
A DSL-based framework for performance
assessment

Hamid El Maazouz1,2 Guido Wachsmuth2 Martin Sevenich2 Dalila Chiadmi1

Sungpack Hong2 Hassan Chafi2

1 Ecole Mohammadia d’ingénieurs, Avenue Ibnsina B.P. 765 Agdal Rabat, Morocco
emi@emi.ac.ma / contact@emi.ac.ma,

WWW home page: https://www.emi.ac.ma
2 Oracle Labs, 500 Oracle Parkway Redwood Shores, CA 94065, US

WWW home page: https://labs.oracle.com

Abstract. Performance assessment is an essential verification practice
in both research and industry for software quality assurance. Experi-
ment setups for performance assessment tend to be complex. A typical
experiment needs to be run for a variety of involved hardware, software
versions, system settings and input parameters. Typical approaches for
performance assessment are based on scripts. They do not document all
variants explicitly, which makes it hard to analyze and reproduce ex-
periment results correctly. In general they tend to be monolithic which
makes it hard to extend experiment setups systematically and to reuse
features such as result storage and analysis consistently across experi-
ments. In this paper, we present a generic approach and a DSL-based
framework for performance assessment. The DSL helps the user to set
and organize the variants in an experiment setup explicitly. The Runtime
module in our framework executes experiments after which results are
stored together with the corresponding setups in a database. Database
queries provide easy access to the results of previous experiments and
the correct analysis of experiment results in context of the experiment
setup. Furthermore, we describe operations for common problems in per-
formance assessment such as outlier detection. At Oracle, we successfully
instantiate the framework and use it to nightly assess the performance
of PGX [12, 6], a toolkit for parallel graph analytics.

1 Introduction

With our increasing reliance on software systems in various domains such as de-
fense and health care, verification and quality assurance have grew fundamental
in insuring that functional and non-functional requirements are met. Compa-
nies needed to validate features and quality of their products and services, they
needed to assure customers and gain their confidence. Researchers needed to pro-
vide credible contributions, they needed to build on existing experiments, and
assess the progress of their endeavors. This overwhelmed 3rd generation tech-
nologies and made development and testing in today’s platforms tedious and
complex [13].

2 Hamid El Maazouz et al.

Performance assessment, for example, involves measurement of metrics such
as response time, bandwidth utilization, and memory consumption with regard
to system settings, execution environment settings, and workload definitions.
System settings are both domain and system specific. Execution environment
settings may include different processor architectures such as Intel 64 and Sparc
and different types of software such as the Linux Kernel and the Java Runtime
Environment. Workload definitions may include datasets, sessions, and requests.
This process also involves activities such as result storage, analysis, and visu-
alization. Setting up this process for a software system is challenging because
of the big dimensionality present in these settings and the nowadays’ complex
experimentation requirements [2, 4, 17].

Typical approaches to performance assessment rely on scripting languages
as they are weakly typed and allow developers to easily hook different compo-
nents of the software system. However, this encourages uniformity of code and
data, and renders different concepts interchangeable [11]. Consequently, these ap-
proaches tend to flatten experiment setups with commands, which often become
mixed and duplicate mainly due to different levels of expertise and objectives
of involved human resources [3], and their lack of clean code guidelines [10].
Developers, for example, have more technical knowledge about the system than
operations engineers which in their turn are more attached to the domain com-
pared to quality assurance engineers. This results in a complex system that
makes it hard to extend and maintain experiment setups or reuse features such
as result storage and analysis consistently. These scripts are also considered a
valuable investment that is unfortunately often thrown away [7].

All of these factors make it challenging to systematically express, extend,
reuse, or link experiment setups to results for analysis and visualization [17]. To
address these issues, this paper presents a generic approach to performance as-
sessment by introducing a powerful representation of experiment setups. Based
on this approach, a DSL-based framework defines a language module for ex-
pressing experiment setups explicitly in addition to other modules that help
organize and automate performance assessment activities such as result storage
and analysis. Our specific contributions in this paper can be summarized in the
following:

– A generic DSL-based framework for performance assessment (cf. Section 3).
– A practical approach to implementing DSLs using the Gradle build language

(cf. Section 4).
– A successful instantiation of the framework and its evaluation in the context

of PGX, a toolkit for parallel graph analytics (cf. Section 5).

