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Abstract 

 

In this paper, a clustering approach, namely Hierarchical Fisher-information-based 

Clustering (HFC), is proposed for clustering the similar elements in a structure, based 

on their effect on the modal parameters and dynamic behaviour of the structure. This 

clustering approach is indispensable and valuable for any damage localization approach, 

as always in practice, the SHM systems include very low number of sensors compared 

to the number of elements of a structure (or degrees of freedom). Therefore, a clustering 

approach is a great tool in assessing the possible localization resolution. Furthermore, a 

clustering approach is necessary to be used for one of the powerful tests, i.e. MinMax 

test, in Statistical Subspace Damage Localization (SSDL) method. The robustness of the 

SSDL method on localizing damage in real structures was demonstrated in the 

literature. In here, the HFC clustering approach along with its effects on the damage 

localization results for a real test structure, the Yellow Frame, will be presented. It will 

be shown that the HFC approach can robustly cluster the similar elements of a structure 

compared to a popular and well-known clustering method, i.e. k-means. The results will 

be shown and compared. 

 

 

1.  Introduction 
 

A significant component of structural health monitoring (SHM) is damage localization 

methods which process the data with the purpose of localizing damages in the structures 

after detecting them. One of these methods with a proven robustness in detecting and 

localizing the damages in real structures is the Statistical Subspace Damage 

Localization (SSDL) method (1,2).  

There are numerous researches found in the literature dealing with damage 

identification of structures. These methods use different responses of structure and are 

reviewed in some review papers such as (3,4). One category of these techniques 

includes the methods employing statistical tests in identifying the damage. The SSDL 

method is categorized in this group. 

Since the damage in a structure results in changes in its natural frequencies and 

modeshapes, monitoring these modal parameters can be used in identifying the damage. 

However, identification of modal parameters is not usually accurate (especially for 

higher modeshapes) and it needs manual processing of the data; therefore they are not 

appropriate for real-time health monitoring. In the SSDL method, there is no need to 

estimate the natural frequencies and modeshapes, making this approach capable of 

being used in real-time monitoring of structures. In this way, the whole eigenstructure, 

i.e. modeshapes and natural frequencies, of the measurements are included in the 
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damage detection and the focus is not only on dominant frequencies. Including higher 

modes in this evaluation makes the damage detection approach more robust, considering 

that the main effect of local damages is on higher modeshapes. 

The SSDL method was shown to be able to robustly detect the damages (5,6) and 

localize them in real structures (6,7).  

In this approach, i.e. SSDL, in addition to the data driven residual (8), an analytical 

model of the structure, e.g. finite element model, is used to localize the damage (9). This 

analytical model needs to be created for the system in the reference state (healthy 

structure with no damage) only and there is no need to update the model for the damage 

testing. This model is used to calculate Jacobians of the data driven residual to each 

physical parameter of the structure, e.g. members stiffness or sectional properties. The 

Jacobians are a bridge in connecting the data driven domain, i.e. residual, to the 

analytical model domain, i.e. physical parameters. For this purpose, an important link 

between the data-driven residual and the finite element model is needed, which is made 

through a sensible parameter choice by clustering and a respective sensitivity 

computation. In this paper, a novel clustering approach, namely Hierarchical Fisher-

information-matrix-based Clustering (HFC), is described that by an applicable scheme 

can be used for choosing the parameters for the required sensitivity computation in 

realistic applications (6).  

This clustering approach, i.e. HFC, is indispensable and valuable for any damage 

localization approach, as always in practice the SHM systems include very low number 

of sensors compared to the number of elements of a structure. For this purpose, 

clustering the elements which are dynamically similar to each other (we call them close 

elements) makes the approach more accurate and the results will be more reliable with 

an understanding of the amount of resolution of detection we are able to gain. 

In this paper, the SSDL method will be presented and then the HFC approach will be 

described by theory and subsequently, the results on a real test structure, will be 

demonstrated in practice. The SSDL formulations in section 2 will be modified and 

adjusted based on the clusters in section 3. Finally, the results on the real test structure, 

i.e. the Yellow Frame (6,10), will be shown and discussed. 

 

2.  Statistical Subspace Damage Localization (SSDL) method 
 

As shown in (1,9), the SSDD framework offers the possibility to detect parameters that 

are responsible for the changes in the residual function. Hence, by defining the 

parameter set as the collection of parameters linked to a finite element model, we can 

detect the parts of the model that has changed due to this damage. In this approach in 

addition to the data driven residual, an analytical model of the structure, e.g. finite 

element model, is used to localize the damage. 

