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Federated learning (FL) was originally motivated by communication bottlenecks in
training models from data stored across millions of devices, but the paradigm of
distributed training is attractive for models built on sensitive data, even when the
number of users is relatively small, such as collaborations between organizations.
For example, when training machine learning models from health records, the raw
data may be limited in size, too sensitive to be aggregated directly, and concerns
about data reconstruction must be addressed. Differential privacy (DP) offers a
guarantee about the difficulty of reconstructing individual data points, but achieving
reasonable privacy guarantees on small datasets can significantly degrade model
accuracy. Data heterogeneity across users may also be more pronounced with smaller
numbers of users in the federation pool. We provide a theoretical argument that
model personalization offers a practical way to address both of these issues, and
demonstrate its effectiveness with experimental results on a variety of domains,
including spam detection, named entity recognition on case narratives from the
Vaccine Adverse Event Reporting System (VAERS) and image classification using
the federated MNIST dataset (FEMNIST).

1 Introduction

Federated Learning (FL) is a distributed ML paradigm that enables multiple
users to jointly train a shared model without sharing their data with any other
users [Bonawitz et al.(2019)Bonawitz, Eichner, Grieskamp, Huba, Ingerman, Ivanov, Kiddon, Konecný, Mazzocchi, McMahan, Overveldt, Petrou, Ramage, and Roselander,
Konecný, McMahan, and Ramage(2015)], offering advantages in both scale and pri-
vacy. In FL, multiple users wish to perform essentially the same task using ML,
with a model architecture that is agreed upon in advance. Each user wants the best
possible model for their individual use, but often has a limited budget for labeling
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their own data. Pooling the data of multiple users could improve model accuracy,
because accuracy generally increases with increased training data. However user data
cannot be shipped to a common model training facility due to bandwidth limitations
or data privacy concerns. As a result, users locally train the shared (global) model on
their local data, and thereafter send the updated model to the federation server. The
federation server aggregates updates received from its users to improve the global
model for all users.

Although the initial focus of FL has been on targeting millions of mobile de-
vices [Bonawitz et al.(2019)Bonawitz, Eichner, Grieskamp, Huba, Ingerman, Ivanov, Kiddon, Konecný, Mazzocchi, McMahan, Overveldt, Petrou, Ramage, and Roselander],
also called cross-device FL, the benefits of its architecture are evident even for institu-
tional settings, also called cross-silo FL [Kairouz et al.(2019)Kairouz, McMahan, Avent, Bellet, Bennis, Bhagoji, Bonawitz, Charles, Cormode, Cummings, D’Oliveira, Rouayheb, Evans, Gardner, Garrett, Gascón, Ghazi, Gibbons, Gruteser, Harchaoui, He, He, Huo, Hutchinson, Hsu, Jaggi, Javidi, Joshi, Khodak, Konecný, Korolova, Koushanfar, Koyejo, Lepoint, Liu, Mittal, Mohri, Nock, Özgür, Pagh, Raykova, Qi, Ramage, Raskar, Song, Song, Stich, Sun, Suresh, Tramèr, Vepakomma, Wang, Xiong, Xu, Yang, Yu, Yu, and Zhao].
While cross-device FL is concerned with both bandwidth consumption and data
privacy, cross-silo federations and their users are considered well equipped with
resources to handle bandwidth concerns, and data privacy is the primary objective.
Our work focuses on the cross-silo FL setting.

Today our world grapples with safely rolling out massive scale vaccination
programs to end a pandemic. Understanding adverse events related to these vaccines
is critically important. These adverse events are often expressed in free text form, such
as social media posts and reports provided to health care agencies and pharmaceutical
companies. Currently, mentions of specific adverse events are extracted and coded
manually, which is a time consuming, expensive and non-scalable process. Therefore,
Machine Learning (ML) based methods to extract named entities (adverse events)
automatically from such unstructured data are highly desirable.

Typically, more training data yield more accurate models. Unfortunately, collecting
human annotations for building such Named Entity Recognition (NER) models is
expensive, and particularly challenging given the need to maintain privacy of health
records. One way to overcome this data scarcity issue would be for various agencies
to share their data to build a joint model with combined data. However, privacy
concerns, government regulation and data use agreements might not allow the data to
leave individual organizational or geographical silos. Sharing user data with other
users is absolutely not an option in these settings.

Cross-silo FL makes perfect sense to address such problems. Each vaccine
provider’s data remains in its private silo. At the same time, the provider can
collaborate with other providers on a FL framework to collectively improve the
NER model used for adverse event detection. Everyone benefits without violating
data privacy. More specifically, for institutions participating in a federation as users,
restricting data movement helps fulfill contractual obligations with their customers
and comply with legal regulatory constraints on data movement [ccpa(), gdpr()].

However, restricting the provider’s training data to its private silo does not
guarantee complete privacy. Recent works have demonstrated that the data can
indirectly leak out through model updates shipped by users to the federation
server [Bagdasaryan et al.(2020)Bagdasaryan, Veit, Hua, Estrin, and Shmatikov,Melis et al.(2018)Melis, Song, Cristofaro, and Shmatikov,
Nasr, Shokri, and Houmansadr(2019)]. To combat this problem, researchers have pro-
posed the addition ofDifferential Privacy (DP) [Dwork(2006),Dwork and Roth(2014),
Dwork et al.(2006)Dwork, McSherry, Nissim, and Smith] to FL [Abadi et al.(2016)Abadi, Chu, Goodfellow, McMahan, Mironov, Talwar, and Zhang,
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Geyer, Klein, and Nabi(2017),Konecný et al.(2016)Konecný, McMahan, Ramage, and Richtárik,
McMahan et al.(2017)McMahan, Ramage, Talwar, and Zhang].

Informally, DP aims to provide a bound on the variation in the model’s out-
put based on the inclusion or exclusion of a single data point used in its training
set. This is done by introducing precisely calibrated noise in the training pro-
cess. The method of noise calibration and injection varies between implementa-
tions [Abadi et al.(2016)Abadi, Chu, Goodfellow, McMahan, Mironov, Talwar, and Zhang,
McMahan et al.(2017)McMahan, Ramage, Talwar, and Zhang], but is always struc-
tured to enforce the precise formal DP guarantee, which we define in section 2.Wewill
refer to this process as “DP inducing noise injection” henceforth. This noise makes it
difficult, even impossible, to determine whether any particular data point was used to
train themodel.While this noise is structured to enforce formally provable privacy guar-
antees for the data point [Dwork et al.(2006)Dwork, McSherry, Nissim, and Smith],
it can degrade accuracy of model predictions. Figure 1 depicts performance of
an FL model that enforces different levels of DP guarantees for training data (No
Privacy, ε = [2, 4]). Clearly, as the DP related bounds grow tighter (smaller value
of ε), indicating better privacy guarantees, the FL model delivers worse perfor-
mance, despite the larger training dataset available through FL. In settings where
the federation server is trusted, DP enforcement is delegated to the federation
server [McMahan et al.(2017)McMahan, Ramage, Talwar, and Zhang]. However, in
settings where users do not trust even the federation server, DPmay need to be enforced
by the users locally [Kasiviswanathan et al.(2008)Kasiviswanathan, Lee, Nissim, Raskhodnikova, and Smith].
While all this noise is structured to enforce formally provable privacy guarantees for
each training data point [Dwork et al.(2006)Dwork, McSherry, Nissim, and Smith],
it can significantly degrade accuracy of model predictions. This degradation may
happen to an extent that disincentivizes users from participating in the federation –
the global (noisy) model performs worse than a user-resident local model trained just
on the user’s dataset, which we call the individual model.

Fig. 1 Classifier accuracy (higher is better) on a spam classification dataset comprising 15 users
cooperating in a FL setting (more details on the benchmark in Evaluation section). Introduction of
DP-induced noise significantly compromises accuracy.

Another instance where the global model may perform worse than the individual
model for a user is when the user’s data distribution is different from most of the users,
or the users collectively have non-IID training data [Hsieh et al.(2019)Hsieh, Phanishayee, Mutlu, and Gibbons,
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Li et al.(2020b)Li, Huang, Yang, Wang, and Zhang]. There is a rapidly growing body
of FLPersonalization literature to address this problem [Dinh, Tran, and Nguyen(2020),
Fallah, Mokhtari, and Ozdaglar(2020), Liang et al.(2020)Liang, Liu, Liu, Salakhutdinov, and Morency,
Mansour et al.(2020)Mansour, Mohri, Ro, and Suresh, Peterson, Kanani, and Marathe(2019),
Yu, Bagdasaryan, and Shmatikov(2020)], a handful of which addresses model degra-
dation due toDP induced noise [Peterson, Kanani, and Marathe(2019),Yu, Bagdasaryan, and Shmatikov(2020)].