Using this approach to performance assessment considerably reduces the
complexity of experiment setups, their organization, and association to results
as well as their storage for further purposes such as analysis and visualization.
This is prominent because it saves developers and experimenters from many
repetitive tasks enabling them to focus more on actual development and perfor-
mance tuning without worrying as much about managing performance related
activities.

A DSL-based framework for performance assessment 3

2 Related works

An experiment in general is an empirical procedure carried out to investigate
the validity of a hypothesis. It mainly aims at studying correlations between
dependent and independent variables. This is done by manipulating the inde-
pendent variable and measuring the effect on the dependent variable. Whether
the hypothesis is refuted or supported, an experiment brings new knowledge
about the variables and their variations. Performance assessment, for example,
is an experimental process that involves execution of experiments to assess how
different parts of a system perform. Setting up these experiments, expressing
them, and managing activities related to performance has been impeding sys-
tematic integration of performance assessment as part of the project’s regression
pipeline [3, 7].

Model-driven engineering (MDE) is a paradigm that came to raise abstrac-
tion level at which computer programs are written. In this paradigm, the com-
plexity of platforms and applications is alleviated by considering models as first-
class entities in the software development process [13]. For this purpose, MDE
technologies aim at building models to capture domain concepts, their rela-
tionships, and the constraints associated to these concepts. These models are
then used to automatically produce artifacts such as application source code,
configuration, and documentation. This automated transformation helps reduce
implementation effort and time and ensures consistency and exchange between
implementations.

The use of MDE techniques is ubiquitous for many purposes such as aug-
menting developer productivity, reducing domain complexity [5, 16, 8], and fa-
cilitating integration of functional and non-functional requirement testing [3].
For performance assessment, Bernardino et al. [14] adopted a model-based test-
ing approach to automate activities of performance testing in web applications.
They proposed a domain specific language (DSL) for modeling performance tests
and generating test scenarios and scripts automatically. Barve et al. [1] created a
framework for assessing cloud application performance. The proposed framework
is derived from a set of meta-models that describe an aspect of the performance
assessment pipeline. It also comprises a graphical domain specific modeling lan-
guage (DSML) for specifying performance experiments which are transformed
into low-level scripts for configuring, deploying and measuring metrics of cloud
applications on a given platform. The drag-and-drop nature of the language in
addition to high level abstractions make it easy for performance engineers to
monitor cloud application performance. Bianculli et al. [2] proposed a frame-
work for defining testbeds for service-oriented architecture. This framework con-
sists of a modeling environment that features a DSL (based on a metamodel) for
defining a testbed model of a service-oriented architecture (SOA), a set of gener-
ators that process an input testbed (using scripts) to produce the actual testbed
components (i.e. the mock-ups of the services, the testing clients, and the ser-
vice compositions to execute) in addition to other artifacts such as deployment
descriptors and helper scripts, and a compiler that transforms the generated
artifacts into a format supported by the underlying platform that will execute

4 Hamid El Maazouz et al.

experiments. Ferme et al. [3] introduced and implemented a global approach
to integrating performance engineering activities into continuous software inte-
gration pipeline (CSI). Their approach features templates for users to set test
requirements using a YAML-based DSL to declaratively express performance
test configurations (e.g. load functions and workload definitions).

Our approach to performance assessment is domain agnostic and presents a
more global framework in which the DSL and Runtime modules are inspired from
MDE techniques. The DSL is based on a strong formalism and supports explicit
and organized experiment models. Moreover, our unique use of the Gradle build
language to implement the DSL is practical for any Gradle project.

3 DSL-based framework

Experimental design generally consists of choosing participants, partitioning
them into groups, and assigning the groups to different environments. Both the
participants and the environments can have properties where various combina-
tions are possible within an experiment setup.

In the context of performance assessment, the experiment setup space can
be similarly organized by deriving participant and environment types from the
experimentation requirements. This is possible because they necessarily describe
relationships between system settings, execution environment settings, and work-
load definitions. These relationships help identify similarities in the settings
which makes it possible to group them into participant and environment types.
This grouping also reduces the dimension of the experiment setup space and
leverages good understanding of these relationships.

Performance assessment is additionally responsible for concerns such as ex-
periment setup processing, experiment execution, result storage, analysis, and
visualization. Scripting languages were mainly meant for wiring parts of a mod-
ular system instead of implementing the system itself [11]. Therefore they tend
to render these parts equipotent and do not encourage separation of concerns.
Although they can still provide this organization of the experiment setup space
for the software system, they cannot protect or maintain it due to their weak
typedness and their unrestrictive coding style. In order to address these short-
comings, we extend the DSL design methodology in [15] by further deriving a
framework from the DSL to address the concerns of performance assessment.

