
An NVM Carol
Margo Seltzer

John A. Paulson School of
Engineering and Applied Sciences

Harvard University
Cambridge, MA

Email: margo@eecs.harvard.edu

Virendra Marathe
Oracle Labs

Burlington, MA
Email: virendra.marathe@oracle.com

Steve Byan
Oracle Labs

Burlington, MA
Email: steve.byan@oracle.com

Abstract—Around 2010, we observed significant research activ-
ity around the development of non-volatile memory technologies.
Shortly thereafter, other research communities began considering
the implications of non-volatile memory on system design, from
storage systems to data management solutions to entire systems.
Finally, in July 2015, Intel and Micron Technology announced
3D XPoint. It’s now 2018; Intel is shipping its technology in
SSD packages, but we’ve not yet seen the widespread availability
of byte-addressable non-volatile memory that resides on the
memory bus.

We can view non-volatile memory technology and its impact on
systems through an historical lens revealing it as the convergence
of several past research trends starting with the concept of single-
level store, encompassing the 1980s excitement around bubble
memory, building upon persistent object systems, and leveraging
recent work in transactional memory. We present this historical
context, recalling past ideas that seem particularly relevant and
potentially applicable and highlighting aspects that are novel.

I. INTRODUCTION

In the 1960s we had bubble memory; today we are con-
templating the emergence of a new form of non-volatile
memory (NVM). Sixty years ago, some claimed that bubble
memory was going to fundamentally change how we build
systems; we hear the same predictions today. This suggests
two fundamental questions: First, is this technology here to
stay, or will it too go the way of bubble memory? Second, if
things will turn out differently this time, what have we learned
in the past 60 years that better prepares us for this brave new
world?

In July 2015, Intel announced 3D XPoint (prounounced
Crosspoint), a non-volatile memory technology with latency
approaching that of DRAM and persistence characteristics
similar to flash [31]. Touted as “game-changing,” this was
merely one in a long line of storage class memories (SCM),
emerging technologies that combine the latency of main mem-
ory with the capacity and price of persistent storage.

Unlike prior persistent media, these new technologies offer
byte addressability. Rather than requiring that data be mar-
shalled into relatively large blocks, NVM permits accesses
directly to individual bytes and typically transfers data to/from
media in cache line size chunks, using normal memory system
interfaces and mechanisms (e.g., loads and stores in the ISA,
caches, and memory controllers). This byte addressability
creates the opportunity to use identical data representations
in both transient and persistent media, avoiding the overhead

of translating back and forth between “on-disk” data structures
and memory resident ones. However, it also introduces chal-
lenges: data can become persistent at any time – that is, while
ISAs support instructions that cause data to move from on chip
caches to the persistent media, there are no instructions that
prevent data from moving to the persistent media. Therefore,
updates that touch multiple memory locations can persist at
any time, in any order, unless care is taken to prevent this. This
combination of opportunity and challenge motivates much of
the research in software for NVM.

A. The Technology

Intel and Micron have been downright secretive about the
precise technology underlying 3D XPoint [56], [79]. However,
with the release of 3D XPoint SSDs (i.e., OptaneTM), it seems
that the cat is out of the bag, and the winner is PCM [17].
In addition to phase change memory (PCM) [69], there were
speculations about other technologies, such as Resistive Ram
(ReRAM) [18] and spin torque transfer magnetic RAM (STT-
MRAM) [38], [39]. We can trace the roots of PCM back to
fundamental research in the 1960s, which first demonstrated
the switching effects of certain “disordered structures,” con-
taining tellurium, arsenic, silicon and germanium [67]. The
salient property observed was, “After switching from a highly
resistive state, structural changes result in the preservation of
a conductive state even when the current is totally removed.”
In other words, applying the right current to the material
induced a phase change that persisted even after the current
was removed. Shortly thereafter, Charles Shi demonstrated
fabrication of a device based on these principles [70]. It wasn’t
until 1999, almost thirty years later, PCM commercialization
efforts began. Over the next decade, activity and excitement
around PCM grew; by 2014, it seemed that PCM was on the
verge of widespread availability and adoption.

Relative to PCM, Resistive RAM (ReRAM) is a much
newer technology. The underlying technology relies on finding
a material that is not prone to the irreversible dielectric
breakdown when subjected to voltage high enough to allow
it to conduct. In this case, the material sits between two
electrodes and its resistivity changes as different volatages
are applied to the electrodes. Perhaps the most famous of the



ReRAM technologies was HP Lab’s memristor from 20061.
Spin torque transfer magnetic RAM (STT-MRAM) lever-

ages the spin polarization found in ferromagnetic materials.
Electrons possess both a charge and a spin. Traditional mem-
ory takes advantage of the former, by leveraging electron
behavior in the the presence of an electrical field; spintronics
leverages the latter, behavior in the presence of a magnetic
field, in a manner similar to hard drives. Writing bits es-
sentially maps to passing a spin-polarized current through
a magnetic layer to change the spin of the electrons in the
magnetic layer that stores the bits. Early versions of magnetic
ram (MRAM) placed the magnetic tunnel junction (MTJ) in-
line with the silicon substrate. STT-MRAM places the MJT
perpendicular to the substrate, resulting in denser and lower
current circuits. Multiple companies made STT-MRAM based
product announcements in early 2018 [59], [60], [61].

Carbon nanotubes (CNTs) are the most recent entry to
the NVM market. They are exactly what they sound like,
tiny cylinders of graphene on the order of a few nanometers
in diameter, and are stronger than steel, half the density
of aluminum, and capable of exhibiting useful electronic
properties [25]. When laid out in a thin film, bit values are
determined by the internal connectivity of an area of the film.
If most of the tubes touch, the bit is one; else if most are
separated, the bit is 0. Claims of DRAM performance and a
5nm size coupled with the technical simplicity, could make
this technology an industry darling.

Table I provides a high level overview of the competing
technologies.

Technology Read Write Density Cost
Latency Latency

DRAM 15 ns 15 ns Low $$$$
PCM 50 ns 500 ns Medium $$
ReRAM 10 ns 50 ns High $$$$
STT-MRAM 10 ns 50 ns Low $$$
CNT < 50ns < 50 ns High $$$

TABLE I
COMPARISON OF DIFFERENT NVM TECHNOLOGIES [55], [62], [78].