Firstly, the state-space representation of the dynamic model of a structure can be written 

in discrete-time space as 

1k k k

k k k

x Fx w

y Hx ε
+ = +


= +

 (1) 

where xk is representing the state of the system in step k and y is the measured output 

(e.g. from sensors). The F and H matrix are, in order, the state transition matrix and 

observation matrix. In a general form, the noise is imposed in the model on the state as 

k
w  and on the measured output as kε . The importance and effect of these noise 
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parameters on the robustness of the SSDL method were previously investigated by the 

authors in (6,11,13,14).  

By the use of output-only covariance based subspace system identification method (15), 

a residual vector will be defined. For this, define the Hankel matrix 1,p q+H  as  

1 2

2 3 1

1,

1 2

Hank( )

q

p

p q i

p p p q

R R R

R R R
R

R R R

+

+

+ + +

 
 
 = = 
 
  

H

⋯

⋯

⋮ ⋮ ⋱ ⋮

⋯

. (2) 

Since, this Hankel matrix includes the dynamic properties of the system, we can 

monitor the changes (damages) in the system by comparing this matrix in two 

conditions of the structure: the undamaged (reference state) and test state (damaged or 

undamaged). This comparison can be done by using the following characterization of 

the Hankel matrix and its left null space in reference state, i.e. 0S , as 

0 1, 0T

p qS + =H . (3) 

By computing the left null space matrix in the reference state and recomposing the 

estimate of the Hankel matrix in test state as 
1,

ˆ
p q+H , and in view of (3), the residual ζ  

can be defined as  

0 1,
ˆvec( )T

p q
N Sζ += H  (4) 

where N is the number of samples. It can be shown that this residual is normally 

distributed in each state, and therefore, the following hypothesis can be defined as 

0

1

(0, ) under 

( , ) under 

H

J H
ζ

δθ

Σ
→ 

Σ

N

N
 (5) 

in which Σ  is the asymptotic covariance, δθ  can be a vector of changes (damages) in 

elements and J  is the asymptotic sensitivity of the residual computed with respect to 

the physical parameters θ . 

 

2.1 Parametric Hypothesis Test 

 

In order to test hypothesis (5), a generalized likelihood ratio (GLR) test is used (16). the 

GLR test is asymptotically χ2-distributed with degrees of freedom equal to 

=rank( ) dim( )d J θ=  and non-centrality parameter 1T T
J Jδθ δθ−Σ  under 1H  and 0 under 

0H , and thus 

( )12
1

1 1T T T
J J J Jχ ζ ζ

−− − −= Σ Σ Σ . (6) 

The χ2-variable is the parametric representation of a damage index and is compared 

with a threshold of safety. Since its distribution is shifted with the given non-centrality 

parameter under H1, if its value surpasses this threshold, it shows that the condition of 

the structure is being changed. Hence, it indicates that a damage in the system has 

happened. 
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2.1.1 Sensitivity based approach 

The damage in the structure can be modelled as a change in a parameter, e.g. kp , of the 

analytical model as used in (1,8). Now, define  

1 1
2 2 ˆˆ ˆand J Jζ ζ

− −
= Σ = Σɶ ɶ  (7) 

where Ĵ is the consistent estimate of J  and 
1
2ˆ −

Σ  is the matrix square root of the inverse 

of the estimate of Σ̂ . Such decomposition of the covariance matrix to its inverse roots is 

possible since it is positive definite. Based on (7) and in view of (5), the new residual is 

distributed as 

0

1

(0, ) under 

( , ) under 

H

J H
ζ

δθ


→ 



I

I
ɶ

ɶ

N

N
. (8) 

Hence, the GLR test (6) can be shown by the χ2-test for each parameter kp  (a physical 

parameter) of the structure as 

2 ( )
T T

k k
k T

k k

J J
p

J J

ζ ζ
χ =

ɶ ɶɶ ɶ

ɶ ɶ
 (9) 

where Jɶ  is a matrix collecting all vectors kJɶ  for 
ρ

1k N= ⋯ , and 
ρ

N  is the total number 

of parameters. Same as (6), if element kp  would be damaged, (9) will be increased and 

surpass a safety threshold. 