3.1 Performance assessment DSL

Organization of the experiment setup space requires addressing challenges raised
in earlier 3rd generation approaches [13, 15] such as we gathered in the following:

– Explicitness: The DSL syntax needs to allow clear and declarative expres-
sion of an experiment’s intent.

– Completeness: The DSL should be capable of expressing any experiment
setup.

A DSL-based framework for performance assessment 5

– Flexibility: Requirements evolve and can become complex. The DSL needs
to provide flexible control on the granularity of the settings. This means the
DSL needs to be resilient, extensible, and maintainable.

– Reusability: Settings in the experiment setup space should be reusable.
This will allow users to briefly express experiment setups.

Organization of the experiment setup space based on experimental design
establishes relationships between participant and environment types. These re-
lationships are hierarchical and can be best formalized by a tree structure such as
in Figure 1 where every node (e.g. R) represents a participant type and is fully de-
scribed with its properties in the form of key-value pairs (e.g. ∀i : R.propi = ui).

R

...D

...FE

A

...B

{R.propi = ui}

{A.propi = vi}

{B.propi = wi}

Fig. 1. Example of an annotated tree structure.

We based the DSL on the annotated tree structure because it adequately
and completely models the hierarchical relationships between the concepts and
allows for explicit expression of these concepts and their properties. Additional
syntactic and semantic rules could be enforced on the DSL to allow flexibility
and reusability of concepts and/or their properties.

3.2 Performance assessment framework

The framework presented in Figure 2 is composed of 4 main modules. The DSL
module allows expressing performance assessment experiment setups systemati-
cally. Experiment setups are written in the DSL and are compiled into concrete
experiments. The Runtime module runs on the system under test and contains
interpreter objects for executing these experiments in addition to APIs and
helper utilities for performance metric measurement operations. When an ex-
periment finishes running, both the concrete experiment and results are sent by
the Runtime module to the Persistence module. This module is accessed through
interfaces and exposes operations such as storage, retrieval, and basic statistical
aggregation. The Analysis and Visualization module assess experiment results.
It serves for extracting insights about the evolution of the project’s performance.
A common problem in this assessment is outlier detection. This is addressed by
collecting statistics on performance metrics during a period of time in the past
and comparing them to current results. Tolerance intervals are defined to detect

6 Hamid El Maazouz et al.

outliers which are included, among other statistics, in the performance reports
which are then easily interpreted by the performance task force.

Fig. 2. Architecture of the performance assessment framework.

The DSL and Runtime modules are inspired from MDE techniques and pro-
vide a higher abstraction that is capable of closing the gap between the intent
of an experiment setup and the expression of the intent [11]. We describe, in the
next section, a practical implementation of the DSL module.

4 Gradle based implementation of the DSL module

The annotated tree structure formalism presented in Section 3 supports explicit
and well organized experiment models. However, implementing a DSL for each
experimentation domain from scratch is costly in terms of additional complexity
incurred by the actual project domain because it requires compiler expertise and
considerable man-hours to design, develop, and maintain the different language
aspects of the DSL.

Embedded DSLs is an implementation approach based on extending a given
base language and completely uses its compilation mechanisms [15]. This means
the costs of building a DSL compiler or interpreter and maintaining them are
completely eliminated. The main bottleneck of this approach is expressiveness
of the base language, thus its choice matters most to fit notation requirements
of the domain-specific constructs.

An example of such a base language is the Gradle build language. Gradle
provides this language itself as an embedded DSL in Groovy or Kotlin for setting
up project configuration. We chose to embed our performance assessment DSL
in the Gradle build language and provide it as a Gradle plugin. These choices
are motivated by the following rationales:

– The Gradle build language provides an explicit and declarative syntax and is
also already available, thus we benefit from compilation and editor services
for free.

– Gradle supports plugin development. Implementation as a plugin allows for
modularity, free and seamless integration into the project’s build system as
well as into its continuous regression pipeline.

– Gradle is widely adopted by many projects for its ease-of-use and its high
degree of automation. This means this DSL implementation is far-reaching
and very practical.