B. What’s the Hype?

A technology that seamlessly blurs the line between main
memory and persistent storage offers tantalizing possibilities,
from closing the IO gap [45] to unifying the representation of
dynamic and persistent objects to eliminating or significantly
reducing system recovery time. Fundamentally, it makes us
rethink both our hardware and software stacks. Is NVM
a larger main memory (i.e., DRAM replacement), a faster
persistent storage (i.e., a replacement for SSDs and HDDs),
or a new level in the memory hierarchy? Does NVM obviate
the need for file systems? What about the storage layer of
database systems? Does caching go away? If not, are caches
now persistent?

1A memristor was a hypothetical circuit, first proposed by Leon Chua in
1971. There is some argument about whether today’s NVM technologies, such
as ReRAM technically qualify as memristors.

In addition to introducing exciting opportunities, NVM also
creates new problems. How do we handle error conditions
traditionally “fixed” by a reboot? How do we keep data
secure – if there is no distinction between main and persistent
memory, when do we encrypt data? What steps do we need
to take to securely delete data? How do we make persistent
memory reliable in the face of device failure?

With the steady stream of product announcements, particu-
larly, the Intel/Micron 3D XPoint, there has been enormous
research activity addressing these questions and more. We
take an historical perspective and focus on the fundamental
technologies and techniques that researchers are bringing to
bear on these problems. In particular, we compare the research
questions that have been asked in the past with those being
asked today to determine what we’ve learned in the past
sixty years and where there are unique and unmined areas
of exploration.

The rest of this paper is structured as follows. In Section II,
we discuss the core technologies that are fundamental to our
ability to fully leverage NVM. We then review the different
areas of current NVM research in Section III. In Section
IV, we speculate about the most promising avenues of future
research and then conclude in Section V.

II. NVM PAST

Building systems that exploit NVM introduces a host of
new challenges, but fortunately, many of the problems that
need to be solved can build upon prior work. In this section,
we introduce some of those relevant technologies, highlight
the research undertaken in these areas in the past, and identify
the results that apply and those that remain unaddressed
in modern NVM systems. We’ll begin by revisiting bubble
memory [7], perhaps the first instance of NVM. Next, we will
move to a discussion of the single level store [46], which
initially integrated main memory with backing store to produce
virtual memory and later, in Multics, extended to seamless
integration between address spaces and persistent storage [10].
This model of integrating storage into process address spaces
is fundamental to how NVM use is envisioned. After that,
we’ll visit the interconnected areas of persistent object systems
and object oriented databases, both of which bear close resem-
blance to research being undertaken today in persistent data
structures. Finally, we’ll touch upon transactional memory,
which provides the mechanisms most frequently used to ensure
that updates to persistent objects accessible in main memory
do not produce persistent inconsistencies.

A. Bubble Memory

We all know the saying (or its derivatives), ”Those who
cannot remember the past are condemned to repeat it [72].”
but we may not all be as aware of how eerily familiar the
excitement over NVM is. Let’s play a little game. Below
are eight quotes – pick the decade from which each quote
came (no fair checking the references before playing). We’ve
replaced each instance of NVM/bubble memory with “new



technology” and instances of mechanical disk, drum storage,
hard drive, flash, SSD with “persistent storage.”

• New technology has the potential of replacing persistent
storage [8].

• The new technology market is finally ready to start to
fulfill some of the expectations its enthusiasts have been
predicting for a number of years [8].

• There are several aspects of new technology that make
existing database architectures inappropriate for them [1].

• However, favorable factors are now emerging that will
propel the emerging new technology business onto a rapid
growth trajectory [35].

• By exploiting this new technology for relational database
management systems, we introduce efficient support for
permutation, sorting and searching for data [91].

• We present four alternative implementations to incorpo-
rate new technology into the processing stack of a query
processor [81].

• Some of the researchers in this field look forward to
the ultimate replacement of persistent storage by new
technology [64].

• Since the new technology is intrinsically similar to the
data model, and adapted to the access requirements, we
believe the overall system is simpler both in operation
and in programming. [14].

Let’s assume you now agree that there are commonalities
between then and now. So, what is bubble memory? Bubble
memory arose from fundamental research on semiconductor
materials in the 1960s [67]. The bubbles themselves are
cylindrical crystals of an appropriate semiconductor material.
They are oriented vertically in a thin magnetized film, such
that a charge applied in the perpendicular direction causes the
crystals to bubble. In this way, the presence of the bubble
indicates a 1 and the absence a 0 [7].

Early reaction to bubble memory devices sounds a lot like
what we hear today about NVM, “Some of the researchers
in this field look forward to the ultimate replacement of
disks by the magnetic bubbles of the future” [64]. Several
companies, including National Semiconductor, Rockwell, and
Texas Instruments entered the market [8]. However, as the
manufacturing process became more mature, the message
became more nuanced, “Bubble systems are not expected to
replace disk storage in many commercial applications because
they will be too expensive, but for areas where the environment
is severe, or ’dusty’, or remote, bubbles will prove more
reliable and cheaper to maintain” [7].

Bubble memory saw some successful deployment in em-
bedded systems; perhaps the most successful of which was
in the Konami Bubble System arcade video game system
(1984) [13]. However, by 1981, all the major vendors had
left the market. Why? Ultimately, both RAM and hard drives
became cheaper and more dense (a trend that we’ve seen
continue for the past three decades), while bubble fabrication
was challenging and required a complex controller (similar to
that of a hard disk) [30].

Much of the activity around bubble memory was in com-
panies, more so than the research community, so the kind of
system research activity today around NVM is relatively scarce
in the bubble memory era. However, some of the problems
tackled will seem familiar.

Some considered development of file system access struc-
tures that would minimize access time, for example, designing
record sizes to match the physical device characteristics,
eschewing marshalling multiple items into large blocks, and
allowing for tree structures persisted natively [86]. We might
ask how this differs in any fundamental way from more recent
research in designing data structures designed to exploit cache
locality [52]. Much of the work around using bubble memory
to improve relational database performance focused on special
purpose hardware approaches [14], [28], [92], rather than the
software approaches popular today.

So, what lessons can we learn from this brief historical
jaunt? One lesson may be caution in the presences of euphoria.
Recall that the major vendors of the time (e.g., National Semi-
conductor, Texas Instruments) invested heavily in new tech-
nology that ultimately disappeared. Price/performance curves
matter a great deal, so while NVM does provide enormous
opportunities for fundamental changes in our systems, the
technology will survive only if it can deliver on those oppor-
tunities in the face of economic reality. If NVM can genuinely
approach DRAM performance at Flash prices, it is likely to
be a game-changer. Anything short of that will leave its future
in jeopardy.