We are interested in applying this body of work to real-world problem settings.
The health care sector is one such application domain that can leverage FL in
significant ways. Indeed there is rapidly growing awareness and investment in FL
at world-wide scale including consortiums [mellody()] and public-private partner-
ships [imi()]. This is accompanied by the beginnings of applied research in this
sector [Li et al.(2020a)Li, Gu, Dvornek, Staib, Ventola, and Duncan].

In this paper, we study application of cross-silo FL to various problems, ranging
from spam classification to vaccine adverse event detection. The commonalities
across our settings are that the siloed data comes from diverse domains.

There exists a large body of work on domain adaptation in non-FL sys-
tems [Ben-David et al.(2010)Ben-David, Blitzer, Crammer, Kulesza, Pereira, and Vaughan,
Crammer, Kearns, and Wortman(2008),Kouw and Loog(2018), Pan and Yang(2010),
Daumé III(2009)]. In domain adaptation, a model trained over a dataset from a source
domain is further refined to adapt to a dataset from a different target domain. We
hypothesize that along with bridging the data distribution gap, domain adaptation
can also address the aforementioned problem of accuracy reduction in differentially
private FL. In this work, we use domain adaptation techniques to personalize the
trainedmodel to the individual users, and demonstrate empirically that personalization
of a jointly-trained model can improve performance over individual training accuracy,
overcoming the main drawback of differential privacy.

One technique we propose is a Mixture of Experts (MoE), where outputs of a
number of domain-expert models are combined to derive the refined output. More
specifically, we propose a framework to augment the FL setting with per-user
domain adaptation, which can improve accuracy for individual users. Furthermore,
the improvement is much more pronounced when differential privacy bounds are
imposed on the FL model.

We use differentially private FL to train a public, general model on the task. We
also learn a private, domain-specific model using each user’s own data. Each
user combines the output of the general and private models using a mixture
of experts (MoE) [Masoudnia and Ebrahimpour(2014), Nowlan and Hinton(1991)]
to make their final predictions. The two “experts” in the mixture are the gen-
eral FL model and the domain-tuned private model, so we refer to our system
as federated learning with domain experts (FL+DE). For privacy in the gen-
eral model, we use FL with differentially private stochastic gradient descent
(DPSGD) [Abadi et al.(2016)Abadi, Chu, Goodfellow, McMahan, Mironov, Talwar, and Zhang].
The private domain models are trained using ordinary stochastic gradient descent (i.e.
without differential privacy noise). In principle, the two model architectures can be
identical or radically different, but for convenience we maintain a common model
architecture for the general (public) and private models. Using a MoE architecture
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allows the general and private models to influence predictions differently on individual
data points.

We demonstrate on synthetic as well as a real-world spam detection [Bickel(2006)]
datasets that our system significantly outperforms the accuracy of differentially private
federated learning (DPFL). This largely boils down to two factors. First, the private
models provide domain adaptation, which is known to typically increase accuracy in
each domain. On a real-world classification task, we observe that domain adaptation
improves accuracy even when using non-private SGD. Second, the private models
allow noise-free updates, because there is no need to conceal private data from the
private model. While the accuracy of the DPFL system degrades by 12% in the
low-noise setting, the performance of FL+DE degrades by <0.2%. In the high-noise
setting, the accuracy of the differentially-private FL system degrades by 12.1% and
FL+DE accuracy degrades by only 1.1%. Although the FL+DE system does not
quite match the performance of FL in the noise-free, zero-privacy setting, it clearly
outperforms ordinary FL when trained with DPSGD. We additionally analyze the
implications of our MoE architecture on the shared general model’s stability, and the
impact of individual users on FL+DE’s accuracy and stability.

We study implications of applying FL to train a Named Entity Recognition (NER)
model on the Vaccine Adverse Event Reporting System (VAERS) dataset that we have
annotated and partitioned by vaccine manufacturers. Each vaccine manufacturer acts
as a federation user whose dataset is siloed in its private sandbox; all these sandboxes
participate in our FL framework over multiple training rounds.

Our experiments reveal several interesting insights including general effectiveness
of FLonmodel performance, effects ofDP enforcement onmodel performance, and the
value of personalization techniques to incentivize users to participate in FL. In particu-
lar, we show that FL improves average F1 value by 37.43% over the individual model,
while enforcement of DP (DP-FL) degrades the FL model’s average F1 by 25.17%.
For one of the users, this degradation is so severe that the private FLmodel F1 is worse
by 45.55% when compared with the individual model F1. This clearly makes DP-FL
a non-starter for some users to join the federation. We study FL with Fine-Tuning
(FT-FL) [Yu, Bagdasaryan, and Shmatikov(2020)], a personalization approach that
fine-tunes the global model at each user after the entire FL training process completes.
Interestingly, contrary to prior work [Yu, Bagdasaryan, and Shmatikov(2020)], sim-
ply augmenting fine-tuning to FL does not result in prediction accuracy improvement
for the federation users. Instead, user accuracy degrades in most cases. However,
somewhat surprisingly, fine-tuning in the presence of DP (FT-DP-FL) boosts user
accuracy by 24.88%, compared to the individual model, to strongly incentivize users
to join and stay with the federation. We also observe that vaccine reports related to
different manufacturers have slightly different vocabulary (e.g. mentions of different
vaccine names), and different distributions of adverse events, which aid FT-DP-FL in
effectively recovering lost accuracy.

Even more interestingly, our findings indicate a unique incentive structure for
users to join the federation. In particular, we find that users with small amount of
training data, a.k.a. small users, have a strong incentive to join and stay with the
federation even when DP is enforced without fine-tuning. This is because the user’s
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private dataset is so small that any locally trained individual model performs poorly.
Furthermore, even the global model that is degraded because of DP inducing noise
performs significantly better than the user’s individual model. In short, small users
have virtually no incentive to leave the federation, and may not require additional
layers of personalization to improve the global model as long as there are enough
participants in the federation.

For users with larger amount of data, the narrative is quite different. In particular,
we observe that the global model’s degradation due to DP inducing noise is significant
enough to disincentivize those users from participating in the federation. As a
result, if they opt for the additional layer of privacy through DP, the importance
of personalization based enhancements, which salvage the accuracy lost due to DP
inducing noise, cannot be understated.

2 Background

Federated Learning (FL)

In FL, a federation server initializes a global model and ships it to all participating
users thereby initiating distributed training. Training happens over multiple rounds.
In each round, each user, on receiving the global model re-trains the model on
its private data and sends back the resulting parameter updates to the federation
server. The federation server aggregates updates from all users applying them to the
global model, and then ships the revised model back to the users. The most widely
used method of aggregation is FedAvg [Konecný, McMahan, and Ramage(2015),
McMahan et al.(2016)McMahan, Moore, Ramage, and y Arcas], where user param-
eter updates are averaged at the federation server and applied to the global model.
Formally, FedAvg solves the following optimization problem:

min
w∈Rd

f (w) where, f (w) def
=

1
n

n∑
i=1

fi(w) (1)

The function fi = L(w; xi, yi) represents the local loss for each of the n federation
users on the model w using the user’s private data xi, yi .

Figure 2 shows the overall FL architecture. Users can dynamically join the federa-
tion or drop out. The framework is structured to be resilient to such changes. Noting
privacy concerns, more recent work has proposed addition of differential privacy to
FL [Geyer, Klein, and Nabi(2017),Konecný et al.(2016)Konecný, McMahan, Ramage, and Richtárik,
McMahan et al.(2016)McMahan, Moore, Ramage, and y Arcas].
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Fig. 2 The Federated Learning setting. MG is the global model the federation server sends to users,
each of which re-trains MG on its private data and sends the updated model parameters back to the
federation server.

Differential Privacy (DP)

Differential Privacy [Dwork et al.(2006)Dwork, McSherry, Nissim, and Smith] is a
mathematically quantifiable privacy guarantee for a data set used by a computation that
analyzes it. While it originally emerged in the database and data mining communities,
triggered by privacy concerns inMachineLearning (ML) [Fredrikson, Jha, and Ristenpart(2015),
Hitaj, Ateniese, and Perez-Cruz(2017),Korolova(2010), Shokri et al.(2017)Shokri, Stronati, Song, and Shmatikov,
Tramèr et al.(2016)Tramèr, Zhang, Juels, Reiter, and Ristenpart], DP has garnered
enormous traction in theMLcommunity over the last decade [Abadi et al.(2016)Abadi, Chu, Goodfellow, McMahan, Mironov, Talwar, and Zhang,
Carlini et al.(2019)Carlini, Liu, Erlingsson, Kos, and Song,Chaudhuri, Monteleoni, and Sarwate(2011),
Differential Privacy Team(2017),Dimitrakakis et al.(2017)Dimitrakakis, Nelson, Zhang, Mitrokotsa, and Rubinstein].

