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Abstract

Federated Learning (FL) is a distributed learning paradigm
that enables mutually untrusting clients to collaboratively
train a common machine learning model. Client data privacy
is paramount in FL. At the same time, the model must be pro-
tected from poisoning attacks from adversarial clients. Ex-
isting solutions address these two problems in isolation. We
present FedPerm, a new FL algorithm that addresses both
these problems by combining a novel intra-model parame-
ter shuffling technique that amplifies data privacy, with Pri-
vate Information Retrieval (PIR) based techniques that per-
mit cryptographic aggregation of clients’ model updates. The
combination of these techniques further helps the federation
server constrain parameter updates from clients so as to cur-
tail effects of model poisoning attacks by adversarial clients.
We further present FedPerm’s unique hyperparameters that
can be used effectively to trade off computation overheads
with model utility. Our empirical evaluation on the MNIST
dataset demonstrates FedPerm’s effectiveness over existing
Differential Privacy (DP) enforcement solutions in FL.

1 Introduction
Federated Learning (FL) is a distributed learning paradigm
where mutually untrusting clients collaborate to train a
shared model, called the global model, without explicitly
sharing their local training data. FL training involves a
server that aggregates, using an aggregation rule (AGR),
model updates that the clients compute using their local pri-
vate data. The aggregated global model is thereafter broad-
casted by the server to a subset of the clients. This process
repeats for several rounds until convergence or a threshold
number of rounds. Though highly promising, FL faces mul-
tiple challenges (Kairouz et al. 2019) to its practical deploy-
ment. Two of these challenges are (i) data privacy for clients’
training data, and (ii) robustness of the global model in the
presence of malicious clients.

The data privacy challenge emerges from the fact that raw
model updates of federation clients are susceptible to pri-
vacy attacks by an adversarial server as demonstrated by
several recent works (Li et al. 2022; Lim and Chan 2021;
Nasr, Shokri, and Houmansadr 2019; Wei et al. 2020; Zhu,
Liu, and Han 2019). Two classes of approaches can address
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this problem in significantly different ways: First, Local Dif-
ferential Privacy (Duchi, Jordan, and Wainwright 2013; Ka-
siviswanathan et al. 2008; Truex et al. 2020; Warner 1965)
in FL (LDP-FL) enforces a strict theoretical privacy guaran-
tee to model updates of clients. The guarantee is enforced
by applying carefully calibrated noise to the clients’ local
model updates using a local randomizer R. In addition to
the privacy guarantee, LDP-FL can defend against poison-
ing attacks by malicious clients, thus providing robustness to
the global model (Nguyen et al. 2021; Naseri, Hayes, and
De Cristofaro 2020; Sun et al. 2019). However, the model
update perturbation needed for the LDP guarantee signifi-
cantly degrades model utility.

The other approach to enforce client data privacy is secure
aggregation (sAGR), where model update aggregation is
done using cryptographic techniques such as homomorphic
encryption or secure multi-party computation (Bonawitz
et al. 2017; Zhang et al. 2020; Bell et al. 2020; Fereidooni
et al. 2021). sAGR protects privacy of clients’ data from an
adversarial server because the server sees just the encrypted
version of clients’ model updates. Moreover, this privacy is
enforced without compromising global model utility. How-
ever, the encrypted model updates themselves provide the
perfect cover for a malicious client to poison the global
model (Fereidooni et al. 2021; Nguyen et al. 2021) – the
server cannot tell the difference between a honest model up-
date and a poisoned one since both are encrypted.

In this paper we answer the dual question: Can we de-
sign an efficient federated learning algorithm that achieves
local privacy for participating clients at a low utility cost,
while ensuring robustness of the global model from ma-
licious clients? To that end, we present FedPerm, a new
FL protocol that combines LDP (Duchi, Jordan, and Wain-
wright 2013; Kasiviswanathan et al. 2008; Warner 1965),
model parameter shuffling (Erlingsson et al. 2019), and com-
putational Private Information Retrieval (cPIR) (Chor and
Gilboa 1997; Chang 2004; Aguilar-Melchor et al. 2016; An-
gel et al. 2018) in a novel way to achieve our dual goals.

The starting point of FedPerm’s design is privacy ampli-
fication by shuffling (Erlingsson et al. 2019), which enables
stronger (i.e., amplified) privacy with little model perturba-
tion (using randomizerR) at each client. Crucially, our shuf-
fling technique fundamentally differs from prior works in
that we apply intra-model parameter shuffling rather that the



inter-model parameter shuffling done previously (Erlingsson
et al. 2019; Liu et al. 2021; Girgis et al. 2021).

Next, each FedPerm client privately chooses its shuffling
pattern uniformly at random for each FL round. To aggre-
gate the shuffled (and perturbed) model parameters, Fed-
Perm client utilizes cPIR to generate a set of PIR queries for
its shuffling pattern that allows the server to retrieve each
parameter privately during aggregation. All the server ob-
serves is the shuffled parameters of the model update for
each participating client, and a series of PIR queries (i.e., the
encrypted version of the shuffling patterns). The server can
aggregate the PIR queries and their corresponding shuffled
parameters for multiple clients to get the encrypted aggre-
gated model. The aggregated model is decrypted indepen-
dently at each client.

The combination of LDP at each client and intra-model
parameter shuffling achieves enough privacy amplification
to let FedPerm preserve high model utility. At the same
time, availability of the shuffled parameters at the federation
server lets it control a client’s model update contribution by
enforcing norm-bounding, which is known to be highly ef-
fective against model poisoning attacks (Nguyen et al. 2021;
Naseri, Hayes, and De Cristofaro 2020; Sun et al. 2019).

Since FedPerm utilizes cPIR which relies on homomor-
phic encryption (HE) (Paillier 1999; Damgård and Jurik
2001), it can be computationally expensive, particularly
for large models. We present computation/utility trade off
hyper-parameters in FedPerm, that enables us to achieve an
interesting trade off between computational efficiency and
model utility. In particular, we can adjust the computation
burden for a proper utility goal by altering the size and num-
ber of shuffling patterns for the FedPerm clients.