B. Single Level Store

The idea of seamlessly integrating volatile main memory
with persistent storage began with the advent of virtual mem-
ory. The University of Manchester’s Atlas computer [32],
[46] was the first system to implement what we take for
granted today: that an address could refer to data stored in
main memory or to one in persistent memory (in the case
of Atlas, on a magnetic drum). While we most frequently
associate this concept with virtual memory, researchers of the
day recognized its broad applicability, “...the paper describes
an automatic system which in principle can be applied to any
combination of two storage systems so that the combination
can be regarded by the machine user as a single level” [46].
In fact, this is precisely what the Multics virtual memory
system did: “the Multics user no longer uses files; instead
he references all information as segments, which are directly
accessible to his programs” [10].

Research in this area in the 60s and 70s focused on three
primary topics: designing the hardware to support virtual
memory [23], [46], [54], the software structure and algorithms
for managing virtual memory [26], [27], [34], [46], and the
introduction of the hierarchical name space as a means for
organizing persistent data [10].

It is instructive to compare the historical single level store
concept and implementation to what we observe in today’s
research. Persistence combines two fundamental concepts:
naming and storage. The historical work experimented with



both, since there were not prevailing standards at the time.
Today, the notion of a file system namespace and protection
is fundamentally tied to persistence, leading to a two-part
solution: use of traditional file system naming and protec-
tion mechanisms coupled with direct access via the process
address space [71]. Rather than suggest lessons learned, this
restrospective suggests that one ask whether file system nam-
ing and protection mechanisms are the correct approach to
management of persistent memory. We’ll come back to this
question in Section IV.

C. Persistent Objects

Once we begin to blur the line between main memory
objects and persistent objects, we find ourselves in the domain
of persistent object systems and then object oriented databases.
The early history of persistent objects and object oriented
databases will seem quaint with the wisdom of hindsight.
These systems arose, in many cases, in response to limitations
in the relational model, as originally conceived by Codd [20]
and realized in systems such as Ingres [36] and SystemR [3].
Relational databases were limited in the types they provided,
their ability to construct complex types (i.e., objects), lim-
itations on data type representations (e.g., maximum field
widths), their modeling power, and the fundamental mismatch
between data as it is used in programs and as it is represented
in a database [5], [22]. While we know how this played
out (e.g., the object relational model [76], [77]), there is a
rich history of both persistence in object oriented languages
and object oriented databases. In a world where persistent
objects reside in a process’s address space, we are well-advised
to refresh our memory with the techniques and approaches
developed in the past.

We limit our discussion to systems that allow direct ma-
nipulation of persistent objects, such as persistent Smalltalk
(OPAL) [22], PS-Algol [5], and ObjectStore’s persistent C++
(pC++) [49]. All of these systems provide database-style
transactions and query mechanisms.

PS-Algol is perhaps most similar to today’s work in NVM,
stemming from the hypothesis that, “it should be possible to
add persistence to an existing language with minimal change
to the language” [5]. In fact, their design was agnostic to the
host language to which persistence was added. Today’s NVM
researchers would find PS-Algol eerily familiar. A programmer
opens a database and obtains a root pointer from which all
persistent objects can be retrieved. In today’s work, such as
NV-Heaps [19] and the SNIA NVM programming model PM
modes [75], these operations are parallel to mmapping a file
and then accessing persistent objects relative to the mmapped
region.

In contrast, OPAL and pC++ call themselves database
systems and are designed around specific data models. OPAL
implements the Gemstone Data Model, derived from a pure
set theoretic data model, which was formally specified before
the host language was selected. The data model for pC++
is somewhat less formally defined, but is something akin to
an object-relational model, providing C++ objects, classes,

and collections in addition to RDBMS relationships and
queries. Eventually, different groups combined modeling ef-
forts, forming The Object Data Management Group (ODMG)
(http://www.odbms.org/odmg-standard).

No discussion of object oriented languages would be com-
plete without introducing Java. Early work around persistence
in Java took the form of orthogonal persistence, also called
persistence by reachability [4], [6]. The fundamental idea was
quite attractive: Programmers can simply designate objects
of any type as “persistent roots,” and objects of any type
transitively reachable from such roots inherit the property of
persistence. Moreover, the code that accesses such objects is
exactly the code that accesses nonpersistent objects of the
same types. While appealing, the idea did not catch on in
mainstream Java, largely because it was perceived as a far
too ambitious undertaking. Instead, the Java Data Objects
(JDO) [42] and Java Persistence API (JPA) [44], which were
similar in spirit to the ODMG standards, gained traction.
However, they both relied on dual instantiation of persistent
data (one in storage media and one in DRAM).

These systems all faced the implementation challenge of
moving objects between volatile and persistent (block-based)
storage. Today’s NVM systems need not migrate data be-
tween different media, but, depending on how the NVM is
accessed (block mode versus byte addressable mode), may
still need to address the issues of allocating objects to blocks.
However, the more interesting issue is the emphasis in the
older systems on database functionality, such as transactions,
versioning, replication, and naming. In modern systems, little
NVM research addresses versioning, replication or naming,
and in many cases considers transactions only as a mechanism
to ensure consistency of NVM data structures, not to provide
higher level data semantics. The next section explores this
transaction issue in more detail; we’ll return to these database
issues in Section IV.

D. Transactional Memory

The key difference between persistent object systems of the
past and today’s NVM lies in the hardware reality that any
write can become persistent at any time. Maintaining data
structure consistency in the absence of control over when
data becomes persistent requires either careful and meticulous
application of barrier and flush instructions or a higher level
transaction or transaction-like mechanism, similar to software
transactional memory, which we now review.

The idea of transactional memory started out as a hardware
solution for achieving synchronization without explicit lock-
ing. Hardward transactional memory (HTM) is essentially a
form of optimistic concurrency control [48] where the validate,
commit, and abort operations are handled via extensions to the
cache architecture [37]. Hardware transactional memory has
some inherent limitations, such as the length of transactions
and precisely what operations can occur inside a transaction.
Unsurprisingly, researchers took up the challenge these con-
straints presented with software (STM) [74] and hybrid [24]
implementations.



While many of the transaction mechanisms designed for
NVM reference the prior work on STM, there is rarely
a technical discussion about why prior approaches do not
apply. We speculate that there is a strong tendency towards
NIH (not-invented-here) and suggest that current researchers
might save time and effort by leveraging the prior work in
STM. In our own work, we find that the trade-off space
in transaction implementations is complicated. The different
approaches (e.g., undo-logging, redo-logging, copy-on-write)
require significantly different numbers of barrier instructions
and have dramatically different effects on cache performance.
The best performing implementation depends on the size and
number of objects being accessed, the read/write ratio, and the
degree of contention on the objects. As practically all of these
techniques have been used in the STM literature, it would
seem prudent to take advantage of that work.