 

2.1.2 MinMax test 

In this test, the effect of changes in other elements on the χ2-test value of an element is 

removed. This removal is achieved in (9,17) by projecting the residual on the element 

being tested and removing the projections from other elements (being “blind” to other 

elements). Therefore, in this test the computed χ2-value for an element conveys only the 

information from the change in that element while being blind to the changes in other 

elements. This will reduce the chance of false positive result for the undamaged 

elements, while the sensitivity-based approach is prone to it. 

The corresponding robust χ2-test, i.e. *2χ , can be defined based on (9) as 

* *2 * 1* ( ) T

k a a ap Fχ ζ ζ−=  
(10) 

where *

aζ  is a robust residual corresponding to element a (to be tested) with physical 

property kp  and the *

aF  is the corresponding robust Fisher information matrix. The 

definition and implementation of these parameters can be seen in (6,9). It should be 

noted that although for a damaged element the robust χ2-test has smaller or equal value 

than the sensitivity based approach, but the effect of damage in other elements is 

removed from this factor. This makes the damaged elements more distinguishable than 

the other test, i.e. sensitivity based approach. 

 

3.  Hierarchical Fisher-information-matrix-based Clustering (HFC) 
 

The number of physical parameters in a structure is usually higher than the identified 

modal parameters and hence, the sensitivity (Jacobian) matrix J is usually a “wide” 
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matrix. Since the number of sensors is considerably less than the number of DOFs of the 

structure, the resolution of the identification in terms of elements is not high and the 

columns of the Jacobian corresponding to close elements are pointing to the same 

direction. This causes the χ2-test of the close elements to react the same way. This 

closeness stems from the modal behaviour of the elements which in turn is related to 

their geometrical and physical closeness and modal direction in the considered 

modeshapes. 

Furthermore, the close elements cannot be directly treated in the MinMax test, because 

the Jacobian matrix is required to be full column rank. The reason is that the MinMax 

test insures of seeing purely the change in the tested element by removing the other 

elements effect. However, if two elements are close and one of them is damaged, when 

testing the damaged element the effect of damage is removed from the test by its close 

element. This will reduce drastically the χ2-test reaction to damage for the damaged 

element and therefore generates false negative results. In order to remove this effect, 

clustering of elements is necessary. 

The closeness of the elements can be identified from the directions of their 

corresponding Jacobian vectors which will be used in the clustering procedure. Figure 1 

illustrates how the vectors of Jacobians of close elements look like. 

 

 
Figure 1. Schematic illustration of closeness of Jacobian vectors 

 

In clustering the columns of Jacobian matrix, the normalized Jacobians are used because 

in both the sensitivity approach and MinMax test, Jɶ  is the basis of χ2-test. This will 

assure that the Jacobian vectors are clustered consistent to the χ2-test in (9) and (10) as 

the directions of columns in Jɶ  are not necessarily the same as J . 

Since the scaling of the columns of Jacobian will not affect the test value the angles of 

them in the vector space is the only parameter for measuring closeness. Therefore, the 

Columns of Jacobian should be normalized to unit vector prior to clustering, to remove 

any effect of their scaling on the clustering approach. This normalization can be 

performed as 

k

k

k

J
J

J
=
ɶ

ɶ
 (11) 

where iJ  is the normalized Jacobian column corresponding to element k with unit 

length. 

It should be noted that the final χ2-value of all the tests proposed herein, is not affected 

by the scale (size) of Jacobians. Therefore, one way in dealing with the elements with 

small size of Jacobian columns kJɶ  is to remove them before the testing. The reason of 
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this removal is the fact that, with similar variances, the columns of Jacobian matrix with 

small scaling will pose higher error on the test than the larger ones. However, the 

decision of removal or keeping these vectors are based on the engineering judgment of 

the tester.  

Two approaches of clustering close elements are described in the following. 

 

3.1 k-means clustering 

 

The k-means clustering is a vector quantization approach frequently used in signal 

processing, image processing and machine learning fields. In this algorithm, firstly k 

number of groups is assumed and then randomly k points (vectors) in the space are 

selected from the total 
ρ

N  points as the centroids for these groups. Subsequently, the 

other points in the space are categorized to each of these points based on their minimum 

distance to the centroids. Iteratively, the mean of each group is calculated and each 

point in the space is re-associated to the group with closest centroid. This iteration 

converges when no point is re-associated to other groups. The clusters and their 

centroids are illustrated schematically in the following figure: 

 

 
Figure 2. Schematic illustration of k-means clustering 

 

Although this algorithm is frequently used in clustering approaches in literature, there 

are some important shortcomings of it which will be described in here.  