A DSL-based framework for performance assessment 7

Our implementation of the DSL module defines two types of data structures
as Plain Old Java Objects (POJOs). The frontend POJOs describe the DSL
syntax and are exposed to the project through Gradle extensions to hold ex-
periment setups. The backend POJOs describe the concrete experiments that
are generated from compiling the frontend POJOs. This compilation is achieved
by methods defined in the frontend POJOs to analyze, optimize, and transform
experiment setups into experiment objects.

The plugin defines three main tasks to manage invocation of the performance
assessment process. The first task performs analysis on the experiment setups,
the second task transforms the analyzed experiment setups into concrete exper-
iments, and the third task invokes the Runtime module and handles parallel
execution of the generated concrete experiments.

Both extensions and tasks are injected into the main project’s build system
by simply applying the plugin in its build script. This means the performance
assessment process can be made available for on-demand and continuous invo-
cation for free.

With the embedded languages approach, DSL implementation is reduced
to only adding syntactic domain-specific constructs and implementing custom
transformation rules. It also does not require much effort from a single devel-
oper. In fact, with prior comprehension of the domain idiom [15] and moderate
experience in Gradle development, we estimated this effort to be maximum 40
man-hours or equivalent to implementing a fully functional simple Java project.

Although we have designed generic interfaces for the other modules, we chose
to omit them in this publication for simplicity and lack of space. Usage of the
DSL consists of writing systematic experiment setups and using the produced
concrete experiments in the context of a given project. This means implementa-
tion of a Runtime module is due to host and execute the produced artifacts. The
cost of this implementation depends on the execution semantics of the concrete
experiments, the project’s own functioning, and the target performance metrics
to collect. In the following section, we evaluate the framework on a real academic
and industrial project.

5 Evaluation

The research and development team in PGX [12, 6] is responsible for identifying
and exploring new technologies that can improve graph analysis in Oracle prod-
ucts. For this purpose, it needs to comprehend nowadays’s industrial require-
ments as well as actively research on how to best address these requirements. In
this section, we chose PGX to evaluate our approach to performance assessment.

PGX is a high performance toolkit for graph analysis that supports running
algorithms such as PageRank and performing SQL-like pattern matching on
graphs [5, 16]. The PGX toolkit includes both single-node in-memory engine
and distributed engine for extremely large graphs. Graphs can be loaded from a
variety of sources such as the filesystem, a database, and HDFS and in various
formats such as adjacency list and edge list.

8 Hamid El Maazouz et al.

Performance assessment of PGX mainly requires measurement of execution
time and memory consumption of graph workloads such as graph loading, graph
algorithms [5], and graph queries [16]. These operations can run in single-node
in-memory or distributed engines and on many graph datasets. The single-node
in-memory engine has many configurations such as number of threads and thread
scheduling strategies. The distributed engine runs on many machines and has
many configurations such as buffer size and graph partitioning strategies. Hard-
ware resources are allocated in a cluster and need to be managed properly.
Measurements are taken many times and stop conditions are needed to limit
resource utilization in the case of lengthy or indeterministic experiments.

Using the DSL module in Section 3, we systematically represented these re-
quirements in the form of the annotated tree structure. Algorithms and graphs
illustrated in Figure 1.1 are nodes of the tree, they both have properties and are
organized in such a way to fulfill performance assessment idiom. All algorithms in
the experiment setup space, for example, run on PGX single-node in-memory en-
gine shared-memory and are limited to run under a timeout. They have mandatory
properties such as source code and arguments, and optional properties such as the
engine and timeout. "Pagerank" algorithm runs on "San Francisco street graph"

and "Topological Schedule" runs on "LiveJournal social network" and "Twitter"

graphs. Graph datasets also have mandatory properties such as the config file,
and optional properties such as engine and timeout.

To enable briefness, we provided support for default comprehensive configura-
tion globally for the experiment setup space and locally for graph and operation
nodes. We also enforced intuitive rules on the tree such as that all properties
of a node apply to all of its children. This means users do not have to repeat
setting the same settings thus allowing more reusability. Conflicts between the
same properties are resolved either by giving priority to the innermost or by
merging in the case of operation and graph arguments.

1 algorithms {

2 engine "shared -memory"

3 timeout "3600 SECONDS"

4 "Pagerank" {

5 source "./ algorithms/pagerank.gm"

6 arguments [["tol": 0.001 , "damp": 0.85, "norm": false]]

7 graphs {

8 "San Francisco street graph" {

9 timeout "1200 SECONDS"

10 }

11 // Other graphs ...