III. NVM PRESENT

Given the long history of work in related fields, what’s new
about today’s NVM? First, as discussed in Section I, activity
around NVM is not concentrated on a single technology.
There are multiple viable technologies poised to become
commercially relevant. Second, there is significant industry
collaboration around the emerging technologies. The Storage
Networking Industry Association (SNIA) has a working group
developing reference libraries and programming models. Both
Linux and Windows support the Direct Access (DAX) feature,
which allows loads and stores to persistent memory after the
memory has been mmapped into an address space. This could
either be a side effect of the maturity of the industry, relative to
1980, or it could be a sign that things are truly different. Third,
The types of companies active in the space are different from
those active in the 1980s. While the Micron/Intel 3D XPoint
product might be similar in spirit to the National Semiconduc-
tor’s and Texas Instruments’ products of the 1980s, we also see
engagement today from systems’ companies: HP, Microsoft,
IBM, Oracle, etc. Perhaps the most audacious project in this
space was HP’s The Machine [80], which was canceled as a
project or product, but is moving the key technologies, such
as NVM, into other product lines [57].

The biggest observable difference, however, is the engage-
ment of the research community. It’s difficult to assess whether
the engagement is greater because the research community
itself is significantly larger than it was in the 1980s, because
new technology is always good fodder for research, or be-
cause something is fundamentally different from prior decades.
Nonetheless, although NVM systems are not yet shipping,
there are hundreds of prototype systems poised to exploit it.

Today’s research falls into approximately five categories:
NVM-aware storage allocators [19], [65], NVM-consistent
data structures [15], [16], [41], [50], [87], file systems for
NVM [82], [88], [89], NVM-based logging systems [40], [84],
and database engine architectures [2], [47]. In addition to this
research activity, standards, e.g., SNIA’s NVM Programming
Model [75] and ISA changes to support NVM are active areas.

Rather than visiting each area, we focus on the themes that
cut across multiple areas. Then, in Section IV, we connect
some of the remaining open questions and challenges to the
topics discussed in Section II.

A. Synchronization, Consistency and Programming Models

Historically, in-memory data structures use a combination
of synchronization primitives and cache consistency protocols
to achieve consistency, while persistent data leverages the
rigid interface to IO (e.g., the file system or database) and
ordered large grain operations to ensure consistency and/or
recoverability. In an NVM system, neither approach is suffi-
cient. As discussed in Section II-D, there is no way to prevent
data stored into NVM from becoming persistent. This leads
to a programming model with fine grain ordering, requiring
careful placement of barriers and flushes. That is, rather than
using higher level synchronization primitives, such as locks or
semaphores, the programmer works at the level of assembly
instructions, a style similar to that used when working with
lockless data structures [9].

Intel originally extended its ISA with a PCOMMIT instruc-
tion to ensure that data in the memory controller write pending
queues was flushed to persistent storage. However, they later
specified that Asynchronous DRAM Refresh (ADR) is re-
quired to support persistent memory. With ADR support, data
in the controller write pending queues is guaranteed to make
it to persistent memory, so PCOMMIT became unnecessary
and was deprecated. A side effect of this change is reducing
(from two to one) the number of SFENCE instructions required
to reliably write data to persistent memory. However, even
without PCOMMIT, ensuring write ordering to NVM requires
one cache flush instruction per involved cache line plus an
SFENCE instruction. While the flushes can be asynchronous
(e.g., by using CLWB and CLFLUSHOPT), the SFENCE adds
significant latency to operations. One theme that emerges
across most of the work is designing approaches that minimize
the number of SFENCEs.

Some of the early work (BPFS) in the NVM era proposed
hardware extensions to enforce ordering [21]. The Byte-
Addressable Persistent File System (BPFS) develops a tree-
structured file system that primarily uses shadow paging for
updates, but propagates shadows up the tree until arriving at
a page that can be modified with a single, atomic write. At
that point, BPFS performs the update in place with the atomic
write, thus short-circuiting the copy-on-write mechanism of
shadow-paging. Subsequent work eschews the invention of
new hardware and works within the confines of the existng In-
tel ISA with NVM extensions. Several early systems explored
the use of traditional logging approaches [66], [83], with
their accompanying SFENCE instructions. The fundamental
difference between these logging solutions and those used
in the STM arena are that the STM logs are not persistent,
so cache consistency algorithms neatly provide ordering con-
straints, while the NVM solutions require stricter ordering
requirements. As a result, it is unsurprising, the subsequent



research examined approaches that remove such ordering
constraints.

Storing tree-nodes as unordered entries transforms updates
in carefully designed systems into atomic operations, removing
the need for the expensive barrier instructions [90]. The NV-
Tree takes this one step further, observing that only leaf nodes
need to be persistent; internal nodes can be reconstructed after
failure [16].

Another approach to mitigating the cost of barrier instruc-
tions is removing the barriers from the critical path, typically
through a combination of volatile caching on top of an
NVM persistent structure [43], [51], [58], [87]. This class
of solutions is particularly interesting, as it subtly changes
the architectural integration of NVM. Earlier solutions treat
NVM as both main memory and a persistent store, but these
decoupled approaches retain the more traditional model of
DRAM as a cache for persistence, thereby treating NVM like
a traditional flash or hard drive, just with a different interface.

A common theme observed throughout all these systems is
careful attention to the number and placement of flush and
fence instruction. Designs using this approach are brittle and
difficult to get correct – a single missing flush or fence, can
render persistent data structures unrecoverable. This makes
the issue of programming model crucial. One of the earliest
complete implementations of a programming model is the
NVM Direct library [12], which proposes extensions to C
along with a C pre-compiler. The goal of the library is catch
subtle problems at compile time that, if left undetected, could
produce persistent corruption. The library is a comprehensive
collection of concepts and techniques from both the past and
present in addition to some new constructs. It has support for
STM-like transactions, but with support for open nesting [63],
persistent heaps [19], mmapped regions, USIDS or persis-
tent identifiers that map to executable functions (similar to
application-specific logging and recovery functions [11], [73]),
deferred operations that take place during commit, abort, or
unlock, and explicit syntax to differentiate access to persistent
and volatile data.