In DP, the privacy guarantee applies to each individual item in the data set and
is formally specified in terms of a pair of data sets that differ in at most one item.
Specifically, consider an algorithm A such that A : D 7→ R, where D and R are
respectively the domain and range of A. Now consider two data sets d and d ′ that
differ from each other in exactly one data item. Such data sets are considered adjacent
to each other in the DP literature. Algorithm A is said to be (ε, δ)-differentially private
if the following condition holds true for all adjacent d and d ′ and any subset of
outputs O ⊆ R:

P[A(d) ε O] ≤ eε P[A(d ′) ε O] + δ (2)

Enforcement of DP typically translates into introduction of a “correction” in
algorithm A to ensure that the differential privacy bound holds for any two adjacent
inputs. This correction is commonly referred to as the noise introduced in the
algorithm, its input, or output to ensure that the (ε, δ)-differential privacy bound
holds. While a disciplined introduction of noise guarantees DP, the noise itself leads
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to accuracy degradation in the output produced by A. In the context of ML, the
algorithm is a model being trained using sensitive private data sets, and accuracy
degradation can significantly hamper the model’s utility.

Personalization in FL

The basic FL algorithm, FedAvg, assumes IID training data across all FL users.
In fact, it is known to be quite effective in practice for such data distribu-
tions. However, FedAvg may perform poorly in the presence of non-IID user
data [Hsieh et al.(2019)Hsieh, Phanishayee, Mutlu, and Gibbons, Li et al.(2020b)Li, Huang, Yang, Wang, and Zhang].
A recent flurry of research addresses this problem using personalization tech-
niques [Dinh, Tran, and Nguyen(2020), Fallah, Mokhtari, and Ozdaglar(2020), Liang et al.(2020)Liang, Liu, Liu, Salakhutdinov, and Morency,
Mansour et al.(2020)Mansour, Mohri, Ro, and Suresh, Peterson, Kanani, and Marathe(2019),
Yu, Bagdasaryan, and Shmatikov(2020)] that specialize training at each user, typi-
cally in the form of training an additional local model, or letting the local copy of the
global model “drift” from the global model in a constrained fashion. This enables the
local model to fit better to the user’s local data distribution thereby delivering a better
performing model.

Personalization techniques are related to the classic ML problem of domain
adaptation. Domain adaptation is the challenge of adjusting ML models to per-
form on different data sets or different target tasks. A classic domain adaptation
setup models a large amount of labeled data drawn from one distribution (source
domain), and a pool of unlabeled or partially-labeled data drawn from another distri-
bution (target domain). Because the domains have different distributions, a model
trained only on source-domain data is unlikely to perform optimally on the target
domain. Many domain-adaptation techniques have been proposed that successfully
leverage labeled data in the source domain to improve model performance in the
target domain [Crammer, Kearns, and Wortman(2008), Daumé and Marcu(2006),
Daumé III(2009), French, Mackiewicz, and Fisher(2017), Samdani and Yih(2011),
Sun and Shi(2013)].

Of particular interest to ourwork is theMixture of Experts (MoE) technique used for
domain adaptation [Masoudnia and Ebrahimpour(2014),Nowlan and Hinton(1991)],
which bears some resemblance to other domain adaptation techniques [Guo, Shah, and Barzilay(2018),
Tu and Sun(2012)]. This is one of the techniques we propose in this work.

Adverse Event Mention Extraction

By some estimates, adverse drug reactions are among the leading causes of death
in the developed world. Reports of adverse events are a critical source of informa-
tion for tracking and studying adverse events associated with medicinal products.
However, portions of the sought information is only available in unstructured format.
The use of and necessity of automated methods for extracting mentions of drug
adverse events from unstructured text is widely recognized in pharmacovigilance
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[Harpaz et al.(2014)Harpaz, Callahan, Tamang, Low, Odgers, Finlayson, Jung, LePendu, and Shah].
Several different genres of text are tackled in this line of research, including social me-
dia [Gurulingappa et al.(2012)Gurulingappa, Rajput, Roberts, Fluck, Hofmann-Apitius, and Toldo,
Korkontzelos et al.(2016)Korkontzelos, Nikfarjam, Shardlow, Sarker, Ananiadou, and Gonzalez],
biomedical literature [Leaman et al.(2010)Leaman, Wojtulewicz, Sullivan, Skariah, Yang, and Gonzalez,
Winnenburg et al.(2015)Winnenburg, Sorbello, Ripple, Harpaz, Tonning, Szarfman, Francis, and Bodenreider],
clinical narratives [Haerian et al.(2012)Haerian, Varn, Vaidya, Ena, Chase, and Friedman,
LePendu et al.(2013)LePendu, Iyer, Bauer-Mehren, Harpaz, Mortensen, Podchiyska, Ferris, and Shah]
and drug labels [Roberts, Demner-Fushman, and Tonning(2017)]. More recently,
use of state of the art deep learning technology for NER have been proposed
[Giorgi and Bader(2018)].

3 Federated Learning Framework

We have implemented our own FL simulation framework, on PyTorch6, that
hosts the federation server and users on the same computer. The framework
supports several federated aggregation protocols, including FedAvg and Fed-
SGD [Konecný, McMahan, and Ramage(2015)], of which we use FedAvg in our
evaluation. The framework is extendable to support other custom aggregation proto-
cols [Dinh, Tran, and Nguyen(2020), Fallah, Mokhtari, and Ozdaglar(2020), Liang et al.(2020)Liang, Liu, Liu, Salakhutdinov, and Morency,
Peterson, Kanani, and Marathe(2019), Yu, Bagdasaryan, and Shmatikov(2020)].

3.1 Trust Model Considerations and Differential Privacy

The decision to train a ML model using the FL framework requires careful analysis
of privacy considerations for users’ data. More specifically, the meaning of the term
“data privacy” in a given setting needs to be precisely understood since it has profound
implications on techniques required to enforce the desired data privacy. For instance,
in some settings, simply restricting user data to its private silo is sufficient for the use
case. On the other hand, in settings involving highly sensitive private data (e.g. health
records of individuals), it may be desirable to ensure that even the parameter updates
shipped from the user silo to the federation server cannot be reverse engineered by any
means, external to the user, to determine the user’s training data records. Ultimately,
the level of privacy protection must be agreed upon by all parties involved. While an
exhaustive treatment of a taxonomy of such trust models in FL is beyond the scope of
this paper, we assume that personal health records describing an adverse reaction to a
vaccine are highly sensitive private material. Consequently, they must be protected
using techniques guaranteeing the strictest data privacy.

In the FL setting, these data records would be hosted in a participating pharmaceu-
tical company’s silo. The pharmaceutical company’s silo performs the role of a user
in the federation. We view Differential Privacy (DP) as an appropriate tool to enforce
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privacy guarantees to individuals’ health records. However, more careful analysis
of how DP is enforced in FL settings is required. Other technologies such as secure
multi-party computation [Yao(1986)] and homomorphic encryption [Gentry(2009)]
may be worth considering, but are beyond the scope of this work. Additional security
technologies such as end-to-end encryption may be necessary to augument to the DP
solution, but is also outside the scope of this work.

We assume a trust model where users do not trust the federation server, and enforce
DP locally on the parameter updates shipped back to the server. To enforce DP locally,
we use the algorithmproposed byAbadi et al. [Abadi et al.(2016)Abadi, Chu, Goodfellow, McMahan, Mironov, Talwar, and Zhang]
that injects gaussian noise (calculated using their moments accountant algorithm)
in parameter gradients during local training at each user. Noisy gradients lead to
noisy parameter updates, which are eventually shipped from the user to the federation
server.

Interestingly, since users can possess datasets with different sizes, the computed
noise, which is a function of the dataset size, varies considerably from user to user.
For instance, the noise introduced for a user with a handful of data points is much
higher than the noise introduced by a user with a much larger private dataset. However,
FedAvg smoothes out the noisy updates through the parameter aggregation process
(averaging, in our case). The resulting model that each user receives is much more
robust. Note that our implementation of DP covers the privacy of each narrative, but
we assume that there is not enough information in the data to link multiple narratives
relating to the same person.

3.2 Mixture of Experts

At its core, the Mixture of Experts proposal is to mix the outputs of a collaboratively-
learned general model and a local domain expert model. Participating users have
their independent set of labeled training examples that they wish to keep private,
drawn from user-specific domain distributions. These users collaborate to build
a general model for the task. At the same time, users maintain private, domain-
adapted expert models. The final predictor for each user is a weighted average of
the outputs from the general and private models. These weights are learned using a
MoE architecture [Masoudnia and Ebrahimpour(2014), Nowlan and Hinton(1991)],
so the entire model can be trained with gradient descent.

