smalltalk,	Java,	C#,	

JavaScript,	Go	
•  FuncFonal	languages:	ML,	Haskell,	

APL	
•  Dynamic	languages:	Ruby,	Perl,	PHP	

	

17	

Avoid	Buffer	Errors	Dynamically	

John	McCarthy,	1958	

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

•  Guaranteed	memory	safety	
•  Ownership	
•  LifeFmes	

				shared	borrow	(&T)	
				mutable	borrow	(&mut T)	

	

18	

Avoid	Buffer	Errors	StaFcally		

Graydon	Hoare	et	al,	2009	

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	 19	

Buffer	Errors	–	SoluFons:	Safe	AbstracFons	

Garbage	
collecFon	
(Lisp,	Java,	JS,	…)	

LifeFmes	+	
ownership	
(Rust)	

pe
rf
or
m
an
ce
	o
ve
rh
ea
d	

cogniFve	load	

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	 20	

InjecFons	–	The	Problem:	Unsafe	AbstracFon	

cogniFve	load	

Manual	string	
concatenaFon	and	
saniFzaFon	
(C,	PHP,	Python,	Java,	
JavaScript,	…)	

pe
rf
or
m
an
ce
	o
ve
rh
ea
d	

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

We	have	designed	languages	that	prevent	
injecFons	

21	

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

•  Taint	mode	
•  Perl	3,	1989	
•  Catches	most	accidental	uses	of	

untrusted	string	data	
•  AutomaFc	checks	when	program	

running	with	different	real	and	
effecFve	user	or	group	IDs	

•  -T	flag	to	turn	it	on	
•  TBD	for	Perl	6	

•  Also	used	in		
•  Ruby	

	

22	

Avoid	InjecFons	Dynamically	

Larry	Wall,	1987	

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

•  .NET’s	Language	INtegrated	Query	
framework	

•  LINQ	to	SQL	manages	relaFonal	
data	as	objects	without	losing	the	
ability	to	query	
•  StaFcally-typed	
•  Not	100%	compaFble	

•  Avoids	SQL	injecFons	by	passing	
all	data	using	SQL	parameters		
•  Not	strings	or	string	concatenaFon	

23	

Avoid	SQL	InjecFons	–	LINQ	to	SQL	

Microsoq,	2007	

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	 24	

InjecFons	–	SoluFons:	Safe	AbstracFons	

cogniFve	load	

Taint	mode	
(Perl,	Ruby)	

LINQ	to	SQL	
(.NET)	

pe
rf
or
m
an
ce
	o
ve
rh
ea
d	

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	 25	

InformaFon	Leaks	–	The	Problem:	Unsafe	AbstracFon	

cogniFve	load	

Manual	tracking	
of	sensiFve	data	
(C,	Java,	JavaScript,	…)	

pe
rf
or
m
an
ce
	o
ve
rh
ea
d	

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

We	have	designed	academic	abstracFons	
that	prevent	informaFon	leaks,		

but	they	haven’t	made	it	to	mainstream	
languages	

26	

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

•  Extends	Java	with	informaFon	
flow	and	access	control,	enforced	
at	compile	Fme	and	run	Fme	
•  Integrity	and	confidenFality	
•  Can	prevent	covert	informaFon	leaks	

•  Security	policies	are	expressed	as	
label	annotaFons	restricFng	how	
the	informaFon	may	be	used	

27	

Avoid	InformaFon	Leaks	and	InjecFons	StaFcally	

Andrew	Myers,	2002+	

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

•  Faceted	values:	a	policy	guarding	
both,	the	security-sensiFve	and	
non-sensiFve	values	
•  The	runFme	keeps	track	of	policies	

associated	with	condiFonals	
•  Faceted	database	saves	faceted	

•  Sample	web	applicaFons	yield	
reasonable	(<	2x)	overheads	

	

28	

Avoid	InformaFon	Leaks	Dynamically	

Jean	Yang,	2013+	

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	 29	

InformaFon	Leaks	–	SoluFons:	Safe	AbstracFons	

cogniFve	load	

Policy-agnosFc	
programming	

pe
rf
or
m
an
ce
	o
ve
rh
ea
d	

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	 30	

Perl,	
Ruby,	
JS	1.1	

Java,	C#,	
JavaScript,	
Go,	…	

Rust	

No	buffer	
errors	

No	injecFons	

No	informaFon	
leaks	

LINQ	to	
SQL/.NET	

Mainstream	
Languages	

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	 31	

Garbage		
collecFon	

Ownership		
and	lifeFmes	

Taint	tracking	

Policy-agnosFc	
programming	

Memory	
Safety	

Integrity	

ConfidenFality	

AbstracFons	

Built-in	
saniFzaFon	

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	 32	

ONE
LANGUAGE

TO
RULE
THEM
ALL

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	 33	

✗
ONE

LANGUAGE
TO

RULE
THEM
ALL

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

exploited	vulnerabiliFes	in	2013-2016	

34	

27287	

NaFonal	Vulnerability	Database,	hTp://nvd.nist.gov	

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Java	
28%	

C	
15%	

C++	
11%	

Python	
7%	

C#	
7%	

PHP	
6%	

Visual	Basic	
6%	

JavaScript	
5%	

Object	Pascal	
5%	 Go	

5%	

Perl	
5%	

Top	Mainstream	Languages	

35	

Tiobe	index,	July	2017	

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

It’s	Fme	to	include	security	in	our		
language	design	

36	

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

	
Challenge	–	To	design	languages	that	free	
developers	from	input	(i.e.,	buffer	errors,	
injecFons)	and	output	(i.e.,	leaks)	
vulnerabiliFes	

37	

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Challenge	–	To	develop	abstracFons	that	
minimise	the	cogniFve	load	of	tracking	
tainted	data	and	leaked	data	across	a	system	

38	

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	 39	

New	
languages	

AbstracFon	1	 AbstracFon	2	

AbstracFon	3	

AbstracFon	4	
AbstracFon	5	

AbstracFon	6	

AbstracFon	N+1	
AbstracFon	N	

AbstracFon	N+2	

Memory	
Safety	

Integrity	

ConfidenFality	

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Challenge	–	To	provide	security	guarantees	
in	the	languages	we	design	

40	

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

million	soqware	developers	
worldwide	(11M	professional,		
7.5M	hobbyist)	

41	

18.5		
hTp://www.idc.com,	2014	Worldwide	Soqware	Developer	and	ICT-Skilled	Worker	EsFmaFons	

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Security	is	not	just	for	expert	developers	

42	

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	 43	

✗

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

It’s	Fme	for	secure	languages	

44	

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

crisFna.cifuentes@oracle.com	
hJp://labs.oracle.com/loca4ons/australia	

@criscifuentes	
	

45	

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	 46	

Copyright	©	2017,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

•  Provide	memory	safety	
dynamically	

•  Do	not	provide	soluFons	for	
injecFons	or	informaFon	leaks	

	

47	

Why	Didn’t	You	MenFon	My	Favourite	Mainstream	
Language?	

48	