The newer NVM Programming Model from SNIA (NPM)
takes a more hands-off approach [75]. Rather than specify an
API, it defines different modes of access (ifile, block, volume,
pm-file), the behavior of modules comprising a system, and the
interactions among those modules. The standard requires that
when NVM is used as volatile memory, it must behave identi-
cally to volatile memory with respect to load/store instructions,
atomic read-modify-write instructions, cache coherency, etc.
When used as non-volatile memory, it must respect msync
calls, preserve the modification order of stores to the same
location, and preserve the atomicity of thread-ordered stores
(e.g., C11 and C++11 atomic stores and Java and C# volatile
stores). However, subsequent stores to different locations, still
require flush and fence operations.

The sufficiency of these different programming models de-
pends on precisely who will be writing code that interacts with
NVM. Will NVM be hidden behind standard data structure
APIs or will applications manipulate NVM directly? Based on

today’s developments, we believe that direct manipulation of
NVM will be hidden inside higher level libraries: data structure
packages, collections, databases, and filesystems. If so, the
more laissez faire SNIA approach is likely sufficient.

B. Naming

The saying, “There are only two hard things in Computer
Science: cache invalidation and naming things,” 2 is attributed
to Phil Karlton. We have nothing to say about cache in-
validation (although it is probably an important problem if
caches reside in NVM), but naming remains central to the
management of persistent data. Ever since Multics introduced
the hierarchical path name to access persistent data [10],
such pathnames have been the default answer. Early database
systems explicitly managed persistent storage (i.e., disks), im-
plementing their own naming system. Although this capability
is still available today, it is more common for database systems
to use the naming services of the underlying file system,
which allows the use of standard utilities, i.e., cp and mv, on
databases. Even in the persistent language systems discussed
in Section II-C, programs must open databases by pathname.
Thus, it comes as no surprise that the NVM Programming
Model also specifies use of file system naming to locate and
identify NVM regions. Ultimately though, this could create a
bit of a chicken and egg problem: if NVM is your persistent
storage, does it not make sense to implement the file system
namespace in NVM? If so, then we need to find the part of
the NVM that contains the namespace, so we need a name for
it. Alternately, we could support two different ways of using
NVM – first as a file system to implement naming and then
as a direct access store for better performance? Surely, there
must be a better (simpler) way.

C. Replacing Persistent Storage Components

This brings us to the last cross-cutting theme: transforming
systems designed for hard drives into systems leveraging
NVM: logging, file systems, and databases. In all of these
cases and those discussed in Section II-C, persistent storage
is block-based, while today’s NVM is byte-addressable. Byte-
addressability introduces two important considerations: there
is no need to marshall small data structures onto blocks and the
persistent media is available via direct loads and stores, greatly
reducing the depth of the software stack, which traditionally
requires a mode switch and an IO protocol. There seems to be
an absence of research that revisits these 1980 era persistent
object systems in the presence of byte-addressability, which is
unfortunate, as it seems a natural fit.

Different systems take more or less radical approaches to
byte-addressability, ranging from using blocks in conjunction
with finer-grained writes [21], [29] to revising existing de-
signs [2], [53], [85] to building entirely new systems [88]. One
topic that is regularly ignored is the fine-grained intermingling
of persistent and volatile state that the NVM Direct library

2There is still skepticism about the source of the quote. See
https://skeptics.stackexchange.com/questions/19836/has-phil-karlton-ever-
said-there-are-only-two-hard-things-in-computer-science/39178#39178



carefully addresses [12]. Projects that do address this find it
is a serious problem [53].

IV. NVM FUTURE

If NVM is to become the de facto persistent storage of
the future (and this is still a big if), there remain important
questions to answer and problems to be addressed. There are
two areas of work that we’ve left out: whole system persistence
and embedded systems. If the history of bubble memory is an
exemplar, perhaps the embedded systems arena is, in fact, the
one likely to feel the greatest effect. In terms of whole system
persistence, this is an area that warrants a full discussion on
its own right; we’ll leave that for another time.

The biggest open secret in this space is the need for
redundancy or replication. Fundamentally, persistent storage
sitting on the memory bus is rather different from a dual
ported, shared disk or RAID device. Today, losing a CPU
board rarely results in data loss. However, when persistent data
is on the memory bus, what happens when you lose the board?
Since we do not anticipate dual ported memory in the near
future, ensuring data availability requires replicating the data.
Compared to traditional persistent media (i.e., hard drives),
networking overheads are tolerable. However, compared to
NVM latency, the traditional TCP stack adds orders of mag-
nitude to the raw latency, which makes traditional replication
techniques non-starters. RDMA networks, and more recent
industry trends toward high performance network fabrics that
tend toward a distributed shared memory style interface to
remote memory [33] would seem to be essential in the
NVM setting. We observe some industry movement in this
direction with support for remote persistence over RDMA
networks [68]. This area seems crucial to address before we
can trust critical data to NVM systems.

Turning to traditional systems issues, the disconnect be-
tween the relatively feature-rich persistent object models of the
1980s and the no-model systems we see today is interesting.
Have we all drunk the NoSQL koolaid to the extent that we
no longer believe data models are important? The continued
presence of relational and object-relational systems suggests
that this might be a serious oversight. There must be at least
one good Ph.D. dissertation to be written on data models for
NVM data management systems.

Versioning is another topic on which the current work is
silent. That seems an odd omission in the presence of concerns
over data tampering and the prevalence of systems supporting
MVCC.

Data security raises another set of questions. Best practices
for data management include encrypting data “at rest”. His-
torically, there was a clear distinction between data at rest
(i.e., on disk) and data in volatile memory. On a system
where all memory is persistent, best practice would suggest
that data in NVM should be encrypted. But if we manipulate
such data directly where it resides, how, when and where
do we decrypt it? Intel provides Total Memory Encryption
(TME) and MultiKey TME (MKTME), both of which provide
a mechanism to keep all memory encrypted except when it is

physically being manipulated in the CPU. TME uses a single
key, while MKTME uses a bounded set of keys, and data is
encrypted on a page basis. However, MKTME assigns keys
on a block basis, which probably reduces the value of byte
addressability. Is this kind of hardware solution sufficient? If
we use NVM for a database server, how do we multiplex
the potentially large set of principles across a limited set of
memory keys?

And then there is naming. Is the combination of file system
naming and direct access correct? It seems awkward and leads
to the chicken and egg problem discussed in Section III. We
are entirely comfortable mounting removable media (e.g., flash
and hard drives) with symbolic names. Why has none of the
work taken this approach with NVM? Is it just too obvious and
therefore uninteresting? If so, we might argue that sometimes
obvious and uninteresting approaches can also be necessary.