Our overall system architecture follows. MG is the general model that is trained by
the FL framework. (ε, δ)-differential privacy is enforced by clipping gradients and
adding noise to the gradients sent back to the federation server. Each of the i users
maintains a private model, MPi , which act as domain experts tuned to the respective
users’ data distributions. A user uses its private labeled data to retrain its private
model MPi along with MG . MPi is completely private to the user and hence does
not need DP-inducing noise. The MoE framework at each user combines outputs of
the two models, tuning the MoE output to better suit the user’s data distribution if
needed.
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Fig. 3 The Federated Learning setting with Domain Experts, one per participating user. Each user
uses its local MoE combination model for both training and inference.

More formally, let MG be a general model, with parameters ΘG , so that ŷG =
MG(x,ΘG) is MG’s predicted probability for the positive class, or perhaps a regressed
value1. MG is shared between all users, and is trained on all data using FLwith differen-
tially private SGD [Abadi et al.(2016)Abadi, Chu, Goodfellow, McMahan, Mironov, Talwar, and Zhang],
enabling each user to contribute to training the general model2.

Similarly, let MPi be a private model of user i, parameterized by ΘPi , and
ŷPi = MPi (x,ΘPi ) be the model’s predicted probability. Although MPi could have a
different architecture from MG , in this work we initialize MPi as an exact copy of
MG . Neither MPi , nor gradient information about it, is shared with any other party,
so MPi can be updated exactly, without including privacy-related noise.

These two models are combined using a gating function, αi(x), that can learn
which model to trust as a function of the input. In our experiments, we set αi(x) =
S(wT

i · x + bi), where S(x) is the sigmoid function, and wi and bi are learned weights.

1 Although we tested only binary classification and regression in our experiments, there are obvious
extensions to multiclass problems.
2 Because MG is trained using DP SGD protocols, we can guarantee differential privacy of the
model MG . No data besides these differentially-private gradients is ever sent over public channels,
so our architecture guarantees differential privacy for anyone without access to the private models
MPi .
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Algorithm 1 Minibatch Update for Mixture of Experts at user i (Outline).
1: inputs
2: User i, their N examples x1, x2, . . . , xN and corresponding labels y1, y2, . . . , yN , along

with labeled held out examples Ht to train the gating function, general model MG and
its parameters ΘG , private model MPi and its parameters ΘPi , gating function αi and its
parameters Θαi , learning rate ηt , noise scale σ, group size L, gradient norm boundC

3: Initialize g, gG , gPi to 0.
4: Take a random sample of data, Lt , with sampling probability L/N
5: for xt ∈ Lt do
6: Compute prediction ŷt with equation 3
7: Compute loss lt = | |yt − ŷt | |
8: gG+ = compute_clipped_gradient(lt, ΘG,C)
9: gPi+ = compute_gradient(lt, ΘPi )

10: end for
11: Take a sample of held-out data, Ht

12: for xt ∈ Ht do
13: Compute prediction ŷt with equation 3
14: Compute loss lt = | |yt − ŷt | |
15: gαi+ = compute_gradient(lt, Θαi )

16: end for
17: gG+ = gaussian_noise(0,C ∗ σ2)
18: ΘPi ← ΘPi −

ηt

L gPi

19: Θαi ← Θαi −
ηt

L gαi

20: Send gG/L to the Federation Server.

Although there are many other choices for the gating function, this choice is simple,
differentiable, and allows smooth mixing across the boundary between the two
models.

Thus the final output ŷi depends on learned parameters ΘG , ΘPi , wi , and bi , and
all are updated via SGD. The final output that user i uses to label data is

ŷi = αi(x)MG(x,ΘG) + (1 − αi(x))MPi (x,ΘPi ). (3)

We advise, in line with standard MoE practice, that the training of the gating
function parameters is separated from the training of the training of the expert
models themselves. In all experiments, we split the training data in two and train the
parameters of αi(x) separately from the models MG and MPi . We call this held-out
data Ht in the pseudocode below.

Algorithm 1 depicts a single batch of MoE training for user i at a high level. During
training, each user will perform this procedure many times, while receiving updates to
the generalmodel from the federation server. The differentially-private gradient compu-
tationgG is based on algorithmbyAbadi et. al. [Abadi et al.(2016)Abadi, Chu, Goodfellow, McMahan, Mironov, Talwar, and Zhang].
We apply equation 3 to control the gradient aggregate g that is eventually sent to the
federation server.

The private model MPi and weighting mechanism αi work together to provide a
significant benefit over differentially private FL. First, by allowing individual domain
adaptation, they boost accuracy. Second, because they allow noise-free updates, they
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prevent the accuracy loss associated with more stringent privacy requirements, which
add noise to the general model.

Over time, a user’s gating function αi(x) learns whether to trust the general model
or the private model more for a given input, and the private model MPi needs to
perform well on only the subset of points for which the general model fails. The
failure of the general model is expected, and corrected, so the mixture of experts can
tolerate a poor-quality general model so long as it is reliably correct in at least some
region of the input space.

3.2.1 Effects of the Gating Function on Gradients

One advantage of our MoE setup is that the loss is differentiable with respect to
all model parameters - the parameters of the private and general models, and the
gating function. When αi(x) << 1, the general model makes little contribution to
the user’s prediction. But this gating function also gates the gradients, because the
general model makes little contribution to the loss. Symmetrically, the gradients for
the private model vanish as αi(x) → 1.

For the private model, gating the gradients is perfectly reasonable. Once the gating
function is sure that the general model is making accurate predictions on a particular
data point, there is no need to penalize the private model for its performance in that
region. The tradeoff in model quality is not symmetric for the shared model, however,
because the quality of the shared model affects multiple users. Especially if new
users are joining the federation over time, it is still desirable that the general model
performs as well as possible while satisfying privacy concerns.

On the other hand, allowing the gating function to suppress updates to the general
model may be beneficial for the privacy of user data. Once a users’ gating function has
learned to trust their private model on a particular data point, there is little incentive
for them to share further information about that data point with the federation pool.
However, if the overall quality of the general model is not a part of the objective, it
only needs to make satisfactory recommendations in a small region of the input space,
particularly the regions commonly shared amongst several users. Different regions of
reliability correspond to different local optima, and there are many locally-optimal
solutions where the general model is an extremely poor model for the overall task, but
is still a useful expert for most users on some portion of inputs. We characterize this
phenomenon by observing the behavior of the model during training, and evaluation
of the shared model on a held-out dataset.

We examine the effects of allowing the gating function to suppress gradients by
implementing an alternative algorithm, that still uses an MoE framework. In the
modified algorithm, users compute the loss and gradient of the general model on
their data points, and send gradients according to the DP SGD procedure, regardless
of the weight αi(x). Then they compute the final prediction using the MoE, and
make noise-free updates to their private model and gating function as before. This
makes the training of the general model equivalent to traditional FL, while allowing
the flexibility of the MoE to improve predictions for each user. This change is
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implemented by computing, in addtion to lt , a loss

lGt = | |yt − MG(xt,ΘG)| |,

and replacing line 6 of Algorithm 1 with

gG+ = compute_clipped_gradient(lGt ,ΘG,C).

We refer to this modified version as Algorithm 2.

3.3 Personalization through Fine Tuning

The main allure of FL for a user is the promise of significant prediction accuracy
improvements over a locally trained individual model. While parameter aggregation
through FL can significantly improve accuracy of the global model, introduction of
noise to enforce DP can severely compromise that improvement. The degradation
can be severe enough to make users reconsider their decision to join the federation,
and deter new users from joining the federation. Furthermore, data distributions
across users may have significant side effects on the global model’s prediction
accuracy: If a user’s dataset has a significantly different distribution than most of
the federation users, the global model may perform worse than a locally trained
individual model. If users of a federation have non-IID data, the resulting global
model may be ineffective [Li et al.(2020b)Li, Huang, Yang, Wang, and Zhang].

