
Towards Scalable Provenance Generation From
Points-To Information: An Initial Experiment

Padmanabhan Krishnan Štěpán Šindelář Bernhard Scholz ∗ Raghavendra Kagalavadi
Ramesh Yi Lu

Oracle Labs, Brisbane
{paddy.krishnan,stepan.sindelar,raghavendra.kr, yi.x.lu}@oracle.com

Abstract
Points-to analysis is often used to identify potential defects
in code. The usual points-to analysis does not store the
justification for the presence of a specific value in the points-
to relation. But for points-to analysis to meet the needs of the
programmer, the analysis needs to provide the justification
for its results. Programmers will use such justification to
identify the cause of defect the code.

In this paper we describe an approach to generate prove-
nance information in the context of points-to analysis. Our
solution is to define an abstract notion of data-flow traces
that is computed as a post-analysis using points-to infor-
mation that has already been computed. We implemented
our approach in conjunction with the DOOP framework that
computes points-to information. We use four benchmarks
derived from two versions of the JDK, and use two realistic
clients to demonstrate the effectiveness of our solution. For
instance, we show that the overhead to compute these data-
flow traces is only 25% when compared to the time to com-
pute the original points-to analysis. We also discuss some of
the limitations of approach especially in generating precise
traces.

1. Motivation
Points-to analysis [SB15] is often motivated by compiler
optimisations (e.g., identifying monomorphic calls) but can
also be used for finding defects in programs [LL05]. For
practical adoption of such analyses, the points-to informa-

∗Current Affiliation/Contact:School of Information Technologies, Univer-
sity of Sydney, bernhard.scholz@sydney.edu.au

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SOAP’17, .
Copyright c© 2017 ACM . . . $15.00.
http://dx.doi.org/10.1145/nnnn.nnnn

tion must help developers identify the causes of the defect
and improve their productivity. The analysis can, for in-
stance, generate an abstract program execution (or a path in
the control-flow graph) which can be integrated with the de-
veloper’s IDE [JSMHB13, CB16]. For example, results from
a taint analysis must display paths that show how the objects
at the taint sources reach the taint sinks.

Because of the high cost, such path information is not
stored by any existing points-to analysis. But it is not essen-
tial to store the path for all values. The user is interested only
in path information for some specific objects and/or program
locations, i.e., for values/constructs related to the defect that
the user wants to analyse. For such cases, we want path in-
formation for values that satisfy a given property. However,
it is not easy to determine the values that satisfy the property
while computing the points-to information. One approach is
to use staged analysis and slicing [ASK15] where the results
of a points-to analysis are used by a client who identifies
relevant queries. One can compute the slice and analyse it
to keep track of paths. But such slices are still too large for
automated path generation.

In this paper we outline the challenges faced in generat-
ing traces, and our initial approach that partially solves this
problem. We explain this in the context of DOOP [BS09],
which uses Datalog to express the points-to computation for
Java1 programs. We present the results of our experimen-
tation with large codebases to illustrate the restrictions on
precision imposed by scalability. Although we explain our
approach in the context of Datalog, the problem of path gen-
eration (or provenance of points-to tuples) in static program
analysis is not restricted to Datalog. Any flow-insensitive
data-flow analysis that does not keep track of the cause of
the data-flow would need modification to generate the prove-
nance information.

Datalog engines such as LogicBlox [GAK12] and Soufflé
[SJSW16] use the semi-naı̈ve algorithm [AHV95] that is
bottom-up, i.e., compute the output from the given facts till a
fixed point is reached. By default these engines do not keep

1 Java, JDK and JRE are registered trademarks of Oracle and/or its affiliates.
Other names may be trademarks of their respective owners.



track of the reasons (i.e.,provenance) for inserting a partic-
ular tuple in a relation. There are two possible approaches
to retain the provenance during computation. The first is to
provide direct support inside the Datalog engine by adapting
the semi-naı̈ve algorithm to store the provenance. While it
is possible to store provenance for all values (e.g., by stor-
ing the delta sets), there is no easy way to store provenance
for only relevant values. The second approach is to change
the semi-naı̈ve algorithm to a top-down algorithm. However,
top-down algorithms are, in general, sub-optimal [AHV95]
and it is not clear if such sub-optimal algorithms will scale
to the codebases we analyse. In this paper we describe an
approach where we develop a special Datalog specification
that computes only the provenance for the given queries over
the original Datalog specification. So our provenance gener-
ation is a special form of demand-driven program analysis
[SGSB05].