Finally, reboot has been the ultimate debugging tool forever.
What happens to our ability to fix systems when rebooting
returns a system to precisely the state it was in before a reboot?
How do we preserve our persistent data, without preserving
our persistent bugs as well? If NVM becomes pervasive, we’re
going to have to figure that out.

V. CONCLUSIONS

NVM is an exciting and potentially game changing technol-
ogy. However, its future is far from clear. On one hand, we
encourage a certain degree of skepticism. The future of NVM
will be determined by a combination of the new functionality
it permits, the improvement to existing systems it enables,
the cost of NVM, and the future cost of existing volatile
memory and persistent storage. On the other hand, we should
prepare to embrace this brave new world – it offers promises of
vastly improved performance and ultimately simpler systems
if we don’t have to rely on different in-memory and persistent
representations.

In Section IV, we suggested some gaps in today’s research.
In particular, ensuring high availability and fault tolerance
of persistent data stored on NVM is essential. Similarly,
history provides valuable lessons – features such as versioning,
encryption and naming have received insufficient attention.
We’re convinced that the innovation in this space will come
from, not yet another NVM-aware data structure, but from
leveraging past work effectively to build exciting new systems
with new capabilities. Let’s revisit this discussion in a decade
and see what we’ve accomplished.

REFERENCES

[1] J. Arulraj and A. Pavlo. How to build a non-volatile memory database
management system. In Proceedings of the 2017 ACM International
Conference on Management of Data, SIGMOD ’17, pages 1753–1758,
New York, NY, USA, 2017. ACM.

[2] J. Arulraj, A. Pavlo, and S. R. Dulloor. Let’s talk about storage
& recovery methods for non-volatile memory database systems. In
Proceedings of the 2015 ACM SIGMOD International Conference on
Management of Data, SIGMOD ’15, pages 707–722, New York, NY,
USA, 2015. ACM.



[3] M. M. Astrahan, M. W. Blasgen, D. D. Chamberlin, K. P. Eswaran,
J. N. Gray, P. P. Griffiths, W. F. King, R. A. Lorie, P. R. McJones, J. W.
Mehl, G. R. Putzolu, I. L. Traiger, B. W. Wade, and V. Watson. System
r: Relational approach to database management. ACM Trans. Database
Syst., 1(2):97–137, June 1976.

[4] M. Atkinson and M. Jordan. A review of the rationale and architectures
of pjama: A durable, flexible, evolvable and scalable orthogonally
persistent programming platform. Technical report, Mountain View, CA,
USA, 2000.

[5] M. P. Atkinson, P. J. Bailey, K. Chisholm, W. P. Cockshott, and
R. Morrison. An approach to persistent programming. Comput. J.,
26:360–365, 1983.

[6] M. P. Atkinson, L. Daynès, M. J. Jordan, T. Printezis, and S. Spence. An
orthogonally persistent java. SIGMOD Rec., 25(4):68–75, Dec. 1996.

[7] K. F. Baker. A review of magnetic bubble memories and their
applications. Radio and Electronic Engineer, 51(3):105–115, March
1981.

[8] H. Banks. The computer bubble that burst, September 1981.
[9] G. Barnes. A method for implementing lock-free shared-data structures.

In Proceedings of the Fifth Annual ACM Symposium on Parallel Algo-
rithms and Architectures, SPAA ’93, pages 261–270, New York, NY,
USA, 1993. ACM.

[10] A. Bensoussan, C. T. Clingen, and R. C. Daley. The multics virtual
memory: Concepts and design. Commun. ACM, 15(5):308–318, May
1972.

[11] Application specific logging and recovery. Berkeley DB Programmer
Reference Manual, june 2016.

[12] B. Bridge. Nvm direct api (version 0.8), February 2016.
[13] Magnetic bubble memory.
[14] H. Chang. On bubble memories and relational data base. In Proceedings

of the Fourth International Conference on Very Large Data Bases -
Volume 4, VLDB ’78, pages 207–229. VLDB Endowment, 1978.

[15] A. Chatzistergiou, M. Cintra, and S. D. Viglas. Rewind: Recovery write-
ahead system for in-memory non-volatile data-structures. Proc. VLDB
Endow., 8(5):497–508, Jan. 2015.

[16] S. Chen and Q. Jin. Persistent b+-trees in non-volatile main memory.
Proc. VLDB Endow., 8(7):786–797, Feb. 2015.

[17] J. Choe. Intel 3d xpoint memory die removed from intel optaneTM pcm
(phase change memory, May 2017.

[18] L. Chua. Resistance switching memories are memristors. Applied
Physics A, 102(4):765–783, Mar 2011.

[19] J. Coburn, A. M. Caulfield, A. Akel, L. M. Grupp, R. K. Gupta,
R. Jhala, and S. Swanson. NV-Heaps: Making Persistent Objects Fast
and Safe with Next-generation, Non-volatile Memories. In Proceedings
of the Sixteenth International Conference on Architectural Support for
Programming Languages and Operating Systems, pages 105–118, 2011.

[20] E. F. Codd. A relational model of data for large shared data banks.
Commun. ACM, 26(1):64–69, Jan. 1983.

[21] J. Condit, E. B. Nightingale, C. Frost, E. Ipek, B. Lee, D. Burger, and
D. Coetzee. Better i/o through byte-addressable, persistent memory.
In Proceedings of the ACM SIGOPS 22Nd Symposium on Operating
Systems Principles, SOSP ’09, pages 133–146, New York, NY, USA,
2009. ACM.

[22] G. Copeland and D. Maier. Making smalltalk a database system. In
Proceedings of the 1984 ACM SIGMOD International Conference on
Management of Data, SIGMOD ’84, pages 316–325, New York, NY,
USA, 1984. ACM.

[23] R. C. Daley and J. B. Dennis. Virtual memory, processes, and sharing
in multics. In Proceedings of the First ACM Symposium on Operating
System Principles, SOSP ’67, pages 12.1–12.8, New York, NY, USA,
1967. ACM.

[24] P. Damron, A. Fedorova, Y. Lev, V. Luchangco, M. Moir, and D. Nuss-
baum. Hybrid transactional memory. SIGPLAN Not., 41(11):336–346,
Oct. 2006.

[25] M. F. L. De Volder, S. H. Tawfick, R. H. Baughman, and A. J. Hart.
Carbon nanotubes: Present and future commercial applications. Science,
339(6119):535–539, 2013.