We empirically evaluate FedPerm on the MNIST dataset
to demonstrate that it is possible to provide LDP-FL guar-
antees at low model utility cost. We theoretically and nu-
merically demonstrate a trade off between model utility and
computational efficiency. Specifically, FedPerm’s hyperpa-
rameters create shuffling windows whose size can be re-
duced to drastically cut computation overheads, but at the
cost of reducing model utility due to lower privacy ampli-
fication. We experiment with two representative shuffling
window configurations in FedPerm– “light” and “heavy”.
For a (4.0, 10−5)-LDP guarantee, the light version of Fed-
Perm, where client encryption, and server aggregation needs
52.2 seconds and 21 minutes respectively, results in a model
that delivers 32.85% test accuracy on MNIST. The heavier
version of FedPerm, where client encryption and server ag-
gregation needs 32.1 minutes and 16.4 hours respectively,
results in 72.38% test accuracy. Non-private FedAvg, CDP-
FL and LDP-FL provide 91.02%, 53.50%, and 13.74% test
accuracies for the same (ε, δ)-DP guarantee respectively.

2 Preliminaries
In FL (McMahan et al. 2017; Kairouz et al. 2019; Konečnỳ
et al. 2016), N clients collaborate to train a global model
without directly sharing their data. In round t, the federation
server samples n out of N total clients and sends them the
most recent global model θt. Each client re-trains θt on its
private data using stochastic gradient descent (SGD), and
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Figure 1: Different models of differential privacy in Feder-
ated Learning. Red dots are showing the trust boundaries.

sends back the model parameter updates (xi for ith client)
to the server. The server then aggregates (e.g., averages) the
collected parameter updates and updates the global model
for the next round (θt ← θt−1 + 1

n

∑n
i=1 xi).

2.1 Central Differential Privacy in FL (CDP-FL)
In CDP-FL (Brendan et al. 2018; Geyer, Klein, and Nabi
2017), illustrated in Figure 1(a) , a trusted server first col-
lects all the clients’ raw model updates (xi ∈ Rd), ag-
gregates them into the global model, and then perturbs the
model with carefully calibrated noise to enforce differential
privacy (DP) guarantees. The server provides participant-
level DP by the perturbation. Formally, consider adjacent
datasets (X,X ′ ∈ Rn×d) that differ from each other by the
data of one federation client. Then:
Definition 2.1 (Centralized Differential Privacy (CDP))
A randomized mechanism M : X → Y is said to be
(ε, δ)-differential private if for any two adjacent datasets
X,X ′ ∈ X , and any set Y ⊆ Y:

Pr[M(X) ∈ Y ] ≤ eε Pr[M(X ′) ∈ Y ] + δ (1)
where ε is the privacy budget (lower the ε, higher the pri-
vacy), and δ is the failure probability.

2.2 Local Differential Privacy in FL (LDP-FL)
CDP-FL relies on availability of a trusted server for collect-
ing raw model updates. On the other hand, LDP-FL (Wang
et al. 2019; Liu et al. 2020) does not rely on this assump-
tion and each client perturbs its output locally using a ran-
domizer R (Figure 1(b)). If each client perturbs its model



updates locally by R which satisfies (εℓ, δℓ)-LDP, then ob-
serving collected updates {R(x1), . . . ,R(xn)} also implies
(εℓ, δℓ)-DP (Dwork, Roth et al. 2014).
Definition 2.2 (Local Differential Privacy (LDP)) A ran-
domized mechanism R : X → Y is said to be (εℓ, δℓ)-
locally differential private if for any two inputs x, x′ ∈ X
and any output y ∈ Y ,:

Pr[R(x) = y] ≤ eεℓ Pr[R(x′) = y] + δℓ (2)

In LDP-FL, each client perturbs its local update (xi)
with ϵℓ-LDP. Unfortunately, LDP hurts the utility, especially
for high dimensional vectors. Its mean estimation error is
bounded by O(

√
d log d
εℓ
√
n

) meaning that for better utility we
should increase the privacy budget or use larger number of
users in each round (Bhowmick et al. 2018).

2.3 Privacy Amplification by Shuffling Clients’
updates

Recent works (Liu et al. 2021; Girgis et al. 2021) utilize
the privacy amplification effect by shuffling model param-
eters across client model updates from participating clients
to improve the LDP-FL utility (illustrated in Figure 1(c)).
FL frameworks based on shuffling clients’ updates consists
of three building processes:M = A ◦ S ◦ R. Specifically,
they introduce a shuffler S, which sits between the FL clients
and the FL server, and it shuffles the locally perturbed up-
dates (by randomizer R) before sending them to the server
for aggregation (A). More specifically, given parameter in-
dex i, S randomly shuffles the ith parameters of model up-
dates received from the n participant clients. The shuffler
thus detaches the model updates from their origin client (i.e.
anonymizes them). Previous works (Balle et al. 2019a; Bal-
cer and Cheu 2019; Ghazi, Pagh, and Velingker 2019) fo-
cused on shuffling one-dimensional data x ∈ X , and corol-
lary 2.1 shows the privacy amplification effect by shuffling.
Corollary 2.1 (Balle et al. 2019b) In shuffle model, if R
is εℓ-LDP, where εℓ ≤ log (n/ log (1/δc))/2. M statisfies
(εc, δc)-DP with εc = O((1 ∧ εℓ)e

εℓ
√
log (1/δc)/n) where

’∧’ shows minimum function.
From above corollary, the privacy amplification has a di-

rect relationship with
√
n where n is the number of selected

clients for aggregation, i.e., increasing the number of clients
will increase the privacy amplification. Note that in Fed-
Perm, the clients are responsible for shuffling, and instead of
shuffling the n clients’ updates (inter-model shuffling), each
client locally shuffles its d parameters (intra-model shuf-
fling). In real-world settings there is a limit on the value of
n, so the amount of amplification we can achieve is also lim-
ited. However, in FedPerm we can see much more amplifi-
cation because we are shuffling the parameters and n≪ d.

2.4 Privacy Composition
We use following naive and strong composition theo-
rems (Dwork, Rothblum, and Vadhan 2010) in this paper:
Lemma 2.2 (Näive Composition) ∀ε ≥ 0, t ∈ N, the fam-
ily of ε-DP mechanism satisfies tε-DP under t-fold adaptive
composition.

Lemma 2.3 (Strong Composition) ∀ε, δ, δ′ > 0, t ∈ N,
the family of (ε, δ)-DP mechanism satisfies (

√
2t ln (1/δ′) ·

ε+ t · ε(eε − 1), tδ + δ′)-DP under t-fold adaptive compo-
sition.

3 FedPerm: Private and Robust Federated
Learning by parameter Permutation

We assume a dual threat model setting where (i) the federa-
tion server acts as an honest but curious aggregator, and (ii)
the federation clients can maliciously attempt to poison the
trained model using manipulated local parameter updates.