This algorithm is highly dependent on the number of groups, i.e. k, and the starting 

random points. It is not guaranteed to converge while it only can converge to local 

minima. Therefore, different starting points can result in different classifications. 

Moreover, the number of groups of the structural elements are unknown and the 

resultant χ2-test is highly depending on that. Furthermore, even after convergence of 

this algorithm close elements are not necessarily categorized into the same group and 

hence the results are not promising from the Min-Max test. This algorithm is also 

computationally not efficient since the running time of it is given as 
ρ

( ),O N ki  where i 

represents the number of iterations to convergence. 

Due to these disadvantages of this approach, the Fisher information matrix is used in 

clustering of the elements as proposed in the following subsection. 

 

3.2 HFC 

 

The closeness of the elements of the Jacobian matrix J  can be assessed by the 

correlation between the vectors. This correlation is calculated as the normalized Fisher 

information matrix f , 
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T
f J J= . (12) 

Each element ijf  of this matrix corresponds to the closeness of vectors i and j of the 

normalized Jacobians and is computed as 

1,

T

i j

ii ij

i j

J J
f f

J J
= =

ɶ ɶ

ɶ ɶ
. (13) 

The normalized Fisher information matrix (NFIM) is positive definite and symmetric 

due to its composition in (12). An element of this matrix with value near 1 corresponds 

to the close vectors of the Jacobians and a small value near 0 shows the opposite. 

Therefore, the clustering can be done by grouping the elements corresponding to high 

values in the normalized Fisher information matrix (NFIM). For this purpose, a 

hierarchical clustering approach is used to group the elements based on upper triangle of 

NFIM. Figure 3 is a dendrogram depicting the hierarchical clustering of 32 elements 

based on their corresponding values in f. In this picture, as the height of the connections 

are increased, their closeness is decreased; the height of the connections is an inverse 

ratio of their corresponding value in the NFIM. 

 

 
Figure 3. Hierarchical clustering of 32 elements 

 

The elements clustered at the lowest level, two by two in Figure 3 are not 

distinguishable in terms of damage from each other and hence they become clustered in 

the first step. This happens when two elements are very close. 

After having the classification shown in Figure 3, a threshold fε  needs to be selected 

on the difference of ijf  from 1. This threshold defines the amount of closeness of 

vectors needed in order to classify them as one vector. The dashed line in Figure 3 

shows the threshold 0.15fε =  from which the elements are clustered into 15 clusters. 

 By increasing this value, the number of clusters will decrease, the resolution of the 

damage localization is decreased and the uniqueness (perpendicularity) of the clusters 

will increase. Therefore, there is a compromise between the resolution of damage 

localization and uniqueness of clusters which can be adjusted by fε . The optimal fε  

can be chosen by minimizing it while having the constraint of sufficient 

perpendicularity of the clusters. This is achieved by looking at the dendrogram of the 

clustering and the resultant NFIM in an iterative manner, only in the reference state.  
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After having this clustering, the mean of the vectors associated to each cluster is used as 

the centroid of that cluster. The NFIM of the 32 elements before and after clustering are 

compared in Figure 4. 

It can be seen from this figure that the number of elements with high values (warm 

colors) of ijf  are reduced after clustering. To further reduce the remaining orange spots, 

we need to increase 
fε  which as discussed will reduce the resolution of the damage 

localization. 

 
Figure 4. Normalized Fisher information matrix (NFIM) of 32 elements before clustering (left); 

after clustering with 0.15fε =  into 15 clusters (middle) and after clustering with 0.23fε =  

into 14 clusters (right) 
 

3.3 Application of clusters in tests 

 

After clustering the Jacobians matrices, the clusters need to be applied in the sensitivity 

based and MinMax test. This application can be done in different ways for each test, 

which will be described in here. 

 

3.3.1 Clusters in Sensitivity approach test 

By clustering the normalized Jacobian matrix J , into Nc clusters, the sensitivity test (9) 

can be performed on the centroids of the clusters from k-means or HFC approach as 

2 ( ) , for , 1

T T

j j

k j cT

j j

C C
p k j N

C C

ζ ζ
χ = ∀ ∈ =C

ɶ ɶ

⋯ . (14) 

In (14), 
jC  is the jth cluster with centroid 

jC . In view of (14), all the elements inside a 

cluster will be identified as damaged or undamaged based on the χ2-value of their 

corresponding cluster centroid. 