Many researchers have recently proposed different forms of personalization ap-
proaches to remedy the disparate data distribution problem [Arivazhagan et al.(2019)Arivazhagan, Aggarwal, Singh, and Choudhary,
Deng, Kamani, and Mahdavi(2020), Jiang et al.(2019)Jiang, Konecný, Rush, and Kannan,
Liang et al.(2020)Liang, Liu, Liu, Salakhutdinov, and Morency,Mansour et al.(2020)Mansour, Mohri, Ro, and Suresh,
Peterson, Kanani, and Marathe(2019), Smith et al.(2017a)Smith, Chiang, Sanjabi, and Talwalkar,
Yu, Bagdasaryan, and Shmatikov(2020)]. Just two of theseworks [Peterson, Kanani, and Marathe(2019),
Yu, Bagdasaryan, and Shmatikov(2020)], to the best of our knowledge, propose per-
sonalization approaches as solutions to model degradation due to DP inducing
noise. Among the proposed personalization approaches, we focus on FL with Fine
Tuning [Yu, Bagdasaryan, and Shmatikov(2020)]: FT-FL for fine tuning on top of
plain FL, and FT-DP-FL for fine tuning on top of FL with DP enforcement at the user.
In this approach each user continues training, without noise, the local copy of the
global differentially private model after the FL training process has completed.

The fine tuning based parameter updates are private to each user and are not shared
with the federation. As a result, the fine tuned local models may diverge from the
global model at varying degrees in order to better fit the users’ private data. While
endlessly fine tuning the global model can lead to the model converging to a locally
trained individual model, care must be taken to ensure that the fine-tuned model
does not deteriorate. This can be achieved through standard hyperparameter tuning
techniques.
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4 Experiments

4.1 Synthetic Dataset

The first dataset is a synthetic regression problem. Two users attempt to fit a linear
model of the function f (x, y) = 5x − 2y + 0.5y3. Each has input data drawn from
a distinct 2-dimensional Gaussian, and because of these domain differences, they
get different exposure to the nonlinear y3 term. We draw 2500 training examples,
500 validation examples, and 500 test examples for each user, all from that user’s 2d
Gaussian, then compute f (x, y). The users aim to minimize root mean squared error
(RMSE) on the test set. The baseline error is computed with each user fitting a single
linear model to their training data. We then compute RMSE for each user if the users
collaborate to build a single linear model using FL, and augmenting FL with private
domain experts (Algorithm 1). Figure 4 shows the synthetic data, the target function,
and the learned gating functions for both users. To see the effects of differential
privacy, we test with low noise (σ = 2) and high noise (σ = 4), following prior
work [Abadi et al.(2016)Abadi, Chu, Goodfellow, McMahan, Mironov, Talwar, and Zhang].

Test errors for the baseline, FL, and domain-adapted FL systems are provided in
Table 5. Algorithm 1 provides the best results of any model, and graceful degradation
compared to differentially-private FL as the noise increases. FL alone provides a
lower error for both users if there are no privacy concerns, but as we increase the
noise we apply to the gradient, we observe a dramatic increase in error. The system
with domain experts is more expressive than a single linear model - it learns a linear
model and gating function for each user on top of the shared linear model - so it is
unsurprising that RMSE is lower when no noise is added to the gradients. However,
Algorithm 1 does not degrade in performance as much as FL when noise is added to
the shared gradient updates. In the worst case, the performance degrades only to the
baseline level (where each user has a linear model for its entire dataset).

4.2 Spam Detection Dataset

The second dataset is a real-world domain adaptation dataset for spam detection, which
was released as part of the ECML PKDD 2006 Discovery Challenge [Bickel(2006)].
The task is to classify whether an email in a user’s inbox is spam, and personalizing
the spam filtering for each user. The amount of data available per user is limited, so it
is expected that collaboration can increase the quality of the classifier. However, each
user has a different inbox, so domain adaptation is required. The dataset was originally
designed to test methods of unsupervised domain adaptation, but using the evaluation
dataset labels, which are now publicly available, we simulate 15 users collaborating
to build a spam classifier in a supervised setting. In this case, we measure classifier
accuracy, averaged across all users. We use the dataset from task b. For each of our
users, we train on 50 labeled examples, leaving 350 examples for testing. The baseline
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Fig. 4 Visualizing the synthetic data experiment. Axes for all figures represent the (x, y) coordinates
of data points. Left to right: (a) (x, y) coordinates of test data points sampled from distinct 2d
Gaussians. (b) Target values of nonlinear function f (x, y). (c) Values of the MoE gating function,
α1(x, y) learned by User 1. In the darker region, the private domain expert is preferred, while the
general model is preferred in the lighter region. (d) The gating function α2(x, y) of User 2, which
uses the shared model in a different region than User 1.

System User 1 RMSE User 2 RMSE
Baseline 15.32 10.95
FL, σ = 0 12.75 9.67
FL, σ = 2 13.79 12.68
FL, σ = 4 12.59 19.49

Alg 1, σ = 0 12.12 9.41
Alg 1, σ = 2 12.05 9.73
Alg 1, σ = 4 13.78 10.95

Fig. 5 Test error for regression models trained on synthetic data (lower is better). The domain-only
baseline system trains a separate model for each user on their data. Varying σ provides different
levels of privacy.

Fig. 6 Classifier accuracy on the spam dataset (higher is better). The dashed horizontal line indicates
mean domain-only baseline performance. Error bars show variance across users.
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system trains one classifier for each user, using in-domain data only, and we also train
a collaborative FL model, and domain-adapted FL models using both Algorithm 1
and Algorithm 2.

In our experiments, we fix δ = 10−5 and compute σ using the moments accoun-
tant [Abadi et al.(2016)Abadi, Chu, Goodfellow, McMahan, Mironov, Talwar, and Zhang]
to provide guarantees of ε ∈ [2, 4], simulating relatively strict and relatively per-
missive differential privacy guarantees. Each system has hyperparameters (learning
rate, number of epochs, optimization algorithm) tuned using grid search on an
identical validation set; we report average performance on the test set for the winning
hyperparameters. As we vary the number of training epochs in our differential privacy
paradigms, we also adjust the noise added to make full use of our privacy budget by
the end of training. Because the data set is relatively small, our experiments (including
hyperparameter optimization) were carried out on an Oracle X6-2 server with 2 CPU
sockets.

The results are illustrated in Figure 6. Once again, FL with domain experts
provides the best overall accuracy, and maintains its performance as noise is added to
provide differential privacy. We see a small increase in accuracy using Algorithm
2, rather than Algorithm 1, across the board. This is especially pronounced in the
case where there is no enforcement of privacy, where Algorithm 1 appears to have
overfit to a local minima, and test performance is significantly worse. Ordinary FL
degrades quickly as we add privacy-protecting noise to the gradient updates, but the
MoE domain adaptation technique can clearly protect the accuracy of the per-user
predictions, even when noise has degraded the accuracy of the shared FL model.

4.3 MNIST Dataset

MNIST is a widely used image classification dataset that does not contain domain
specific partition of the data. Its evaluation however helps us determine if our domain
adaptation technique may have wider applicability. To that end, we partition MNIST’s
training set (with 60, 000 images of hand-written digits) into 100 disjoint partitions,
each of which is allotted a unique user. We thus create a federation of 100 users, where
each user hosts 600 MNIST images. Each user does a 80/20% training/validation
split of its data. We train a linear neural network model using the MNIST training
data. MNIST test data is similarly equally split between the 100 users. For differential
privacy, we enforce the ε = 2, 4 bounds for high, low privacy respectively.

Figure 7 depicts the performance of various models on the MNIST dataset. In
the absence of privacy guarantees, the FL model as well as our domain adaptation
outperform the baseline domain-only isolated model per user by a significant margin.
Their performance however significantly degrades due to DP related noise. Despite the
degradation, differentially private FL, as well as the Alg2 variation of our algorithm
continue to outperform the baseline. The worse performance of Alg1 indicates the
importance of sharing full gradients to train the general model. Experiments indicate
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Fig. 7 Classifier accuracy on the MNIST dataset (higher is better). The dashed horizontal line
indicates mean domain-only baseline performance.

that our gating function tends to favor the better performing model between the
differentially private general FL model and the user-private model.

4.4 Vaccine Adverse Event Reporting System (VAERS) Dataset

Drug and vaccine safety surveillance relies predominantly on spontaneous reporting
systems. These systems are comprised of reports of suspected drug/vaccine adverse
events (potential side effects) collected from healthcare professionals, consumers,
and pharmaceutical companies, and maintained largely by regulatory and health
agencies. Among other, these systems are used to detect possible safety problems –
called “signals” – that may be related to a vaccination or the consumption of a drug.
In the US, the prominent surveillance system for vaccines is the U.S. Centers for
Disease Control and Prevention (CDC) and the Food and Drug Administration (FDA)
Vaccine Adverse Event Reporting System (VAERS), created in 1990.