3.1 FedPerm: Design
FedPerm utilizes computational Private Information Re-
trieval (cPIR) (Chor and Gilboa 1997; Stern 1998) for secure
aggregation at the federation server. In particular, FedPerm
uses the cPIR algorithm by Chang (Chang 2004) that lever-
ages the algorithm by Paillier (Paillier 1999). Algorithm 1
depicts FedPerm. Figure 1(d) depicts the FedPerm frame-
work that consists of three components,F = A◦S◦Rd, de-
noting the client-side parameter randomizer (Rd), the client-
side shuffler (S), and the server-side aggregator (A).
Key Distribution Paillier is a partial HE (PHE) algorithm
that relies on a public key encryption scheme (details of Pail-
lier HE in Appendix D.3). Since Paillier is employed to pro-
tect client updates from a curious federation server, FedPerm
requires an independent key server that generates a pair of
public and secret homomorphic keys (Pk, Sk). This key
pair is distributed to all federation clients, and just the public
key Pk is sent to the federation server (for aggregation). The
key server itself can be implemented as an independent third
party server, or a leader among the federation clients may be
chosen to play that role (Zhang et al. 2020).
Client Local Training: In the tth round, the server ran-
domly samples n clients among total N clients. Each sam-
pled client locally retrains a copy of the global model it re-
ceives from the server (θtg), optimizing the model using its
local data and local learning rate η (Algorithm 1, line 5).
Randomizing Update Parameters: After computing local
updates θtu, client u clips the update using threshold C and
normalizes the parameters to the range [0, 1] (Algorithm 1,
lines 6-7). Now the client applies the randomizer (i.e., Rd)
on its local parameters to make them (εd)-differentially pri-
vate (Algorithm 1, line 8). We use the Laplacian Mechanism
as a local randomizer with privacy budget εd.
Shuffling: After clipping and perturbing the local update,
each client shuffles the parameters ytu using the random
shuffling pattern πu (Algorithm 1, lines 9-10). Shuffling am-
plifies the privacy budget εd, which we discuss in Section 4.
Generating PIR queries: Now the client encodes the shuf-
fle indices πu using a PIR protocol. This process comprises
two steps: first creating a binary mask of the shuffled index,
and then encrypting it using the public key of HE that the
client received in first step (Algorithm 1 line 11-12). Gen-
erally, a PIR client needs access to the jth record privately
from an untrusted PIR server that holds a dataset θ with d
records; i.e. the PIR server cannot know that the client re-
quested the jth record. To do so, the PIR client creates a



Algorithm 1: FedPerm where green and blue colors show ex-
ecution by server and client respectively.
Input: number of FL rounds T , number of local epochs E, number of selected users
in each round n, learning rate η, local privacy budget εd, number of model parameters
d, parameter update clipping threshold C

Output: θT
g

1: θ0
g ← Initialize weights

2: for each iteration t ∈ [T ] do
3: U ← set of n randomly selected clients out of N total clients

4: for u in U do
5: θt

u ← LOCALUPDATE(θt
g, η, E)

6: θ̄t
u ← CLIP(θt

u,−C,C)

7: θ̃t
u ← (θ̄t

u + C)/(2C)

8: yt
u ← RANDOMIZE(θ̃t

u, εd)

9: πu ← Shuffling pattern RANDOMPERMUTATIONS ∈ [1, d]

10: ỹt
u ← SHUFFLE(yt

u, πu)

11: btu ← BINARYMASK(πu)

12: ctu ← ENCpk(b
t
u)

13: Client u sends (ỹt
u, c

t
u) to the server

14: end for
15: norm bounding: ỹt

u ← ỹt
u ·min(1, M

||ỹt
u||

2
) for u ∈ U

16: z̄ ← 1
n

∑
u∈U

(
ctu × ỹt

u

)
17: z ← DECsk(z̄)

18: normalize z ← C · (2z − 1)

19: update model θt+1
g ← θt

g + z

20: end for
21: return θT

g

unit vector (binary mask) b⃗j of size d where all the bits are
set to zero except the jth position being set to one:

b⃗j = [0 0 . . . 1 . . . 0 0] (3)
If the PIR client does not care about privacy, it would send
b⃗j to the PIR server, and the server would generate the
client’s response by multiplying the binary mask into the
database matrix θ (θj = b⃗j × θ). A PIR technique allows
the client to obtain this response without revealing b⃗j to the
PIR server. For example in (Chang 2004), the PIR client uses
HE to encrypt b⃗j element by element before sending it to
the PIR server. During the data recovery phase, the client
extracts its target record by decrypting the component of
ENC(⃗bj) × θ. Equation 4 shows retrieving the jth record
by this PIR query. Note that a HE system has a property that
m1 ×m2 ← DEC (ENC[m1]×m2).

DEC(ENC(⃗bj)× θ) =

DEC (ENC[0] · θ1 + · · ·+ ENC[1] · θj + · · ·+ ENC[0] · θd) =
DEC (ENC[θj ]) = θj

(4)
A FedPerm client creates d PIR queries to retrieve each pa-
rameter privately. (In Section 4, we discuss additional pa-
rameters to reduce the number of PIR queries.) In this case,

the shuffled parameters (ỹtu) are the dataset located at the
PIR server and each shuffled index in πu is the secret record
row number (i.e. jth in above) that the PIR client is inter-
ested in. Client u first creates btu which is a collection of d
binary masks of shuffled indices in πu, similar to PIR query
b⃗j in Equation 3. Then the client encrypts the binary masks
and sends the shuffled parameters and the PIR query (en-
crypted binary masks) to the server for aggregation.
Correctness: Note that for every client u and every round t,
decrypting the multiplication of the encrypted binary masks
to the shuffled parameters produces the original unshuffled
parameters. It means that for ytu = DEC (ctu × ỹtu). So for
any (ỹ, c, ) we have:

DEC (c× ỹ) =

DEC




ENC(⃗bπ1)

ENC(⃗bπ2)
. . .

ENC(⃗bπd)

×

 ỹ1
ỹ2
. . .
ỹd


 =

DEC


ENC[0] . . . ENC[1] . . . ENC[0]

ENC[0] . . . ENC[1] . . . ENC[0]
. . . . . . . . . . . . . . .