 

3.3.2 Clusters in MinMax test 

The use of clusters in the MinMax test can be performed in two approaches based on the 

definition of aJɶ . 

First approach: In this approach, aJɶ  is chosen as the centroid of one cluster to be tested 

and bJɶ  is formed consistently from the centroids of other clusters. Therefore, 

1 1 1

, 1

c

a j

c

b j j N

C C
j N

C C C C C− +

=
=

 =  

⋯
⋯ ⋯

. (15) 
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Thus, all the elements in the cluster are treated similarly as damaged or not damaged. 

Second approach: In this approach each of the elements in a cluster can be tested which 

results in a higher resolution than the first approach. To achieve that, the Jacobian is 

discretized as 

1 1 1

, , 1

c

a k

j c

b j j N

C J
k j N

C C C C C− +

 =
∈ =

 =  

C ⋯
⋯ ⋯

. (16) 

Therefore, each element in a cluster is tested while removing the effects of other 

clusters. Since, the other clusters do not include the elements close to the element being 

tested, the damage effect will not be removed from the resulting χ2-test. 

After partitioning the Jacobians from either approach the normalized Fisher information 

matrix cF  can be defined consistently from the cluster centroids as 

[ ] [ ]
T

C a b a bF C C C C=  and partitioned similar to (15) as 

aa ab

ba bb

C C

C

C C

F F
F

F F

 
=  
  

. (17) 

By defining the residuals as  and 
a b

T T

C a C bC Cζ ζ ζ ζ= =ɶ ɶ ɶ ɶ  the robust residual will be 

* 1

a a ab bb bC C C C C
F Fζ ζ ζ−= −ɶ ɶ . Hence, the robust χ2-test writes as 

**2 * *

a a a

T

C C CFχ ζ ζ=  (18) 

where * 1

a aa ab bb baC C C C CF F F F F−= − . 

Based on the definition of Ca from the two approaches, the χ2-test (18) identifies the 

location of the damage in each cluster or element. It should be noted that although in the 

second approach the test is performed on each element, but the resolution of damage 

localization is highly depending on the number and location of sensors. Therefore, the 

resolution of the test is higher in the second approach while limited by the available 

information from data. 

Based on the characteristics of the MinMax test and HFC clustering, the combination of 

these two with the second approach should be a very robust approach. From such 

combination, the detection resolution is element basis and the effect of each element is 

investigated without the interruption of condition of other elements.  

The other alternative is the sensitivity based approach with/out clustering. There is no 

need to cluster this method. From this approach the resolution is element based if no 

clustering is used. However, the condition of other elements will affect the result of 

testing a specific element which may lead to possible false positive results. 

 

4. Case study: the Yellow Frame 
  

In order to demonstrate the proposed HFC approach the result acquired from a test 

performed on a real structure, namely the Yellow Frame (6) will be considered. The 

Yellow frame is a modular 4 story, scaled (1/3) steel frame established at the University 

of British Columbia (UBC). Several damage scenarios are designed and tested by 

removal of braces of the structure from which one of them is demonstrated by using the 

proposed HFC and k-means approach. This structure is 3.6 m high and is composed of 2 

spans in each direction with the total length of 2.5 m. Each floor of the structure is 
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carrying dead loads applied to the structure by using 4 steel plates distributed on each 

level. This structure was used in evaluating several other damage detection techniques 

as well such as (18,19). 

 

 
(a) 

 
(b) 

 
(c) 

Figure 5. (a) The Yellow frame structure, (b) the schematic plan of the structure showing the 

location of sensors, (c) the numbering of the braces of the structure 
 

The FE model of this structure is built and the sensitivity analysis of the mode shapes 

and natural frequencies with respect to each brace is computed using a finite difference 

approach. It should be noted that the sensitivities are all calculated from the analytical 

model results, since as it was shown in (6,7) it would yield better results. 

 

4.1 Clustering  

 

The elements of the Yellow frame need to be clustered before damage localization. It 

should be noted that the braces located in the same story level and in the same side of 

the structure are close as can be seen in Figure 5. Therefore, ideally the clustering 

methods should consider them in the same group. Since there are 16 pairs of these close 

braces present in the structure, the number of the resultant clusters should be less than 

16. This can be used in checking the output of the clustering approaches. 

 

4.1.1 Hierarchical Fisher-information-matrix-based clustering 

The clustering for the structure by HFC method with using threshold of 0.15fε =  is 

shown in Figure 6Figure . 
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Figure 6. Dendrogram depicting the Hierarchical Fisher-information-matrix-based clustering 

(HFC) 

It is observed in Figure 6, that Jacobians resulted in clustering scheme with 15 clusters 

which is less than 16 clusters. Furthermore, all the braces expected to be close, are in 

the same group, in view of Figure 6. Using this clustering scheme, the NFIM is 

evaluated and shown in Figure 7 for clustered and unclustered Jacobians. 