In the next section we define the problem we solve. Our
solution is described in detail in Section 3. We have imple-
mented our solution and experimented with its efficacy on
various codebases for different clients. This is described in
Section 4. The data presented also illustrates some of the
limitations of reusing the points-to information. We present
a survey of related work in Section 5 and conclude with a
summary.

2. Problem Definition
Our aim is to develop a technique to generate provenance for
a class of Datalog points-to specifications:

using standard Datalog semantics so that no alteration to
any Datalog engine is required;

that is client driven (i.e., provenance is generated only for
tuples satisfying certain user specified conditions) and

that reuses the results of the relations that determine the
client’s query.

The technique must be able to handle large codebases and
must be efficient when compared to computing the original
results.

More formally, given an original Datalog specification Do
that computes points-to information, the aim is to write a
specification Dp such that Do composed with Dp and a query
Q on relations in Do can generate provenance of the tuples
identified by Q from the results generated by executing Do.

This technique must also be able to handle large code-
bases where the relations have millions of tuples. Assume
that one is given a recursive relation R of large cardinality
defined in Do and a set P of user selected tuples (derived
using Q) which is a small subset of R. The overheads for
provenance generation for P from R must ideally be less than
100% (i.e., consume less time and memory than consumed
by the actual computation of R).

From a software engineering perspective we want the
specification to compute the provenance Dp to be fixed for a
large class of original specifications. Otherwise, one would
need a custom solution for every input Datalog program. If
we can fix Dp for a given an application domain, then every
Do in that domain can use Dp to generate the provenance
information.

We focus on a flow-insensitive, but object-sensitive points-
to relation [SBL11]. This requires that all client queries must
be expressible in terms of the points-to relation, and our
technique should be able to generate provenance information
only for the selected tuples. In the context of usability, gen-
erating the provenance information is not enough. Points-to
analysis is often used to detect defects in programs [LL05].
Hence for every defect reported, the developer wants a pro-
gram trace to identify the causes of the defect. We also need
to be able to display the trace in an appropriate tool.

3. Our Approach
In this section we focus on the high-level details of generat-
ing provenance for the points-to relation. The first step is to
execute the standard points-to analysis and obtain the results
that can be used to define a suitable query. The user-specified
query, along with the specification of the provenance, is then
executed to get the results that are related to the provenance
of the query. Note that there is a dependency between the
original program (which we had referred to as Do) and the
provenance specification (which we had referred to as Dp).
Once the provenance information is generated, the user can
specify which aspects need displaying and how it needs to be
displayed. Currently we support the open GraphViz format
(www.graphviz.org) and a format suitable for the Parfait
tool [CKL+12] which is used by many developers in Oracle.
This is computed outside of Datalog using various scripts.
There are two reasons for using scripts and not Datalog for
displaying traces. The first is that the provenance results pro-
duced by the Datalog engine is in relational form and diffi-
cult to interpret at the application level. In other words, the
output from the Datalog computation is the set of edges in
the provenance graph. The second is because of the size of
the provenance information displaying the entire relation is
not very useful. Hence the user can decide the necessary as-
pects and only this information is displayed. Particular ex-
amples of this are discussed in Section 4 where we also de-
scribe our current implementation.

As we aim to generate abstract traces from flow-insensitive
points-to information, the first step is to impose an execu-
tion order based on the call-graph edges which are used to
develop the traces. This idea is further developed below.