ENC[0] . . . ENC[1] . . . ENC[0]

×

y
π
1

yπ
2

. . .
yπ
d


 =

DEC
([

ENC[y1] ENC[y2] . . . ENC[yd]
])

=[
y1 y2 . . . yd

]
(5)

Server: norm bounding After collecting all the local up-
dates (ỹtu, c

t
u) for selected clients in round t, the FedPerm

server first applies ℓ2-norm bounding to the threshold M on
the shuffled parameters ỹtu (Algorithm 1, line 15). Note that
unlike other robust AGRs, norm bounding is the only robust
AGR scheme that does not require the true position of the pa-
rameters because it works by calculating the ℓ2 norm of the
parameter updates as a whole irrespective of their order (i.e.
ℓ2(ỹ

t
u) = ℓ2(y

t
u)). Prior works (Nguyen et al. 2021; Naseri,

Hayes, and De Cristofaro 2020; Sun et al. 2019) have shown
the effectiveness of norm bounding in defense against poi-
soning attacks by malicious clients.
Server: Aggregation Then the server aggregates all the up-
dates into global update z̄ (Algorithm 1, line 16). This ag-
gregation is averaging the update parameters for n collected
updates by calculating 1

n

∑
u∈U (ctu × ỹtu). The expression

ctu× ỹtu has the effect of “unshuffling” client u’s parameters.
At the same time, the resulting vector is encrypted, thus kept
hidden from the server.
Correctness of Aggregation: In Equation 5, we show
that ∀t ∈ [T ], u ∈ U ytu = DEC (ctu × ỹtu).
Based on the two main properties of a HE system (a)
m1 × m2 ← DEC (ENC[m1]×m2), (b) m1 + m2 ←
DEC (ENC[m1] + ENC[m2]), and Equation 5, we can derive
the Equation 6:

DEC

(
1

n

∑
u∈U

(ctu × ỹtu)

)
=

1

n

∑
u∈U

ytu (6)

Updating Global Model The server aggregates local up-
dates (ỹtu, c

t
u) without knowing the true position of the pa-

rameters as they are detached from their positions. Result of



aggregation 1
n

∑
u∈U (ctu × ỹtu) is vector of encrypted pa-

rameters, and they need to be decrypted to be used for up-
dating the global model (Algorithm 1 lines 17-19). This de-
cryption is done at each client using Paillier’s secret key.

4 Computation/Communication and Utility
Tradeoff in FedPerm

Each FedPerm client perturbs its local update (vector xi con-
taining d parameters) with randomizerRd which is εd-LDP,
and then shuffles its parameters. We use the Laplacian mech-
anism as the randomizer. Based on the näive composition
theorem from Lemma 2.2, the client perturbs each parameter
value withRwhich satisfies εwd-LDP where εwd = εd

d (Ap-
pendix C contains additional details). Corollary 4.1 shows
the privacy amplification from εd-LDP to (εℓ, δℓ)-DP after
the parameter shuffling. Corollary 4.1 is derived from Corol-
lary 2.1, by substituting the number of participating clients
n by the number of parameters d in the model.

Corollary 4.1 If R is εwd-LDP, where εwd ≤
log (d/ log (1/δℓ))/2, FedPerm F = A ◦ Sd ◦ Rd satisfies
(εℓ, δℓ)-DP with εℓ = O((1 ∧ εwd)e

εwd
√
log (1/δℓ)/d).

Thus, larger the number of parameters in the model,
greater is the privacy amplification. With large models con-
taining millions or billions of parameters, the privacy am-
plification can be immense. However, the model dimension-
ality also affects the computation (and communication) cost
in FedPerm. Each FedPerm client generates a d-dimensional
PIR query for every parameter in the model, resulting in
a PIR query matrix containing d2 entries. This results in
a quadratic increase in client encryption time, server ag-
gregation time, and client-server communication bandwidth
consumption. This increase in communication, and more
importantly computation, resources is simply infeasible for
large models containing billions of parameters. To address
this problem FedPerm introduces additional hyperparame-
ters that present an interesting trade off between computa-
tion/communication overheads and model utility.

4.1 FedPerm with Smaller Shuffling Pattern
Instead of shuffling all the d parameters, the FedPerm
client can partition its parameters into several identically
sized windows, and shuffle the parameters in each win-
dow with the same shuffling pattern. Thus, instead of cre-
ating a very large random shuffling pattern π with d in-
dices (i.e., π = RANDOMPERMUTATIONS[1, d]), each
client creates a shuffling pattern with k1 indices (i.e., π =
RANDOMPERMUTATIONS[1, k1]), and shuffles (Sk1

) each
window with these random indices.

The window size k1 is a new FedPerm hyperparameter
that can be used to control the computation/communication
and model utility trade off. Once we set the size of shuffling
pattern to k1, each client needs to perform d · k1 encryptions
and consumes O(d · k1) network bandwidth to send its PIR
queries to the server.
Superwindow: A shuffling window size of k1, partitions
each FedPerm client u’s local update xu (d parameters) into
w = d/k1 windows, each containing k1 parameters. Each

FedPerm client, independently from other FedPerm clients,
chooses its shuffling pattern π uniformly at random with
indices ∈ [1, k1], and shuffles each window with this pat-
tern. This means that every position j (1 ≤ j ≤ k1) in
each window k (1 ≤ k ≤ w) will have the same permu-
tation index (πj). Thus all of the jth positioned parameters
(x(k,j)

u for 1 ≤ k ≤ w) will contain the value from the πth
j

slot in window k. For a given index j (1 ≤ j ≤ k1), we de-
fine a superwindow as the set of all of the parameters x(k,j)

u

for 1 ≤ k ≤ w. If we structure the parameter vector xu

(with d parameters) as Rk1×w (a matrix with k1 rows and w
columns), each row of this matrix is a superwindow.

where

Figure 2: FedPerm example with k1 = 3 and d = 12. The
red boxes are showing the windows that the parameters in-
side them are going to be shuffled with the same shuffling
pattern π.

Figure 2 depicts an example model containing 12 param-
eters θ = [θ1, θ2, ..., θ12]. The original FedPerm algorithm
mandates a shuffling pattern π with 12 indices ∈ [1, 12],
where the PIR query generates 12 × 12 = 144 encryp-
tions. However, a shuffling pattern π of three indices k1 = 3
(π = [3, 1, 2] in the figure) requires only 3× 3 = 9 encryp-
tions. This shuffling pattern creates 4 windows of size 3 (red
boxes in the 2-D matrix in the figure), and each row in the
2-D matrix, represented more succintly by [ΘA,ΘB ,ΘC ],
itself constitutes a superwindow. The shuffling pattern π =
[3, 1, 2] applied to θ = [ΘA,ΘB ,ΘC ] swaps entire super-
windows to give Sk1(θ) = [ΘC ,ΘA,ΘB ].