The VAERS data (de-identified) is publicly available in structured format. Each
VAERS report includes the name of (and additional information about) the admin-
istrated vaccine, a list of adverse events related to the vaccine, dates, and limited
demographic information about the patient receiving the vaccine (e.g., age, gender).
Importantly, the report also includes a textual narrative describing the adverse event.
For example,

“Shortly after patient was vaccinated, she started to feel an itching, tingling feeling
in her throat. Fearing that it was an allergic reaction, I called 911. The patient
remained alert, talking and breathing normally until paramedics arrived, though she
stated that she started to feel additional tingling in her arms and chest.”
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In this example, the following token spans would be annotated as adverse events:
“itching”, “tingling feeling in her throat”, “allergic reaction”, “tingling in her arms
and chest”.

Most of the data collected in VAERS is currently processed by humans for
downstream applications. Adverse event reports, whether they’re forms, emails,
articles, or other source documents, do not arrive in structured format, which means
they have to be entered manually into safety systems. This manual data entry can
take hours and represents a significant cost to the organization. Free-text narratives
take the most time, requiring a manual sift through every sentence to find relevant
information and then enter it into the correct field. With the rapidly increasing volume
of such data this human effort is becoming prohibitive and calls for the increased use
of automated methods such as NER. In addition, pharmacovigilance data such as that
available in and similar to VAERS originates from private siloed sources, motivating
the need for privacy preserving distributed approaches such as FL.

4.4.1 NER based on Recurrent Neural Networks

The recurrent neural network (RNN) architecture we used to perform NER is based
on a commonly applied BiLSTM architecture. The architecture consists of three
major components: (1) a word representation layer made of word embeddings, (2)
two stacked layers of bidirectional long short-term memory (LSTM) cells, and (3) a
feedforward layer that performs the final BIO sequence labeling.

Pre-trained word embeddings were used to seed the network’s word embedding
layer. These were generated using Word2Vec applied to the sentences comprising the
VAERS NER dataset described in section 4. Dropout regularization was implemented
between each of the three major network components. The dropout rate was 0.4.

The network was implemented on PyTorch6 and trained using stochastic mini-
batch gradient descent with the Adam optimizer for a pre-defined number of iterations.
Each iteration processed a batch of 256 randomly selected sentences. The network
was trained for a total of 20 epochs, each epoch consisting of number of sentences in
the training set / batch size iterations.

4.4.2 Dataset

We used a total of 17,841 narratives submitted to VAERS through the years 2015-2017
to form the NER data set used for this study. The narratives were automatically
annotated for adverse event named entities using the list of adverse events supplied
with each report. In total the NER data set used for this study comprised of 87,730
sentences and 39,139 annotated adverse event named entities. In our experiments, we
split the data randomly into train, validation, tune and test sets in the proportion 60%,
10%, 10%, and 20% respectively. We used the validation set to decide early stopping
in the fine tuning algorithm and tuned the rest of parameters on the tune set. We refer
to “large manufacturers” as those with more than 1000 VAERS reports in this data and
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“small manufacturers” as those with fewer reports to reflect the availability of training
data in each user’s silo. In the rest of this paper, we use the terms ‘manufacturer’ and
‘user’ interchangeably.

4.4.3 Experimental Setup

As the first baseline for our experiments, we train Individual models (Ind), i.e. assume
that each manufacturer only uses their own training set, and test on their respective
test set. This baseline represents the case in which the manufacturer chooses not
to participate in the federation at all. FL is the federated learning model trained
in a collaborative fashion across users using the FedAvg algorithm. This model
is then fine tuned for each user using the protocol described in section 3, which
yield a set of models, one per manufacturer, that we call FT. Next, we introduce
DP to the FL model, as described in section 3. We use ε = 2.0 for this first set of
experiments as it is considered a fairly conservative privacy setting in the litera-
ture [Abadi et al.(2016)Abadi, Chu, Goodfellow, McMahan, Mironov, Talwar, and Zhang]
and calculate the sigma values suitable per user. We call this private federated learning
variant DP-FL. Finally, we fine tune this private FL model and call it FT-DP-FL.

The training parameters for all of these algorithms were tuned using a separate
tuning dataset. We use a learning rate of 0.01 and train all the federated models for
20 rounds of FedAvg, with additional 20 epochs for the fine tuning variants at each
manufacturer. For evaluation, we compute the precision, recall, and F1 of each token
label on a 1-vs-all basis. The values reported are the mean F1 score (henceforth called
F1) for the labels at the beginning or inside of an adverse event mention.

We ask the following questions as part of this study. Does FL perform better than
Ind models across users? What happens when differential privacy is introduced?
Does personalization help improve accuracy over FL and mitigate DP-FL’s accuracy
loss enough to re-incentivize users to participate in the federation? If fine-tuning
based personalization helps mitigate accuracy loss due to DP, how robust is it to
varying parameters of DP? Finally, we ask if the federation is stable enough for the
uncertainties of real world, such as users dropping out? We also analyze the incentive
structure that emerges for users with varying amounts of training data.

4.4.4 Private Federated Learning with Personalization

Figure 8 shows the F1 values for each of the described models on the individual users’
test sets. Note that the manufacturers on the x-axis are sorted based on the size of their
training sets. As we can see, the FL model consistently outperforms Ind models for
each of the users, including large manufacturers with a lot of training data. As table 1
shows, the amount of error reduction over the Ind model for each user is substantial.
Contrary to findings by Yu et. al. [Yu, Bagdasaryan, and Shmatikov(2020)], in our
case, personalization based on fine tuning FT-FL performs worse than FL in most
cases. As we add noise related to differential privacy to the federated learning
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Fig. 8 F1 per manufacturer for different methods for ε = 2.0

model, F1 values drop significantly across the board. This makes participation for
larger manufacturers in the federation unattractive, since the DP-FL model ends up
performing worse than their Ind models. However, applying fine tuning in this case
helps bring it back up to the point, where it is again advantageous for each party to
participate in the federation. This shows that personalization based approach can help
mitigate the loss of accuracy from introducing differential privacy.

It is interesting to note that for small manufacturers, with an exception of one
with very small amount of evaluation data, it is always beneficial to participate in the
federation, even for DP-FL, with or without personalization. For large manufacturers
however, the DP is only attractive in the presence of the mitigation offered by
fine-tuning based personalization (FT-DP-FL).

5 Related Work

In theirwork onDP in deep learning,Abadi et. al. [Abadi et al.(2016)Abadi, Chu, Goodfellow, McMahan, Mironov, Talwar, and Zhang]
formulated privacy loss of data used to train a deep learning model as a random
variable. The moments of this random variable were used to derive tighter bounds for
the cumulative privacy loss. The privacy loss was computed in their system using a
moments accountant module. In our work, we use a subsequent incarnation of the
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Vaccine Manufactuer Num Individual FL FT-DP-FL
Reports F1

F1 Error Red. F1 Error Red.
Merck Co. Inc. 7638 80.10 82.00 9.55% 81.20 5.53%
Sanofi Pasteur 3352 84.60 90.40 37.66% 88.40 24.68%
Pfizer-Wyeth 2428 80.50 87.00 33.33% 84.60 21.03%
Glaxo-Smithkline Biologicals 2289 80.20 82.20 10.10% 85.30 25.76%
Novartis Vaccines And Diagnostics 1183 77.80 85.80 36.04% 81.50 16.67%
CSL Limited 465 67.10 88.50 65.05% 78.30 34.04%
Medimmune Vaccines Inc. 265 69.30 83.50 46.25% 81.10 38.44%
Seqirus Inc. 111 15.00 82.10 78.94% 52.60 44.24%
Emergent Biosolutions 58 30.10 89.70 85.26% 71.90 59.80%
Berna Biotech Ltd. 52 45.80 95.40 91.51% 82.50 67.71%

Table 1 F1 and Error Reduction with Federated Learning and Private Federated Learning with
Fine Tuning. ‘Vaccine Manufacturer’ is a field in the public VAERS database that identifies the
manufacturer of the vaccine reported in the VAERS form. There is no relationship between this field
and the reporter. ‘Num VAERS Reports’ does not represent the rate of adverse events associated with
the manufacturer or its products and cannot be used to estimate such rates. The statistics are based
on a sample of reports submitted to VAERS between 2015-2017 whose MedDra coded adverse
events appeared in the narrative. Because the statistics are based on a carefully selected sample,
the distribution of reports shown may not represent the true distribution of reports associated with
different vaccine manufacturers.

moments accountant module [Mironov(2017)] to derive our training data’s privacy
loss in the general model MG’s training.