[26] P. J. Denning. The working set model for program behavior. In Pro-
ceedings of the First ACM Symposium on Operating System Principles,
SOSP ’67, pages 15.1–15.12, New York, NY, USA, 1967. ACM.

[27] P. J. Denning. Thrashing: Its causes and prevention. In Proceedings
of the December 9-11, 1968, Fall Joint Computer Conference, Part I,
AFIPS ’68 (Fall, part I), pages 915–922, New York, NY, USA, 1968.
ACM.

[28] K. L. Doty, J. D. Greenblatt, and S. Y. W. Su. Magnetic bubble memory
architectures for supporting associative searching of relational databases.
IEEE Transactions on Computers, C-29(11):957–970, Nov 1980.

[29] S. R. Dulloor, S. Kumar, A. Keshavamurthy, P. Lantz, D. Reddy,
R. Sankaran, and J. Jackson. System software for persistent memory. In
Proceedings of the Ninth European Conference on Computer Systems,
EuroSys ’14, pages 15:1–15:15, New York, NY, USA, 2014. ACM.

[30] J. Dvorak. Whatever happened to bubble memory?
[31] J. Evangelho. Intel and micron jointly unveil disruptive, game-changing

3d xpoint memory, 100x faster than nand, July 2015.
[32] J. Fotheringham. Dynamic storage allocation in the atlas computer,

including an automatic use of a backing store. Commun. ACM,
4(10):435–436, Oct. 1961.

[33] Genz consortium core specification 1.0, February 2018.
[34] R. M. Graham. Protection in an information processing utility. In Pro-

ceedings of the First ACM Symposium on Operating System Principles,
SOSP ’67, pages 1.1–1.5, New York, NY, USA, 1967. ACM.

[35] J. Happich. Time is ripe for emerging non-volatile memory, say analysts
yole, June 2017.

[36] G. D. Held, M. R. Stonebraker, and E. Wong. Ingres: A relational data
base system. In Proceedings of the May 19-22, 1975, National Computer
Conference and Exposition, AFIPS ’75, pages 409–416, New York, NY,
USA, 1975. ACM.

[37] M. Herlihy and J. E. B. Moss. Transactional memory: Architectural
support for lock-free data structures. In Proceedings of the 20th Annual
International Symposium on Computer Architecture, ISCA ’93, pages
289–300, New York, NY, USA, 1993. ACM.

[38] M. Hosomi, H. Yamagishi, T. Yamamoto, K. Bessho, Y. Higo, K. Ya-
mane, H. Yamada, M. Shoji, H. Hachino, C. Fukumoto, H. Nagao,
and H. Kano. A novel nonvolatile memory with spin torque transfer
magnetization switching: Spin-RAM. International Electron Devices
Meeting, pages 459–462, 2005.

[39] Y. Huai. Spin-Transfer Torque MRAM (STT-MRAM): Challenges and
Prospects. AAPPS Bulletin, 18(6):33–40, 2008.

[40] J. Huang, K. Schwan, and M. K. Qureshi. Nvram-aware logging in
transaction systems. Proc. VLDB Endow., 8(4):389–400, Dec. 2014.

[41] D. Hwang, W.-H. Kim, Y. Won, and B. Nam. Endurable transient
inconsistency in byte-addressable persistent b+-tree. In 16th USENIX
Conference on File and Storage Technologies (FAST 18), pages 187–200,
Oakland, CA, 2018. USENIX Association.

[42] Jsr 12: Javatm data objects (jdo) specification, 2003.
[43] A. Joshi, V. Nagarajan, S. Viglas, and M. Cintra. Atom: Atomic dura-

bility in non-volatile memory through hardware logging. In 2017 IEEE
International Symposium on High Performance Computer Architecture
(HPCA), pages 361–372, Feb 2017.

[44] Java persistence api.
[45] R. H. Katz, G. A. Gibson, and D. A. Patterson. Disk system archi-

tectures for high performance computing. Proceedings of the IEEE,
77(12):1842–1858, Dec 1989.

[46] T. Kilburn, D. B. G. Edwards, M. J. Lanigan, and F. H. Sumner. One-
level storage system. IRE Transactions on Electronic Computers, EC-
11(2):223–235, April 1962.

[47] H. Kimura. Foedus: Oltp engine for a thousand cores and nvram. In
Proceedings of the 2015 ACM SIGMOD International Conference on
Management of Data, SIGMOD ’15, pages 691–706, New York, NY,
USA, 2015. ACM.

[48] H. T. Kung and J. T. Robinson. On optimistic methods for concurrency
control. ACM Trans. Database Syst., 6(2):213–226, June 1981.

[49] C. Lamb, G. Landis, J. Orenstein, and D. Weinreb. The objectstore
database system. Commun. ACM, 34(10):50–63, Oct. 1991.

[50] S. K. Lee, K. H. Lim, H. Song, B. Nam, and S. H. Noh. WORT:
Write optimal radix tree for persistent memory storage systems. In 15th
USENIX Conference on File and Storage Technologies (FAST 17), pages
257–270, Santa Clara, CA, 2017. USENIX Association.

[51] M. Liu, M. Zhang, K. Chen, X. Qian, Y. Wu, W. Zheng, and J. Ren.
Dudetm: Building durable transactions with decoupling for persistent
memory. In Proceedings of the Twenty-Second International Conference
on Architectural Support for Programming Languages and Operating
Systems, ASPLOS ’17, pages 329–343, New York, NY, USA, 2017.
ACM.

[52] Y. Mao, E. Kohler, and R. T. Morris. Cache craftiness for fast multicore
key-value storage. In Proceedings of the 7th ACM European Conference
on Computer Systems, EuroSys ’12, pages 183–196, New York, NY,
USA, 2012. ACM.



[53] V. J. Marathe, M. Seltzer, S. Byan, and T. Harris. Persistent mem-
cached: Bringing legacy code to byte-addressable persistent memory.
In 9th USENIX Workshop on Hot Topics in Storage and File Systems
(HotStorage 17), Santa Clara, CA, 2017. USENIX Association.

[54] A. J. W. Mayer. The architecture of the burroughs b5000: 20 years
later and still ahead of the times? SIGARCH Comput. Archit. News,
10(4):3–10, June 1982.

[55] C. Mellor. Deep inside nantero’s non-volatile carbon nanotube ram tech,
August 2016.

[56] C. Mellor. Intel and micron’s xpoint: Is it pcm? we think it is, January
2016.