Shuffling of superwindows, instead of individual param-
eters, leads to a significant reduction in the computation
(and communication) overheads for FedPerm clients. How-
ever, this comes at the cost of smaller privacy amplifica-
tion. Corollary 4.2 shows the privacy amplification of Fed-
Perm from εd-LDP to (εℓ, δℓ)-DP after superwindow shuf-
fling (with window size k1). After applying the randomizer
R that is εd-LDP on the local parameters, each superwindow
is εw-LDP where εw = w · εwd = d

k1
· εwd = εd

k1
. Since we

are shuffling the superwindows, we can derive Corollary 4.2
for FedPerm by setting the shuffling pattern size to k1 from
Corollary 2.1.
Corollary 4.2 For FedPerm F = A ◦ Sk1

◦ Rw with
window size k1, where Rw is εw-LDP and εw ≤
log (k1/ log (1/δℓ))/2, the amplified privacy is εℓ = O((1∧
εw)e

εw
√
log (1/δℓ)/k1.

4.2 FedPerm with Multiple Shuffling Patterns
An additional way to adjust the computation/communi-
cation vs. utility trade off is by using multiple shuffling
patterns. Each FedPerm client chooses k2 shuffling pat-
terns {π1, . . . , πk2

} uniformly at random where each πi =
RANDOMPERMUTATIONS[1, k1] for 1 ≤ i ≤ k2. Then,
each FedPerm client partitions the d parameters into d/k1



windows, where it permutes the parameters of window k
(1 ≤ k ≤ d/k1) with shuffling pattern πi s.t. i = k mod k2.
In this case, each FedPerm client needs k2 · k21 encryptions
to generate the PIR queries.

Figure 3 shows FedPerm for d = 12, k1 = 3 and k2 = 2,
i.e., there are two shuffling patterns π1 (shown with red box)
and π2 (shown with blue box) and each one has 3 shuffling
indices. In this example, the client partitions the 12 param-
eters into 4 windows that it shuffles with π1 (1st and 3rd
windows) and π2 (2nd and 4th windows). This example is
equivalent to an FL scneario with two external inter-model
shufflers (with shuffling patterns π1, π2) and three FL clients
(A,B,C). Each client sends 2 (w = d/(k1k2)) parameters
to each shuffler for shuffling with other clients. Two different
shuffling patterns π1 and π2 are applied on [ΘA1,ΘB1,ΘC1]
and [ΘA2,ΘB2,ΘC2] respectively.

where

Figure 3: FedPerm example with k1 = 3 and k2 = 2. We
have two shuffling patterns π1 and π2 shown with red and
blue boxes.

When we have k2 shuffling patterns and each shuffling
pattern has k1 indices, the size of each superwindow is w =
d/(k1k2). Therefore, each client perturbs each superwindow
with a randomizer Rw that satisfies εw-LDP where εw =
w · εwd = d

k1k2
· εwd = εd

k1k2
. Take εw to Corollary 2.1

on the superwindows to find the amplified local privacy and
then using strong composition in Lemma 2.3 we can easily
derive the Theorem 4.3 for FedPerm with Sk2

k1
.

Theorem 4.3 For FedPerm F = A◦Sk2

k1
◦Rw with window

size k1, and k2 shuffling patterns, whereRw is εw-LDP and
εw ≤ log (k1/ log ((k2 + 1)/δℓ))/2, the amplified privacy
is εℓ = O((1 ∧ εw)e

εw log (k2/δℓ)
√
k2/k1).

(a) Impace of k1 and k2, (b) Impact of d and εwd.
Figure 4: Privacy amplification of FedPerm from εd-LDP to
(εℓ, δℓ)-DP. We illustrate the overal amplification with Ben-
nett inequality for the Laplace Mechanism.

4.3 Privacy Analysis
In Figure 4, we show the relationship of our introduced
varibales k1, k2, εd and d on the privacy amplification in

FedPerm. Figure 4a shows the privacy amplification effect
from εd-LDP to (εℓ, δℓ)-DP for the local model updates af-
ter shuffling with k2 shuffling patterns each with size of k1.
We can see that each client can use larger shuffling pat-
terns (i.e. , increasing k1) or more shuffling patterns (i.e.,
increasing k2) and get larger privacy amplification. How-
ever, this comes with a price where this imposes more com-
putation/communication burden on the clients to create the
PIR queries as they need to encrypt k2 × k21 values and
send them to the server, and it also imposes higher com-
putation on the server as it should multiply larger matrices.
Figure 4b shows the amplification of privacy for fixed value
of k1 = 100, k2 = 10 for various model sizes. From this
figure we can see that if we want to provide same privacy
level for larger models, we need to increase values of k1 or
k2 (i.e. more computation/communication cost).

5 Experiments
In this section, we investigate the utility and computation
trade offs in FedPerm. We use MNIST dataset and a logis-
tic regression model with d = 7850 parameters to evaluate
these trade offs.

5.1 Comparison with Baselines
We compare our results with following baselines: (a) Fe-
dAvg (McMahan et al. 2017) with no privacy, (b) CDP-
FL (Brendan et al. 2018; Geyer, Klein, and Nabi 2017), (c)
LDP-FL (Wang et al. 2019; Liu et al. 2020) with Gaussian
Mechanism.

(a) Final test accuracy. (b) Accuracy per FL round.
Figure 5: Test accuracy for different FL algorithms for
MNIST over 15 clients.

Figure 5a shows the test accuracy of that model that was
trained using different FL algorithms running for T = 50
rounds. The MNIST dataset is divided across n = 15 clients
with a Dirichlet distribution. Figure 5b shows the test ac-
curacy for these algorithms per FL round when the total
privacy budget is fixed to ε = 4.0. We compared two ver-
sions of FedPerm in these experiments: (a) FedPerm with
k1 = 400 and k2 = 1 which is a “light” version where en-
cryption and decryption time at clients takes around 52.2 and
2.4 seconds respectively. It also imposes 21 minutes compu-
tation time at the server. (b) FedPerm with k1 = 800 and
k2 = 10 which is a “heavy” version where client encryp-
tion, decryption, and server aggregation time takes around
32.1 minutes, 2.4 seconds and 16.4 hours respectively.