Data-flow Traces
We define our desired structure of traces or the form of
the provenance information. The provenance we want to
generate for the points-to relation (denoted as VarPointsTo)

www.graphviz.org


comes from the observation that (var,alloc) ∈ VarPointsTo
holds iff:

1. there is an allocation assigning alloc directly to var, or

2. given (var′,alloc) ∈ VarPointsTo at least one of the fol-
lowing holds:

(a) there is a local assignment var = var′, where local as-
signments are those that occur within a method body.

(b) there is an interprocedural assignment (from var′ to
var) either from actual parameter of an invocation to
the formal parameter of the method, or a return vari-
able of the method to the return value at an invocation.

(c) there is a load from static field f to var and there is a
store to static field f from var′.

(d) there is a load from instance field f ′ with base variable
bl to var and there is a store to instance field f ′ with
base variable bs to var′ such that there is an object bo
pointed-to by both bl and bs.

The provenance for (var,alloc) ∈ VarPointsTo has two
components. The first is a sequence of variables through
which alloc ‘flows’ to var starting from the local variable
that gets assigned alloc directly. The second is related to
flow via loading and storing of fields using alias informa-
tion. Thus our provenance computation generates a graph
where variables and fields are vertices and each operation
(assignment, load, store) is an edge. Our Datalog specifica-
tion (Dp) has two relations to represent this information (the
first is the transitive closure of rules 2a and 2b, and the sec-
ond is the combination of rules 2c and 2d). Owing to space
limitations we do not show the Datalog encoding here.

Three abstractions are required to the definition of the
trace that enable us to scale our computation to large code-
bases. They relate to both the information we retain as part
of the traces as well as the information we use from the
points-to analysis. The first abstraction is to show the trace
that includes only interprocedural assignments. This means
that the local assignments, although used in the computation
of the trace, are not explicitly represented in the final result.
The second abstraction is related to the storing of contexts in
the provenance. We do not store context information in the
provenance because the presence of contexts increases the
number of tuples in the provenance. The contexts are use-
ful only during the computation phase and the traces them-
selves do not have contexts. The third abstraction is related
to trimming methods that are deemed to not add value to the
trace being generated. That is, not all methods involved in
the call chain in the provenance information add value. We
elide methods that do not have any side-effect (i.e., change
the heap) with respect to the traced object and only return
values that were passed in as parameters. Erasing such meth-
ods from the provenance reduces the size of the relation.

Before we describe our implementation of the tech-
nique we present a simple example to illustrate the different

1 public class Test {
2 public static class Value {}
3 public static class Holder { public Value v; }
4

5 public static void entryPoint() {
6 Holder h = new Holder();
7 setup(h);
8 read(h);
9 }

10

11 private static Value factory() {return new Value()
;}

12

13 private static void setup(Holder h) {h.v = factory
();}

14

15 private static void read(Holder h) {
16 Value x = forward(h.v);
17 target(x);
18 }
19

20 private static void target(Value v) { ... }
21

22 private static Value forward(Value v) { return v; }
23 }

Figure 1. Java source code for tracing: An illustrative ex-
ample.

Test.read(LTest$Holder;)V|x

Test.target(LTest$Value;)V|@v

param

Test.read(LTest$Holder;)V|0

base

Test.setup(LTest$Holder;)V|%1

field

Test.setup(LTest$Holder;)V|0

base

new Value()

Test.factory()LTest$Value;|%ret

allocation

return

Test.entryPoint()V|%0

Test.entryPoint()V|h

end

param

param

Figure 2. Derived data-flow traces graph for program in
Figure 1

types of edges computed. Figure 1 shows the Java source
code. The query is the parameter variable v in the method
target (shown on line 20) may point-to the allocation site
in method factorywhich creates an object of type Value
(shown on line 11). Figure 2 shows the computed data-flow
traces graph. The method factory is invoked from setup
which is invoked from entryPoint. The first allocation
in entryPoint creates the base variable h whose field is
then updated by setup. This effectively sets up the field
value h.v shown by the dotted elements in the trace-graph.
The method target is called from read which calls the
method forward to set the value of x. As forward is a
side-effect free method, it is not shown in the trace, and the
value of x is directly copied from the load, i.e., h.v. This
requires the linking of the base variable which is a param-



eter h to the object created in entryPoint. The dashed
lines (labelled base) capture this behaviour. So there are two
aspects to the trace: one captured by direct flow edges and
shown via elements that are framed with a solid line in Fig-
ure 2; and the other captured by edges related to aliasing for
load/store pairs and shown via elements that are framed with
dotted lines. The link between the two elements is shown via
dotted lines.