 

 
NFIM of Yellow frame for all elements        NFIM of centroids of clusters 

Figure 7. Normalized Fisher information matrix (NFIM) for the HFC-clustered and unclustered 

Jacobians 

By the use of these clusters, the damaged structure is being measured and the residual 

values are calculated for each element. The residual is cacluclated using different 

methodologies, i.e. sensitivity-based approach and MinMax test. For the MinMax test, 

the test is performed both with the clustered and unclustered Jacobians to demonstrate 

the necessity and effect of the clustering on this approach. 
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Figure 8. Damage localization of the Yellow frame with HFC clustered Jacobians 

 

It is seen that both damaged elements (damaged brace/s) can be identified with 

acceptable accuracy.  

It should be noted that the close braces, i.e. every couple of braces in each level at each 

side, cannot be distinguished in terms of being or not being damaged from each other. 

In other words, if one of the braces is damaged, the other close brace also reacts in the 

test as to be damaged. 

The MinMax method with the HFC clustering, can clarify (magnify) the damage 

compared to the sensitivity based damage localization. Furthermore, the MinMax 

method without clustering is incapable of localizing the damage as predicted. 

 

4.1.2 k-means clustering 

In order to show the performance of k-means in clustering the elements, the k-means 

approach is used in clustering the Jacobians. As mentioned before, the results are not 

unique and one of the clustering schemes is presented in Figure 9. The number of 

clusters is chosen as 15 to be comparable to the results from HFC approach. Again it 

should be noted that the objective function of k-means is chosen as cosine between input 

vectors, i.e. columns of Jacobian. The results were also observed to be the same when 

choosing the correlation between vectors as the objective function. 

It can be seen in Figure 9, that some of the close braces are not in the same cluster. 

Therefore, in the NFIMs corresponding to these clustering schemes, several red color 

spots are existing which are related to these close elements. Based on these clustering 

schemes, it is expected that if the damage happens in close elements that are not in the 

same cluster, e.g. elements 21 and 23, the damage would not be identified. 

 
Figure 9. Clustering acquired with k-means approach, left dendrogram and right is NFIM 
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In order to assess the clustering scheme computed by k-means approach, in here, the 

SSDL test is performed to demonstrate the effect of close elements that are not clustered 

properly on the MinMax method. As can be seen in Figure 10, the damage in close 

elements not clustered properly is not detected.  

 

 
Figure 10. Damage localization of the Yellow frame with k-means clustered Jacobians 

Because elements 21 and 23 are not in the same cluster they cannot be identified using 

MinMax approach, as shown in Figure 10. Therefore, the clustering scheme acquired 

from the k-means approach are not appropriate in damage localization of this damage 

configuration. Subsequently, since there is no prior knowledge of the location of 

damage and closeness of elements in practice to check the k-means output and 

considering the unstable inherent of the k-means approach, it is not an appropriate 

clustering method to be used in SSDL method. 

 

5. Conclusions 
 

In this paper a clustering approach, namely HFC, was proposed and validated to cluster 

the elements which are similar in terms of their dynamic effect on the final modal 

parameters. This clustering is crucial in the use of MinMax test of SSDL technique. 

Also, this clustering can give us great information about the possible resolution of the 

damage localization method.  

The HFC and k-means clustering were tested on a real test structure, the Yellow Frame. 

It was observed that HFC could cluster the close elements properly. The k-means 

approach was shown to be unstable and it could not cluster properly some close 

elements. 

The MinMax and sensitivity based approach were used in localizing the damage. It was 

seen that the clustering scheme obtained from HFC is appropriate in localizing the 

damage with the MinMax test. Moreover, it was observed that the MinMax test with 

HFC can localize the damage in the structure as a multiple-damage scenario and had a 

better clarity on the damaged elements compared to the sensitivity based approach. 

Hence, it was demonstrated that the HFC clustering approach is a stable and consistent 

method to cluster the elements robustly for the SSDL method, and the k-means 

approach is not a suitable method in clustering the elements for this method. 
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