As we mentioned earlier, FedPerm provides a trade-off
between privacy amplification and compute resources –



larger the values of k1 and k2, greater are the compute re-
sources for training, which in turn provides higher privacy
amplification that results in better model utility. The heavy
version of FedPerm needs more resources to be as fast as the
lighter version, but it can provide much more utility (because
the privacy amplification is larger so the amount of noise is
added is smaller). For instance, after T = 50, and total pri-
vacy budget (4.0, 1e−5), the heavy version provides 72.38%
test accuracy while the light version provides 32.85% test
accuracy. From these figures we can see if we invest enough
computation resources in FedPerm, we can provide higher
utility compared to CDP-FL, without trusting the FedPerm
server. Non-private FedAvg, CDP-FL and LDP-FL also pro-
vides 91.02%, 53.50%, and 13.74% test accuracies for the
same total (ε, δ) respectively.

5.2 Time Analysis
We evaluate the impacts of our hyperparameters k1, k2, n,
and ds on the encryption, decryption and sever aggregation
time in Figure 6. We use Paillier encryption system and we
use a key size of 2048 bits in our experiments. For measur-
ing time, we use 64CPUs and 64GB memory for the client
and server simulations. Note that we opt to not use GPU as
model training is not a bottleneck in our system compared
to HE operations. Also note that these figures are data inde-
pendent as we are working with encryption and decryption
and homomorphic multiplication with plaintext and homo-
morphic addition.

(a) Impact of k1. (b) Impact of k2.

(c) Impact of d. (d) Impact of n.
Figure 6: Client encryption, decryption, and server aggrega-
tion time in FedPerm.

Client encryption time: In FedPerm, each client must do
k21 · k2 encryptions for its query, therefore client encryption
time has a quadratic and linear relationship with window
size (k1) and number of shuffling patterns (k2) respectively
(Figures 6a and 6b). We also show in Figure 4 that increasing
the k1 has more impact (close to quadratic impact) compared
to increasing k2 on the privacy amplification. This means
that if we invest more computation resources on the clients
and are able to do more encryption, we get greater privacy
amplification by parameter shuffling. For instance, when we

increase the k1 from 100 to 200 (while fixing k2 = 1), the
average client encryption time increases from 3.4 to 13.1
seconds for d = 7850 parameters. And while fixing the
k1 = 100, if we increase the number of shuffling patterns
from 1 to 10, the encryption time goes from 3.4 to 32.7 sec-
onds. When we fix the value of k1 and k2, the number of en-
cryption is fixed at the clients, so the encryption time would
be constant if we increase the number of parameters (d) each
round (Figure 6c).
Client decryption time: Changing k1, k2, and n does not
have any impact on decryption time, as each client should
decrypt d parameters (Figures 6a and 6b). In figure 6c, we
show the linear relationship of decryption time and number
of parameters. For instance by increasing the number of pa-
rameters from 105 to 106, the decryption time increases from
1.01 to 9.91 seconds.
Server aggregation time: In FedPerm, the server first mul-
tiplies the encrypted binary mask to the corresponding shuf-
fled model parameters for each client participating in the
training round, and then sums the encrypted unshuffled pa-
rameters to compute the encrypted global model. We em-
ploy joblib to parallelize matrix multiplication over super-
windows. Thus, larger the superwindows greater is the par-
allelism. However, as we increase k1 and/or k2 the super-
window size goes down, and hence the parallelism, which
leads to increase in running time as observed in Figures 6a
and 6b. Moreover, increasing n, d has a linear relation-
ship with server aggregation time (Figure 6c and 6d). For
instance, when we increase the n from 5 to 10 the server ag-
gregation time increases from 157.47 to 326.72 seconds for
d = 7850, k1 = 100, and k2 = 1.

6 Conclusion
We presented FedPerm, a new FL algorithm that com-
bines LDP, intra-model parameter shuffling at the federa-
tion clients, and a cPIR based technique for parameter ag-
gregation at the federation server to deliver both client data
privacy and robustness from model poisoning attacks. Our
intra-model parameter shuffling significantly amplifies the
LDP guarantee for clients’ training data. The cPIR based
technique we employ allows cryptographic parameter ag-
gregation at the server. At the same time, the server clips the
clients’ parameter updates to ensure that model poisoning at-
tacks by adversarial clients are effectively thwarted. We also
presented windowing hyperparameters in FedPerm that let
us trade off compute resources with model utility. Our em-
pirical evaluation on the MNIST dataset demonstrates Fed-
Perm’s privacy amplification benefits and studies the trade
off between computation and model utility. We leave the
study of extensions to FedPerm – (i) an additional dimen-
sion of the hyperparameters (k3) that takes the computation-
utility trade offs to hypercube space (see Appendix E), (ii)
plugging in other PIR protocols, and (iii) combining an ex-
ternal client shuffler with FedPerm – to future work.
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Möllering, H.; Nguyen, T. D.; Rieger, P.; Sadeghi, A.-R.;
Schneider, T.; Yalame, H.; et al. 2021. SAFELearn: secure
aggregation for private federated learning. In 2021 IEEE
Security and Privacy Workshops (SPW), 56–62. IEEE.
Geyer, R. C.; Klein, T.; and Nabi, M. 2017. Differentially
private federated learning: A client level perspective. arXiv
preprint arXiv:1712.07557.
Ghazi, B.; Pagh, R.; and Velingker, A. 2019. Scalable and
differentially private distributed aggregation in the shuffled
model. arXiv preprint arXiv:1906.08320.
Girgis, A.; Data, D.; Diggavi, S.; Kairouz, P.; and Suresh,
A. T. 2021. Shuffled model of differential privacy in fed-
erated learning. In International Conference on Artificial
Intelligence and Statistics, 2521–2529. PMLR.
Kairouz, P.; McMahan, H. B.; Avent, B.; Bellet, A.; Bennis,
M.; Bhagoji, A. N.; Bonawitz, K.; Charles, Z.; Cormode, G.;
Cummings, R.; et al. 2019. Advances and open problems in
federated learning. arXiv preprint arXiv:1912.04977.
Kasiviswanathan, S. P.; Lee, H. K.; Nissim, K.; Raskhod-
nikova, S.; and Smith, A. D. 2008. What Can We Learn
Privately? CoRR, abs/0803.0924.
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Figure 7: Different threat models.

A Threat Models
In this section, we describe two threat models that are of
interest to our work, and illustrated in Figure 7.