4. Implementation and Results
Our implementation to compute the data-flow traces graph in
Datalog extends the DOOP framework. The client query is
also specified as a Datalog relation that is used in the prove-
nance computation. The results of the Datalog specification
execution are stored in a SQLite3 [Owe06] database, which
is useful to implement the post-processing algorithms. These
include generating graphical information that can be pro-
cessed by GraphViz to generate visualisation of the data, as
in Figure 2, or that can used by Parfait [CKL+12]. We cur-
rently support limited features to generate specific data-flow
traces, including all acyclic paths and sets of shortest paths.
This is under the control of the user although for large code-
bases we do not recommend generating all acyclic paths.

To simplify the presentation of the traces we consider
only one level for load/store related aliases. That is, we
ignore any load/store pairs that are involved in the aliasing of
other load/store pairs. Later we show that computing traces
with two levels of alias pairs is possible but it does not yield
useful results.

We now present the results of using our approach on large
codebases. The performance is dependent on both the under-
lying codebase and the client queries that need provenance.
For the codebases we select four benchmarks composed of
two subsets of two versions of the JDK, and for each of these
codebases we run the queries of two clients. We refer to the
four codebases as SiVj for subset i from version j. The first
client is taint analysis for certain security-sensitive locations
of the program while the second client is escape analysis
of objects created at certain security-sensitive locations. We
choose these locations based on the descriptions obtained
from the Java Secure Coding Guidelines [Jav14].

The taint analysis identifies objects that are created out-
side the library and reach the undesirable locations (sinks).
The escape analysis identifies objects that are created within
the library but can reach the application, say, via a return
value of a public API or, written to any publicly readable
field. For the taint analysis we also use the slicing technique
[ASK15] but not for the the escape analysis. Again, this is to
study the effect of different client behaviours.

The results we present include metrics to indicate the size
of the benchmarks used, the resources consumed for both
the 2O+1H context-sensitive points-to computation and the
provenance generation, and the characteristics of the graph
that represents the provenance.

Table 1. Sizes of input relations for each benchmark used.
Analysed Allocation Invocations VarPointsTo
code Sites (103) (103) (106)
S1V1 19 74 336
S1V2 15 54 95
S2V1 41 157 871
S2V2 46 179 529

Table 2. Size of the queries.

Analysed code Traces Query
Size Alloc Sites

Taint: S1V1 2164 117
Taint: S1V2 0 0
Taint: S2V1 9346 362
Taint: S2V2 12562 443
Escape: S1V1 64 2
Escape: S1V2 0 0
Escape: S2V1 445 16
Escape: S2V2 10 10

Table 1 shows the size of the various benchmarks we
use in our experiments. It shows the number of allocation
sites and invocations in the benchmark program and the size
of the computed points-to set. Table 2 shows the result of
each query for the various benchmarks. We show the total
size of the query relation as well as the number of unique
objects (i.e., without contexts) that need tracing as per the
query. Note that the query for both taint and escape on the
subset S1V2 has no objects. This means that there are no
defect reports and hence no tracing is required. We included
this subset only to ensure that the base level overheads in
the tracing process are negligible. Table 3 shows the total
computation time taken in minutes for the various cases. We
present the time taken to just compute the results, as well as
the time taken to compute the results along with generating
the trace for the given query. Table 4 shows the memory
consumption for the same set of executions.

Table 3. Time (minutes:seconds) for the two clients with
and without tracing.