Our core idea of maintaining additional models for each domain is analogous to ex-
isting domain adaptation approaches [Daumé and Marcu(2006)]. Adjusting federated
learning to account for domain differences across users has also been studied in settings
without differential privacy concerns [Li et al.(2018)Li, Sahu, Zaheer, Sanjabi, Talwalkar, and Smith,
Ji et al.(2018)Ji, Pan, Long, Li, Jiang, and Huang], but these works primarily in-
crease overall model quality by allowing users with extremely unusual gradient
updates to have a smaller disruptive effect on the shared FL model. This improves the
general model, but does not explicitly allow users with unusual datasets to improve
prediction quality on their domain.

Domain adaptation and federated learning have been studied in privacy-preserving
and secure settings. One line of work focuses on protecting privacy in a classic domain
adaptation setup [Guo et al.(2018)Guo, Yao, Tu, Chen, Dai, and Yang], where a well-
tuned model on a source domain is adapted to perform better in a target domain with
more limited data. More recently, unsupervised domain adaptation technique for feder-
ated learning has been proposed [Peng et al.(2019)Peng, Huang, Zhu, and Saenko],
but their setup assumes multiple source domains, and a single target domain, with no
joint model trained between users. They also do not take additional privacy measures
such as differential privacy into account. The one model per node setting is also ex-
plored usingmulti-task learning [Smith et al.(2017b)Smith, Chiang, Sanjabi, and Talwalkar],
but they also do not consider additional privacy in federated learning. Another line
of work focuses on secure federated learning [Liu, Chen, and Yang(2018)], but uses
additively homomorphic encryption to ensure privacy in a two-party federated learn-
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ing context. This is different from ε-differential privacy, and does not maintain a
collaborative general model. Each of these systems considers one part of our set-up,
but no prior work combines efforts of collaborative learning combined with private
domain adaptation.

ThePATEarchitecture [Papernot et al.(2018)Papernot, Song, Mironov, Raghunathan, Talwar, and Erlingsson]
is yet another class of distributed ML systems that uses privately trained models of
participating parties as sources for consensus-based labeling of data for a new user to
help it train its model on its private data. The models trained for individual users act
as an ensemble of “teachers” for the new party that is training a new model for itself.
The consensus based labeling provides the privacy guarantees for each party. This
approach could be used to build the general model, rather than differentially-private
FL, but we have not yet tested its effectiveness in conjunction with domain-adaptation
techniques.

6 Conclusion

Federated Learning is a promising approach for breaking down organizational and
geographical barriers to collaboration on building very effective models to solve this
problem. This work demonstrates that adding private, per-user domain adaptation to
a collaborative model-building framework can increase accuracy for all users, and
is especially beneficial when privacy guarantees begin to diminish the utility of the
collaborative general model.

Our implementation of domain adaptation employs a mixture of experts, with
each user learning a domain expert model and a private gating mechanism. This
domain adaptation framework is another contribution of our work, and allows us to
train the entire model with gradient descent. We demonstrate that it works well in
practice on both regression and classification tasks. We also apply fine tuning based
personalization technique to real world dataset to show similar trends.

In future work, we aim to expand our analysis to include larger datasets and different
architectures. We intent do consider other mechanisms for building a collaborative
model (e.g., PATE), and alternative domain adaptation techniques (e.g., hypothesis
transfer learning). We expect that the general setup of learning one collaborative
generalist and a private domain adaptation mechanism will be useful in many settings
and for many types of models, but that the best particular architecture could depend
on the task. In situations where data privacy is not a concern, for example, the
best performance may come from training an FL system and then adding domain
adaptation, even with the MoE architecture we propose here, because joint training
may overfit the MoE before the general model has had adequate time to learn a
high-quality model.
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7 Appendix

7.1 Effect of the Gating Function on Gradients

7.1.1 Empirical Gradient Sizes During Training

It is worth getting an estimate of how much the gating function actually affects the
gradients passed during training. We measure the average L2-norm of the gradients
across each batch as we train the spam detection model for 15 users. We consider
both traditional FL, where the gradient sizes are unconstrained, and the DP-SGD
procedure, where each example has its gradient clipped to a maximum L2-norm (in
our case, the norm of the gradient for each parameter matrix is independently clipped
to a magnitude of 1). In both cases, we observe a marked reduction in the magnitude
of gradients sent over the course of training, if the gating function is allowed to
suppress gradients that would otherwise be sent to the general model.

Fig. 9 Average magnitude of gradients passed to the federation server as training progresses. In
Algorithm 1, the gating function suppresses the gradients sent to the general model.
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It is clear from Figure 9 that allowing αi(x) to gate the gradients reduces the total
magnitude of gradient updates, whether we clip gradients to a bounded magnitude or
not, and that Algorithm 2 passes essentially the same magnitude of gradients to the
federation server as FL without the mixture of experts. The averages shown here are
across multiple restarts and all users.

7.1.2 Stability of the General Model’s Predictions

We also wish to test how often the general model MG gets caught in local optima if
the gradients sent to the general model are gated. One way to measure this is to restart
the model with another initialization, and evaluate whether it tends to make the same
predictions on a fixed dataset. The spam detection dataset includes a small dataset of
100 labeled emails not associated to any particular user. We use this held-out data to
analyze how much the shared model varies across runs.

We ran the model with ten distinct random initializations, and compared the
pairwise differences in predictions on these held-out emails. We also ran the model
with a single fixed initialization, but perturbed the training by holding out a single
user at each run. Both types of perturbations are extremely plausible in a real-world
FL scenario - we have no guarantees that we’re in an optimal random initialization,
or that the user base stays fixed.

Model Privacy Budget P(ŷ1 , ŷ2) Accuracy
FL ∞ 0.38 ± 0.13 0.65 ± 0.11
FL 4 0.38 ± 0.13 0.56 ± 0.06
FL 2 0.43 ± 0.12 0.55 ± 0.07

Alg 1 ∞ 0.50 ± 0.22 0.53 ± 0.06
Alg 1 4 0.47 ± 0.12 0.51 ± 0.08
Alg 1 2 0.51 ± 0.14 0.50 ± 0.09
Alg 2 ∞ 0.35 ± 0.12 0.65 ± 0.06
Alg 2 4 0.35 ± 0.08 0.53 ± 0.06
Alg 2 2 0.43 ± 0.10 0.52 ± 0.06

Table 2 Stability of predictions of the shared model across random re-initializations. The shared
model makes dramatically different predictions on the same held-out data, an effect which is stronger
in Algorithm 1 than FL or Algorithm 2.

Table 2 and Table 3 show that the predictions of the shared model are much more
similar across runs if full gradients are passed, compared to allowing the gating
function to suppress gradients for “private” data points. The general model is also
more accurate using Algorithm 2 compared to Algorithm 1. The instability and
inaccuracy of the general model makes only a slight impact on per-user accuracy,
though, as seen in Table 6, suggesting that the users are typically able to find
satisfactory work-arounds for any given general model, and that Algorithm 1 tends to
stop in local optima that differ greatly based on initialization.
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Model Privacy Budget P(ŷ1 , ŷ2) Accuracy
FL ∞ 0.31 ± 0.10 0.64 ± 0.09
FL 4 0.37 ± 0.10 0.54 ± 0.07
FL 2 0.44 ± 0.09 0.52 ± 0.07

Alg 1 ∞ 0.42 ± 0.15 0.59 ± 0.07
Alg 1 4 0.46 ± 0.12 0.48 ± 0.07
Alg 1 2 0.49 ± 0.12 0.47 ± 0.09
Alg 2 ∞ 0.35 ± 0.11 0.64 ± 0.09
Alg 2 4 0.39 ± 0.11 0.52 ± 0.06
Alg 2 2 0.47 ± 0.10 0.50 ± 0.06

Table 3 Stability of predictions of the shared model with a fixed initialization, as individual users
are dropped from the training pool. Again, FL and Alg 2 provide significantly more stable predictions
than Alg 1. Overall, variance in predictions due to dropping a user is slightly less than variance due
to initialization differences.

Overall, Algorithm 2 provides much more stability, a boost to accuracy on the
general model, and a slight improvement in per-user accuracy. These properties are
likely to make it more useful on larger datasets.