12 }

13 }

14 "Topological Schedule" {

15 source "./ algorithms/topological_schedule.gm"

16 arguments [[" source ": [1, 2, 3]]]

17 engine "distributed"

18 graphs {

19 "LiveJournal social network" {

A DSL-based framework for performance assessment 9

20 arguments = [[source: [59810 , 59811 , 59812]]]

21 timeout "900 SECONDS"

22 }

23 "Twitter" {

24 timeout "1000 SECONDS"

25 }

26 }

27 }

28 // Other algorithms ...

29 }

Listing 1.1. Experiment setup examples for performance assessment of Green-Marl
algorithms.

Invocation of the performance assessment framework is done through Gradle
commands. With no parameters, it will run the entire experiment setup space.
To allow selection of targeted experiment setups, we devised filters with the
help of Gradle project properties illustrated in Listing 1.2. These commands
compile experiment setups and invoke the Runtime module on the generated
experiments. Listing 1.3 shows a fragment of printed logs showing progress of
execution. Results along with concrete experiments are optionally saved through
REST calls to a database or simply saved on the local filesystem.

1 ./ gradlew :qa_framework:gmBenchmark -Poperations="Pagerank"

2 -Pgraphs="San Francisco street graph" -Pruntimes="sm"

Listing 1.2. Gradle command to only run PageRank algorithm on San Francisco street
graph using PGX SM engine.

1 Benchmarking GM algorithms for PGX SM

2 Starting engine with 72 threads and ’ENTERPRISE_SCHEDULER ’

3 Loading graph ’San Francisco street graph’ ...

4 Graph ’San Francisco street graph’ loaded in 0 MINUTES

5 Preprocessing graph for GM algorithm ’Pagerank ’

6

7 Resizing thread pool to 1 threads for ’ENTERPRISE_SCHEDULER ’

8 Running algorithm ’Pagerank ’ 5 times or within 1200 SECONDS

9 Starting BASIC memory listener

10 Measurement 1/5 took 196 ms, time left: 1199803 ms

11 Measurement 2/5 took 45 ms, time left: 1199757 ms

12 Measurement 3/5 took 42 ms, time left: 1199714 ms

13 Measurement 4/5 took 40 ms, time left: 1199674 ms

14 Measurement 5/5 took 33 ms, time left: 1199640 ms

15 Stopping BASIC memory listener

16

17 Resizing thread pool to 4 threads for ’ENTERPRISE_SCHEDULER ’

18 Running algorithm ’Pagerank ’ 5 times or within 1200 SECONDS

19 Starting BASIC memory listener

20 Measurement 1/5 took 218 ms, time left: 1199781 ms

21 Measurement 2/5 took 110 ms, time left: 1199671 ms

22 Measurement 3/5 took 30 ms, time left: 1199640 ms

10 Hamid El Maazouz et al.

23 Measurement 4/5 took 16 ms, time left: 1199624 ms

24 Measurement 5/5 took 16 ms, time left: 1199608 ms

25 Stopping BASIC memory listener

Listing 1.3. Log excerpt from the framework invocation by the command in List-
ing 1.2.

6 Conclusion

Performance assessment is ubiquitous in many industrial and academia projects.
Moreover, evolution of projects necessitates a high degree of automation and
ease-of-use in the performance assessment process. In this paper, we described
our approach to performance assessment by introducing a DSL to express ex-
periment setups systematically from which we also derived a framework to au-
tomate performance assessment activities such as result storage, analysis, and
visualization. Experimental design inspired us to group settings into participant
and environment types, which greatly helped in reducing the complexity and im-
proved understanding and organization of the experiment setup space. Moreover,
our choice of the Gradle build language as the base language for the DSL made
it seamless to automate activities in the performance assessment process. We
believe the presented DSL is powerful, inexpensive to implement, practical, and
could be instantiated to address experimentation requirements of other projects.