A.1 Honest-but-Curious Aggregator
In this threat model, we assume that the server correctly fol-
lows the aggregation algorithm, but may try to learn clients’
private information by inspecting the model updates sent by
the participants. This is a common assumption that previ-
ous works (Zhang et al. 2020; Xu et al. 2019; Bonawitz
et al. 2017; Truex et al. 2019) also consider. For creating the
PIR queries, we use Paillier (Paillier 1999) homomorphic
encryption. We explain different homomorphic encryption
systems that we use in Appendix D.3. Before starting Fed-
Perm, we need a key server to generate and distribute the
keys for the homomorphic encryption (HE). A key server
generates a pair of public and secret homomorphic keys
(Pk, Sk), sends them to the clients, and sends only the pub-
lic key to the server. Either a trusted external key server or a
leader client can be responsible for this role. For the leader
client, similar to previous works (Zhang et al. 2020), before
the training starts, the FL server randomly selects a client
as the leader. The leader client then generates the keys and
distributes them to the clients and the server as above.

The steps of FedPerm for this threat model (Figure 7(a))
are as follows: (1) The pair of keys are distributed by the
key server to all the clients. (2) In each round of training,
the clients learn their local updates, generate encrypted PIR
query and shuffled parameters, and send them to the server.
Next, the server aggregates the updates, and sends the aggre-
gated update to the clients. (3) Each client can decrypt the
encrypted global parameters received from the server using
the private key and updates its model.

A.2 Curious and Colluding Clients
In this threat model, we assume that some clients may col-
lude with the FL server to get private information about
a victim client by inspecting its model update. For this
threat model, we use thresholded Paillier (Damgård and Ju-
rik 2001). In the thresholded Paillier scheme, the secret key
is divided to multiple shares, and each share is given to a
different client. For this threat model, we need an external
key server that generates the keys and sends (Pk, Ski) to
each client, and sends the public key to the server. Now each
client can partially decrypt an encrypted message, but if less
than a threshold, say t, combine their partial decrypted val-
ues, they cannot get any information about the real message.
On the other hand, if we combine ≥ t partial decrypted val-
ues, we can recover the secret. We explain how thresholeded
Paillier scheme works in Appendix D.3.

The steps of FedPerm for this threat model (Figure 7(b))
are as follows: (1) The pairs of keys are distributed to
the clients by the key server. (2) In each round of train-
ing, the clients learn their local updates,generate encrypted
PIR query and shuffled parameters, and send them to the
server. Next, the server aggregates the local updates to pro-
duce global model update (which is encrypted). (3) The
server randomly chooses t clients to partially decrypt the
global model update. The FedPerm server sends the en-
crypted global update to these clients. (4) Each client de-
crypts the global model with its specific partial secret key
Ski, and sends the result back to the server. (5) The server

first authenticates each partial decryption that is done by the
true Ski (by a zero-knowledge proof provided by thresh-
olded Paillier (Damgård and Jurik 2001)). Then the FedPerm
server combines the partial decrypted updates and broad-
casts plain unshuffled model updates to all the clients for
the next round of FedPerm.

At present our implementation of FedPerm does not sup-
port this threat model, and we leave it for future work.

B Central Differential Privacy in FL
(CDP-FL)

Algorithm 2 shows how CDP-FL works which is also dis-
cussed in (Brendan et al. 2018; Geyer, Klein, and Nabi
2017; Naseri, Hayes, and De Cristofaro 2020). In CDP-
FL, the server receives model updates capped by norm C,
and after averaging them, it adds i.i.d sampled noise to the
parameters θt+1

g ← θtg + 1
n

∑
u∈U θtu + N (0, σ2I) where

σ ← ∆2

ε

√
2ln(1.25)/δ and the ℓ2 sensitivity is ∆2 = C.

Algorithm 2: Central Differential Privacy in FL (CDP-FL)
Input: number of FL rounds T , number of local epochs E,
number of all the clients N , number of selected users in each
round n, total privacy budget TP , probability of subsam-
pling clients q, learning rate η, noise scale z, bound C
Output: global model θTg

1: θ0g ← Initialize weights
2: Initialize MomentAccountant(ε, δ,N)
3: for each iteration t ∈ [T ] do
4: U ← set of n randomly selected clients out of N total

clients with probability of q
5: pt ← MomentAccountant.getPrivacySpent() {% pri-

vacy budget spent till this round}
6: if pt > TP then
7: return θTg {% if spent privacy budget is passed

over the threshold finish FL training}
8: end if
9: for u in U do

10: θ ← θtg
11: for local eopoch e ∈ [E] do
12: for batch b ∈ [B] do
13: θ ← θ − η▽L(θ, b)
14: △← θ − θtg
15: θ ← θtg +△min (1, C

||△||2
)

16: end for
17: end for
18: Client u sends θtu = θ − θtg to the server
19: end for
20: σ ← zC/q
21: θt+1

g ← θtg +
1
n

∑
u∈U θtu +N (0, σ2I)

22: MomentAccountant.accumulateSpentBudget(z)
23: end for
24: return θTg



C Laplace Mechanism
The most common mechanism for achieving pure εℓ-DP is

Laplace mechanism (), where

Definition C.1 Let f : Xn → Rk. The ℓ1-sensitivity of f
is:

∆
(f)
1 = max

X,X′
||f(X)− f(X ′)||1 (7)

where X,X ′ ∈ Xn are neighbering datasets differing from
each other by a single data record.

Sensitivity gives an upper bound on how much the output
of the randomizer can change by switching over to a neigh-
boring dataset as the input.

Definition C.2 Let f : Xn → Rk. The Laplace mechanism
is defined as:

R(X) = f(X) + [Y1, . . . , Yk] (8)

Where the Yis are drawn i.i.d from Laplace(∆(f)/ε) ran-
dom variable. This distribution has density of p(x) =
1
2b exp

(
− |x|b

)
where b is the scale and equal to ∆(f)/ε.

In FedPerm, each client i applies the Laplace mechanism
as a randomizer R on its local model update (xi). Each
model update contains d parameters in range of [0, 1], so the
sensitivity of the entire input vector is d. It means that apply-
ing εd-DP on the vector xi is equal to applying εwd = εd/d
on each parameter independently. Therefore, applying εd-
DP randomizerR on the vector xi means adding noise from
Laplace distribution with scale b = 1

εwd
= 1

εd
d

= d
εd

.

D Background
D.1 Robustness to poisoning attacks
Most of the distributed learning algorithms, including Fe-
dAvg (McMahan et al. 2017), operate on mutually untrusted
clients and server. This makes distributed learning suscep-
tible to the threat of poisoning (Kairouz et al. 2019; She-
jwalkar et al. 2021). A poisoning adversary can either own
or control a few of FL clients, called malicious clients,
and instruct them to share malicious updates with the cen-
tral server in order to reduce the performance of the global
model. There are two approaches to poisoning FL: untar-
geted (Baruch, Gilad, and Goldberg 2019; Fang et al. 2020;
Shejwalkar and Houmansadr 2021) attacks aim to reduce the
utility of global model on arbitrary test inputs; and back-
door (Bagdasaryan et al. 2020; Wang et al. 2020; Xie et al.
2019) attacks aim to reduce the utility on test inputs that
contain a specific signal called the trigger.