Analysed
code

Taint Escape
Only With Only With

Results Tracing Results Tracing
S1V1 2:26 2:33 34:31 35:12
S2V1 12:04 15:09 65:49 67:21
S2V2 25:56 32:00 29:51 30:02

Table 5 presents the characteristics of the generated
graph. As expected, the graphs are generally sparse (except
for the escape results on S2V1). However, the maximum de-
gree for the taint traces is quite large. The reasons for these
large degrees is related to the imprecision of the points-to



Table 4. Memory consumption in GB (maximum resident
size).

Analysed
code

Taint Escape
Only With Only With

Results Tracing Results Tracing
S1V1 17.8 17.9 143 160.9
S1V2 33.2 33.2 38.9 38.9
S2V1 69 70.5 288.5 314
S2V2 140.4 145.2 162.2 176

results. If an object is pointed-to by numerous variables,
the trace graph has to follow these variables which leads to
an explosion of the graph at that program point. Such be-
haviours are observed when the level of context-sensitivity
is not sufficient for data structures, such as containers. Ta-

Table 5. Characteristics of the trace graph.

Analysed code Data-flow Traces
V E Avg(deg) Max(deg)

Taint: S1V1 1830 2636 1.44 15
Taint: S2V1 4653 6774 1.46 105
Taint: S2V2 4287 8538 1.99 112
Escape: S1V1 110 1990 18 32
Escape: S2V1 1115 6632 5.95 33
Escape: S2V2 13 14 1.08 2

ble 6 presents the size and characteristics of the traces asso-
ciated with the base variables in load/store pairs. In this case
we consider only one level of base-tracing (i.e., we do not
follow load/store pairs for load/store pairs etc.). The graph
associated with taint on the larger of the two subsets of the
two versions of the JDK is significantly larger than the one
for the main traces. This is again caused by the imprecision
points-to and data structures, such as collections. For the
escape analysis, the traces do not involve any fields in the
S2V2and hence no base-tracing is necessary.

Graph Characteristics and A Pragmatic Solution
By examining the structure of the trace graph, we can see
that one cannot sensibly display the entire graph, especially
if the degree of a node is very large. Hence in practice we
display only the shortest path(s) between a sink and a source.
This is generated using the information computed by the
Datalog engine and stored in the SQLite3 database.

In Figure 3 we show the distribution of the shortest paths
of the taint traces for the S2V1 benchmark. Here, most of the
paths are of size 20 or less and there are very few paths that
are longer than 35. However, visualising paths longer 10 is
challenging; and we are examining interactive mechanisms
to display and navigate them. The behaviour over other non-
trivial examples is similar.

We now examine the cost of some of the implementation
level simplifications and abstractions. Recall that our initial

 0

 50

 100

 150

 200

 250

 300

 350

 0  5  10  15  20  25  30  35  40  45

T
ra

c
e

s
 c

o
u

n
t

Trace length

traces lengths distribution

Figure 3. Distribution of shortest paths in S2V1.

implementation of traces related to aliases included only one
level of load/store pairs. We have also implemented tracing
of depth 2 for aliases. The taint trace generation for depth 2
takes about 10% extra time while the escape trace generation
takes about 5% extra time. The extra memory consumption
is also less than 5%. However, for the larger subset of the
two versions, i.e., S2V1 and S2V2 the resulting graph is much
larger. A spot inspection indicated that the extra information
is of very little value. The reason is that the imprecision of
the points-to analysis is amplified at the second level, and
thus the traces contain many false positives. In summary,
although the extra resources required to compute the traces
at depth 2 is reasonable, the results are not very useful given
our current level of precision of the points-to set.

Summary
Based on our implementation and experiments we can con-
clude the following. It is feasible to compute abstract traces
(involving variables at method boundaries and load/store
pairs and not storing context information) for large code-
bases with overheads of around 25%. Note that our tech-
niques are inexpensive but scalable and thus propagate im-
precision in the underlying points-to analysis. From a us-
ability perspective, computing the base traces up to depth 1
is sufficient. However, it is still a challenge to display the
entire graph in a useful fashion.