We envision as future work to support more advanced result analysis and vi-
sualization. Response time and memory consumption were the main performance
metrics addressed in this work, and we plan to support detailed memory profiling
as well as processor and cache performance. Resources for executing experiments
such as individual machines or clusters have to be closely monitored and used
optimally by the performance assessment framework. This relates to the num-
ber of measurements of a given experiment setup as it determines warmup and
effective measurement phases. These two settings make sure no experiment runs
indefinitely or no idle resource is held. Moreover, a fixed number of measure-
ments for some experiments may not be enough for the numbers to eventually
stabilize or may be excessive thus resulting in unnecessary resource utilization.
Although we have flexibility in expressing these settings, and that we have useful
estimations for PGX operations, we believe that there needs to be proper online
support in the Runtime module for when measurements need to stop. We also
consider to grow the framework and include stress testing [9].

References

1. Yogesh Barve, Shashank Shekhar, Shweta Khare, Anirban Bhattacharjee, and
Aniruddha Gokhale. Upsara: A model-driven approach for performance analysis
of cloud-hosted applications. In 2018 IEEE/ACM 11th International Conference
on Utility and Cloud Computing (UCC), pages 1–10. IEEE, 2018.

A DSL-based framework for performance assessment 11

2. Domenico Bianculli, Walter Binder, and Mauro Luigi Drago. Soabench: Perfor-
mance evaluation of service-oriented middleware made easy. In 2010 ACM/IEEE
32nd International Conference on Software Engineering, volume 2, pages 301–302.
IEEE, 2010.

3. Vincenzo Ferme and Cesare Pautasso. Towards holistic continuous software per-
formance assessment. In Proceedings of the 8th ACM/SPEC on International Con-
ference on Performance Engineering Companion, pages 159–164. ACM, 2017.

4. Tor-Morten Gr ø nli and Gheorghita Ghinea. Meeting quality standards for mobile
application development in businesses: A framework for cross-platform testing. In
2016 49th Hawaii International Conference on System Sciences (HICSS), pages
5711–5720. IEEE, 2016.

5. Sungpack Hong, Hassan Chafi, Edic Sedlar, and Kunle Olukotun. Green-marl: a
dsl for easy and efficient graph analysis. ACM SIGARCH Computer Architecture
News, 40(1):349–362, 2012.

6. Sungpack Hong, Siegfried Depner, Thomas Manhardt, Jan Van Der Lugt, Merijn
Verstraaten, and Hassan Chafi. Pgx. d: a fast distributed graph processing engine.
In Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis, page 58. ACM, 2015.

7. Lennart CL Kats, Rob Vermaas, and Eelco Visser. Integrated language defini-
tion testing: enabling test-driven language development. ACM SIGPLAN Notices,
46(10):139–154, 2011.

8. Lennart CL Kats and Eelco Visser. The spoofax language workbench: rules for
declarative specification of languages and ides. In ACM sigplan notices, volume 45,
pages 444–463. ACM, 2010.

9. Martin L Kersten, Alfons Kemper, Volker Markl, Anisoara Nica, Meikel Poess, and
Kai-Uwe Sattler. Tractor pulling on data warehouses. In Proceedings of the Fourth
International Workshop on Testing Database Systems, page 7. ACM, 2011.

10. Robert C Martin. Clean code: a handbook of agile software craftsmanship. Pearson
Education, 2009.

11. John K Ousterhout. Scripting: Higher level programming for the 21st century.
Computer, 31(3):23–30, 1998.

12. Raghavan Raman, Oskar van Rest, Sungpack Hong, Zhe Wu, Hassan Chafi, and
Jay Banerjee. Pgx. iso: parallel and efficient in-memory engine for subgraph iso-
morphism. In Proceedings of Workshop on GRAph Data management Experiences
and Systems, pages 1–6. ACM, 2014.

13. Douglas C Schmidt. Model-driven engineering. COMPUTER-IEEE COMPUTER
SOCIETY-, 39(2):25, 2006.

14. Maicon Bernardino da Silveira et al. Canopus: a domain-specific language for
modeling performance testing. 2016.

15. Arie Van Deursen, Paul Klint, and Joost Visser. Domain-specific languages: An
annotated bibliography. ACM Sigplan Notices, 35(6):26–36, 2000.

16. Oskar van Rest, Sungpack Hong, Jinha Kim, Xuming Meng, and Hassan Chafi.
Pgql: a property graph query language. In Proceedings of the Fourth International
Workshop on Graph Data Management Experiences and Systems, page 7. ACM,
2016.

17. Johannes Wienke, Dennis Wigand, Norman Koster, and Sebastian Wrede. Model-
based performance testing for robotics software components. In 2018 Second IEEE
International Conference on Robotic Computing (IRC), pages 25–32. IEEE, 2018.