7.2 Stability of Federation against Users Leaving

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10
M1 0.0 0.9 1.8 0.4 1.0 2.1 1.8 0.4 1.0 0.0
M2 -0.3 0.0 0.4 0.5 1.4 1.6 1.6 -0.4 3.2 -1.5
M3 -0.1 0.5 0.0 0.1 0.1 0.9 1.4 1.9 1.0 -1.5
M4 -0.6 0.8 0.2 0.0 2.6 -0.2 3.5 1.3 1.0 0.0
M5 -0.5 -0.1 -0.1 2.9 0.0 0.6 0.6 -1.9 1.0 0.0
M6 -0.8 0.0 0.2 -0.5 -0.4 0.0 1.6 -1.1 2.1 0.0
M7 -0.5 0.5 -0.3 -0.5 0.1 0.7 0.0 0.4 1.0 -1.5
M8 -0.7 0.3 0.3 -0.1 -0.5 0.0 -0.5 0.0 0.8 0.0
M9 -0.4 0.1 0.2 0.0 0.4 0.1 0.9 0.9 0.0 4.5
M10 -1.0 0.0 -0.2 -0.2 -0.2 0.3 -1.3 -1.1 0.0 0.0

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10
M1 0.0 0.1 0.4 1.9 -2.4 1.4 2.9 -8.3 0.3 15.8
M2 -0.1 0.0 0.6 1.6 -1.5 -1.6 0.5 -2.5 1.4 22.5
M3 0.5 0.5 0.0 2.1 -1.7 0.2 -1.3 -1.2 -1.2 3.7
M4 -0.3 -0.3 0.2 0.0 -0.1 -4.3 0.7 -1.3 -0.4 18.7
M5 -0.1 0.0 -0.3 1.0 0.0 -0.3 -0.3 -1.9 -0.8 0.5
M6 -0.2 -0.5 0.3 1.6 -1.9 0.0 -1.5 -0.3 -0.5 4.2
M7 -0.5 0.1 0.3 2.2 -1.2 -2.8 0.0 -0.5 0.9 28.9
M8 0.5 -0.5 0.8 0.6 0.0 -4.0 -0.9 0.0 5.2 15.8
M9 -0.5 -0.5 0.3 1.0 -2.5 -3.3 -3.5 -2.4 0.0 4.1
M10 -0.1 -0.2 1.0 0.9 -1.8 -3.2 -0.1 -1.4 2.2 0.0

Table 4 Stability of Private FL with Fine Tuning performance when a single user leaves. M1-M10
are manufacturers sorted in descending order by size. Each row represents a manufacturer that
is leaving the federation. Each Column represents the difference between F1 values under full
federation and this reduced federation for that manufacturer. The table on the left represents FL and
the table on the right represents FT-DP-FL

Building a federation across organizations can be challenging in the real world due
to a variety of factors. For instance, users may discontinue their participation in the
federation. We simulate this scenario and study the effect of one of the manufacturers
leaving the federation. As we can see from Table 4, both federated learning and
private federated learning with fine tuning are fairly stable against such a change,
with the exception of a few manufacturers with very small amount of training and
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test data. In other words, no single manufacturer has disproportionally large impact
on the overall accuracy gains from participating in the federation.

7.3 Federation of Small Manufacturers

Another scenario that we simulate is the one where only participants with small
amount of training data agree to collaborate. In this case, we do not have the advantage
of the large amount of training data from any of the larger manufacturers. To better
understand if such a federation is still advantageous, we compare the F1 values for
small manufacturers in two different scenarios: one, in which they are a part of a
large federation with all manufacturers, and second, in which they are a part of a
federation with only the small manufacturers.
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Fig. 10 F1 for small manufacturers when they are a part of a larger federation vs. a federation of
only small manufacturers. The graph on left is for FL and the one on right is for FT-DP-FL

Figure 10 shows these comparisons for FL and FT-DP-FL respectively. As
is clear from the bar chart, even in the case of a federation with just the small
manufacturers, most of the manufacturers benefit significantly from participating. In
fact, the performance of all manufacturers in the small federation closely tracks their
performance in the large federation, with one exception.

7.4 Robustness to Differential Privacy Noise

Next, we study the effectiveness of personalization in recovering from the accuracy
loss resulting from differential privacy noise. We vary the parameter ε and measure
F1 averaged across users for two of the algorithm variants: differentially private
federated learning (DP-FL) and the fine tuned differentially private federated learning
(FT-DP-FL). As we can see from Figure 11, average F1 for DP-FL deteriorates
significantly for values of ε less than 2. However, even in these cases, the personalized
version, FT-DP-FL manages to retain its performance. We believe this is an important
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Fig. 11 Average F1 across users for the two differentially private FL variants.

finding that provides significant latitude to differentially private FL frameworks to
further tighten the privacy budget of ε without compromising utility.

8 PAC Non-Identifiability

Inspired by Probably Approximately Correct (PAC) learning, London recently intro-
duced PAC Identifiability [London(2020)], a new privacy condition relevant to person-
alization in FL [Dinh, Tran, and Nguyen(2020), Fallah, Mokhtari, and Ozdaglar(2020),
Liang et al.(2020)Liang, Liu, Liu, Salakhutdinov, and Morency,Mansour et al.(2020)Mansour, Mohri, Ro, and Suresh,
Peterson, Kanani, and Marathe(2019), Yu, Bagdasaryan, and Shmatikov(2020)]. In-
formally, in a personalized FL setting, PAC identifiability determines whether the
private model used by a federation’s user can be leaked out to an adversarial federation
server. Learning a user’s private model can fundamentally compromise the user’s
privacy. London presents the case study of recommender systems, where the federa-
tion server may be able to determine ratings choices made by a targeted user. It is
critical for user privacy to determine if a given personalization approach’s user-local
(private) model is PAC identifiable. To that end we now prove that FT-FL is not PAC
identifiable.

Let G be the global model containing parameters p1, p2, ..., pn. Let Lu be the local
(private) model for user u, and Du denote the user’s private data used to train G and
Lu . We can w.l.o.g. represent personalization in FL at user u as follows:

∆pu = Lu(Du) ⊕ G(Du) (4)

where ⊕ is the personalization specific operator (algorithm) that combines the
local and global models’ outputs to yield ∆pu , the update to G’s parameters that is
shipped back to the federation server.

We use London’s definition of PAC identifiability in his restricted context of binary
classification for a recommender system in our proof. However, our proof can be
easily generalized to a richer definition of PAC identifiability.
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Definition 1 A user u, using a given protocol (which may be stochastic), is PAC
Identifiable if, for any ε ∈ (0, 1) and δ ∈ (0, 1), with probability at least 1 − δ over
T = poly(ε−1, δ−1) interactions with the server, the server can output an estimate L̂u ,
of the local model (after interaction), Lu , such that

1
I

∑
i∈I 1{L̂u(Du) ⊕ G(Du) , Lu(Du) ⊕ G(Du)} ≤ ε .

where, I is the set of I items from the catalog in the recommender system. Informally,
PAC identifiability puts an upper bound ε on the number of disagreements between
the user’s local model Lu , and its estimate L̂u predicted by an adversarial federation
server. In such cases, we say that models Lu and L̂u are similar.

While London [London(2020)] describes a simple PAC identifiability mechanism
(protocol), more sophisticated mechanisms will be proposed by researchers in the
future. Our proof of FT-FL’s PAC non-identifiability is agnostic to such mechanisms.

Formally, let AG be a mechanism employed by the adversarial federation server
such that

AG(∆pu) , L̂u (5)

where L̂u is the estimate of Lu . We say that AG is the PAC identifiability mechanism
for Lu .

Clearly, in the process of deriving L̂u , AG(∆pu) eliminates G(Du) or its effects
from Equation 8. Let us call that operation G−. Therefore,

G−(∆pu) = Lu(Du) + γ (6)

where γ is the noise introduced by G− in the process of eliminating the effects of
G(Du) on ∆pu . Thus,

AG(∆pu) = U−(G−(∆pu)) (7)

where U− maps Lu(Du) + γ to L̂u . γ must be negligible enough to allow the PAC
identifiability condition (2) to be satisfied.

Lemma 1 In any setting where a model is trained by FL, and users fine-tune the
model within their silo after training is complete, the adversarial federation server’s
PAC identifiability mechanism, AG , yields a model that is similar to the Null model
(the model with all its parameters set to the value 0):

AG(∆pu) = O

Proof As per Equation 8
∆pu = Lu(Du) ⊕ G(Du)

In case of FT-FL, Lu(Du) is completely missing from the above composition that
yields the parameter update ∆pu . In fact, Lu(Du) is computed after the entire FL
training process completes. Recall however, that Lu(Du) is used by user u privately
to make its post-training local predictions. In effect,

∆pu = 0̄ ⊕ G(Du)

In fact, ∆pu = G(Du). As a result, Equation 10 evaluates to
G−(∆pu) = 0̄ + γ

and as U− maps 0̄ + γ to L̂u , the latter is similar to the Null model O.
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The following corollaries follow

Corollary 1 FT-FL is not PAC identifiable.

Corollary 2 FT-DP-FL is not PAC identifiable.

Since fine-tuning of FT-FL (and FT-DP-FL) follows conventional training methodolo-
gies, the convergence proof of the fine tuning component of FT-FL (and FT-DP-FL)
is identical to standard convergence proofs for stochastic gradient descent and similar
optimization algorithms.
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