In order to make FL robust to the presence of such ma-
licious clients, the literature has designed various robust
aggregation rules (AGR) (Blanchard et al. 2017; Mhamdi,
Guerraoui, and Rouault 2018; Yin et al. 2018; Mozaffari,
Shejwalkar, and Houmansadr 2021), which aim to remove
or attenuate the updates that are more likely to be malicious
according to some criterion. For instance, Multi-krum (Blan-
chard et al. 2017) repeatedly removes updates that are far
from the geometric median of all the updates, and Trimmed-
mean (Yin et al. 2018) removes the largest and smallest val-
ues of each update dimension and calculates the mean of the

remaining values. It is not possible to use these AGRs in
secure aggregation as the parameters are encrypted.

D.2 Private Information Retrieval (PIR)
Private information retrieval (PIR) is a technique to provide
query privacy to users when fetching sensitive records from
untrusted database servers. That is, PIR enables users to
query and retrieve specific records from untrusted database
server(s) in a way that the servers cannot identify the records
retrieved. There are two major types of PIR protocols. The
first type is computational PIR (CPIR) (Chang 2004) in
which the security of the protocol relies on the computa-
tional difficulty of solving a mathematical problem in poly-
nomial time by the servers, e.g., factorization of large num-
bers. Most of the CPIR protocols are designed to be run by
a single database server, and therefore to minimize privacy
leakage they perform their heavy computations on the whole
database (even if a single entry has been queried). Most of
these protocols use homomorphic encryption (Section D.3)
to make their queries private. The second major class of
PIR is information-theoretic PIR (ITPIR) (Mozaffari and
Houmansadr 2020). ITPIR protocols provide information-
theoretic security, however, existing designs need to be run
on more than one database servers, and they need to assume
that the servers do not collude. Our work uses computational
PIR (cPIR) protocols to make the shuffling private.

D.3 Homomorphic Encryption (HE)
Homomorphic encryption (HE) allows application of cer-
tain arithmetic operations (e.g., addition or multiplication)
on the ciphertexts without decrypting them. Many recent
works (Chang 2004) advocate using partial HE, that only
supports addition, to make the FL aggregation secure. In this
section we describe two important HE systems that we use
in our paper.
Paillier An additively homomorphic encryption system
provides following property:

Enc(m1) ◦ Enc(m2) = Enc(m1 +m2) (9)
where ◦ is a defined function on top of the ciphertexts.

In these works, the clients encrypt their updates, send
them to the server, then the server can calculate their sum
(using the ◦ operation) and sends back the encrypted results
to the clients. Now, the clients can decrypt the global model
locally and update their models. Using HE in these scenario
does not produce any accuracy loss because no noise will
be added to the model parameters during the encryption and
decryption process.
Thresholded Paillier In (Damgård and Jurik 2001), the au-
thors extend the Paillier system and proposed a thresholded
version. In the thresholded Paillier scheme, the secret key
is divided to multiple shares, and each share is given to a
different participant. Now each participant can partially de-
crypt an encrypted message, but if less than a threshold, say
t, combine their partial decrypted values, they cannot get
any information about the real message. On the other hand,
if we combine ≥ t partial decrypted values, we can recover
the secret. In this system, the computations are in group Zn2

where n is an RSA modulus. The process is as follows:



• Key generation: First find two primes p and q that stat-
isfies p = 2p′ + 1 and q = 2q′ + 1 where p′, q′ are
also prime. Now set the n = pq and m = p′q′. Pick
d such that d = 0 mod m and d = 1 mod n2.
Now the key server creates a polynomial f(x) =∑k−1

i=0 aix
i mod n2m where ai are chosen randomly

from Z∗n2m and the secret is hidden at a0 = d. Now
each secret key share is calculated as si = f(i) for ℓ
shareholders and the public key is n. For verification of
correctness of decryption another public value v is also
generated where the verification key for each shareholder
is vi = v∆si mod n2 and ∆ = ℓ.

• Encryption: For message M , a random number r is cho-
sen from Z∗n2 and the output ciphertext is c = gM ·
rn

2

mod n2.
• Share decryption: The ith shareholder computes ci =
c2∆si for ciphertext c. And for zero-knowlege proof, it
provides logc4 (c

2
i ) = logv (vi) which provides gurantee

that the shareholder really uses its secret share for de-
cryption si.

• Share combining: After collecting k partial decryption,
the server can combine them into the original plain-text

message M by c′ = Πi∈[k]c
2λS

0,i

i mod n2 where λS
0,i =

∆Πi′∈[k],i′ ̸=i
−i
i−i′ . And use it to generate the M .

E Discussion and Future Work
Utilizing recursion in cPIR. A solution to reduce the num-
ber encryptions and upload bandwidth at the clients would
be using recursion in our cPIR. In this technique, the dataset
is represented by a k3-dimensional hypercube, and this al-
lows the PIR client to prepare and send k3

k3
√
d encrypted

values where k3 would be another hyperparameter. For fu-
ture work, we can use this technique and reduce the number
of encryptions which makes the upload bandwidth consump-
tion lower too. For instance, if we have one shuffling pattern
k2 = 1, the number of encryption decreases from k1d to
k3

k3
√
k1d.

Plugging newer PIR protocol. FedPerm utilizes cPIR for
private aggregation, and in particular we use (Chang 2004)
which is based on Paillier. However, any other cPIR protocol
can be used in FedPerm. For example, SealPIR (Angel et al.
2018) can be used to reduce the number of encryptions at
the client. SealPIR is based on a SEAL which is a lattice
based fully HE. The authors show how to compress the PIR
queries and achieve size reduction of up to 274×. We defer
analyzing FedPerm with other cPIR schemes to future work.
Combination of an external client shuffler for more pri-
vacy amplification. For further privacy amplification, we
can use an external shuffler that shuffles the n sampled
clients’ updates similar to FLAME (Liu et al. 2021). For fu-
ture work, we can use double amplification by first shuffling
the parameters at the clients (i.e. , detaching the parameter
values from their position) and then shuffle the client’s up-
dates at the external shuffler (i.e., detaching the updates from
their client’s ID).