[57] C. Mellor. Rip hpe’s the machine product, 2014-2016: We hardly knew
ye. The Register, november 2016.

[58] A. Memaripour, A. Badam, A. Phanishayee, Y. Zhou, R. Alagappan,
K. Strauss, and S. Swanson. Atomic in-place updates for non-volatile
main memories with kamino-tx. In Proceedings of the Twelfth European
Conference on Computer Systems, EuroSys ’17, pages 499–512, New
York, NY, USA, 2017. ACM.

[59] R. Mertens. Crocus nano electronics successfully tests its 90 nm pmtj
stt-mram tech. www.mram-info.com, January 2018.

[60] R. Mertens. evaderis demonstrates an innovative mram-based, memory-
centric mcu. www.mram-info.com, January 2018.

[61] R. Mertens. Everspin strats to produce commercial 40nm 256mb stt-
mram chips. www.mram-info.com, January 2018.

[62] S. Mittal and J. S. Vetter. A survey of software techniques for using
non-volatile memories for storage and main memory systems. IEEE
Trans. Parallel Distrib. Syst., 27(5):1537–1550, May 2016.

[63] J. E. B. Moss. Open nested transactions: Semantics and support.
Workshop on Memory Performance Issues (WMPI ’06), February 2006.

[64] W. Myers. Key developments in computer technology: A survey.
Computer, 9(11):48–77, Nov. 1976.

[65] I. Oukid, D. Booss, A. Lespinasse, W. Lehner, T. Willhalm, and
G. Gomes. Memory management techniques for large-scale persistent-
main-memory systems. Proc. VLDB Endow., 10(11):1166–1177, Aug.
2017.

[66] I. Oukid, J. Lasperas, A. Nica, T. Willhalm, and W. Lehner. Fptree:
A hybrid scm-dram persistent and concurrent b-tree for storage class
memory. In Proceedings of the 2016 International Conference on
Management of Data, SIGMOD ’16, pages 371–386, New York, NY,
USA, 2016. ACM.

[67] S. R. Ovshinsky. Reversible electrical switching phenomena in disor-
dered structures. Phys. Rev. Lett., 21:1450–1453, Nov 1968.

[68] Persistent memory over fabrics.
[69] A. Pohm, C. Sie, R. Uttecht, V. Kao, and O. Agrawal. Chalcogenide

glass bistable resistivity (ovonic) memories. IEEE Transactions on
Magnetics, 6(3):592–592, Sep 1970.

[70] A. Pohm, C. Sie, R. Uttecht, V. Kao, and O. Agrawal. Chalcogenide
glass bistable resistivity (ovonic) memories. IEEE Transactions on
Magnetics, 6(3):592–592, Sep 1970.

[71] A. Rudoff. Persistent memory programming. ;login, 42, 2017.
[72] G. Santayana. The Life of Reason: Reason in Common Sense. Charles

Scribner’s Sons, 1905.
[73] M. Seltzer and K. Bostic. Berkeley db. The Architecture of Open Source

Applications, 1, march 2012.
[74] N. Shavit and D. Touitou. Software transactional memory. In Pro-

ceedings of the Fourteenth Annual ACM Symposium on Principles of
Distributed Computing, PODC ’95, pages 204–213, New York, NY,
USA, 1995. ACM.

[75] Nvm programming model (npm), june 2017.
[76] Iso/iec 9075:1999, 1999.
[77] M. Stonebraker and L. A. Rowe. The design of postgres. SIGMOD

Rec., 15(2):340–355, June 1986.
[78] M. Swift and H. Volos. Programming and usage models for non-volatile

memory, March 2015.
[79] B. Tallis. Techinsights publishes preliminary analysis of 3d xpoint

memory, May 2017.
[80] A. Vance. With ’the machine,’ hp may have invented a new kind of

computer. Bloomberg LP, june 2014.
[81] S. D. Viglas. Write-limited sorts and joins for persistent memory. Proc.

VLDB Endow., 7(5):413–424, Jan. 2014.
[82] H. Volos, S. Nalli, S. Panneerselvam, V. Varadarajan, P. Saxena, and

M. M. Swift. Aerie: Flexible file-system interfaces to storage-class
memory. In Proceedings of the Ninth European Conference on Computer

Systems, EuroSys ’14, pages 14:1–14:14, New York, NY, USA, 2014.
ACM.

[83] H. Volos, A. J. Tack, and M. M. Swift. Mnemosyne: Lightweight
persistent memory. In Proceedings of the Sixteenth International
Conference on Architectural Support for Programming Languages and
Operating Systems, ASPLOS XVI, pages 91–104, New York, NY, USA,
2011. ACM.

[84] T. Wang and R. Johnson. Scalable logging through emerging non-
volatile memory. Proc. VLDB Endow., 7(10):865–876, June 2014.

[85] M. Wilcox. Add support for nv-dimms to ext4.
[86] W. E. Wright. Some file structure considerations pertaining to magnetic

bubble memory. The Computer Journal, 26(1):43–51, 1983.
[87] F. Xia, D. Jiang, J. Xiong, and N. Sun. Hikv: A hybrid index key-

value store for dram-nvm memory systems. In 2017 USENIX Annual
Technical Conference (USENIX ATC 17), pages 349–362, Santa Clara,
CA, 2017. USENIX Association.

[88] J. Xu and S. Swanson. NOVA: A log-structured file system for hybrid
volatile/non-volatile main memories. In 14th USENIX Conference on
File and Storage Technologies (FAST 16), pages 323–338, Santa Clara,
CA, 2016. USENIX Association.

[89] J. Xu, L. Zhang, A. Memaripour, A. Gangadharaiah, A. Borase, T. B.
Da Silva, S. Swanson, and A. Rudoff. Nova-fortis: A fault-tolerant non-
volatile main memory file system. In Proceedings of the 26th Symposium
on Operating Systems Principles, SOSP ’17, pages 478–496, New York,
NY, USA, 2017. ACM.

[90] J. Yang, Q. Wei, C. Chen, C. Wang, K. L. Yong, and B. He. Nv-tree:
Reducing consistency cost for nvm-based single level systems. In 13th
USENIX Conference on File and Storage Technologies (FAST 15), pages
167–181, Santa Clara, CA, 2015. USENIX Association.

[91] M. Zaki. Magnetic bubble memory structures for relational database
management systems. International Journal of Computer & Information
Sciences, 10:341–358, 1981.

[92] M. Zaki. Magnetic bubble memory structures for relational database
management systems. International Journal of Computer and Informa-
tion Sciences, 10:341–358, october 1981.