5. Related Work
In this section we review related work for points-to analysis
and for provenance in general. Thresher [BCS13] is closest
to our work that solves the problem of provenance in the con-
text of points-to analysis. They are interested in the same ba-
sic problem in determining precisely if a variable can access
an object using information computed by a flow-insensitive
points-to information. They use very precise but expensive
techniques such as symbolic execution to remove infeasi-
ble information flow paths. The main limitation is that their
approach is not scalable. The largest program they analyse
has 78K lines of code which takes 18 minutes to generate
traces from the unannotated program. Another related work
is PSE [MSA+04] for C programs, which uses backward-
value flow analysis, path-sensitive analysis and symbolic ex-



Table 6. Trace for the base allocations sites of heap loads and stores.

Analysed code Traces Query Data-flow Traces
Size Alloc Sites V E Avg(deg) Max(deg)

Taint: S1V1 459 114 2846 2465 1.53 8
Taint: S2V1 7343 529 12484 16443 1.8 35
Taint: S2V2 25028 531 23791 98245 4.89 136
Escape: S1V1 279 12 384 1479 5.23 34
Escape: S2V1 1280 43 7588 2818 4.4 37
Escape: S2V2 0 0 0 0 0 0

ecution to generates traces. These techniques are expensive
and do not scale to our use cases. [GOA05] use of a subset of
SQL called PTQL to express the desired set of traces. PTQL
specifications are used to instrument a program, and the set
of the traces is obtained from a dynamic execution. So our
work is more about provenance generation for pre-computed
results while their work is about instrumenting programs for
dynamic traces.

6. Conclusion and Future Work
In this work we have described the need for generating
provenance information for values in the points-to relation.
We have described our initial solution and experimental re-
sults to show the applicability of our approach.

However, many challenges remain, including improving
the precision of the provenance generation (say, via a selec-
tive flow-sensitive analysis [BCS13]), provenance for call-
graph edges (e.g., the reason for resolving a virtual call to
a particular target) and reducing the overheads for gener-
ating provenance. Potential other approaches include using
languages such as PQL [MLL05] to generate true traces.
Displaying the normal traces in combination with the traces
for the aliases and integrating the generation and display of
traces into the developer’s workflow that is required for real
adoption [JSMHB13] remains a challenge. These challenges
limit the actual adoption of points-to analysis.

References
[AHV95] S. Abiteboul, R. Hull, and V. Vianu. Foundations of

Databases. Addison-Wesley, 1995.

[ASK15] N. Allen, B. Scholz, and P. Krishnan. Staged points-to
analysis for large code bases. In Compiler Construc-
tion, LNCS 9031, pages 131–150, 2015.

[BCS13] S. Blackshear, B-Y. E. Chang, and M. Sridharan.
Thresher: Precise refutations for heap reachability. In
PLDI, pages 275–286. ACM, 2013.

[BS09] M. Bravenboer and Y. Smaragdakis. Strictly declara-
tive specification of sophisticated points-to analyses.
In OOPSLA, pages 243–262. ACM, 2009.

[CB16] M. Christakis and C. Bird. What developers want and
need from program analysis: An empirical study. In
ASE, pages 332–343. ACM, 2016.

[CKL+12] C. Cifuentes, N. Keynes, L. Li, N. Hawes, and M. Val-
diviezo. Transitioning Parfait into a development tool.
IEEE Security and Privacy, 10(3):16–23, May/June
2012.

[GAK12] T. J. Green, M. Aref, and G. Karvounarakis. Log-
icblox, platform and language: A tutorial. In Datalog
in Academia and Industry, LNCS 7494, pages 1–8.
Springer, 2012.

[GOA05] S. F. Goldsmith, R. O’Callahan, and A. Aiken. Rela-
tional queries over program traces. In OOPSLA, pages
385–402. ACM, 2005.

[Jav14] Secure coding guidelines for Java SE.
http://www.oracle.com/technetwork/java/

seccodeguide-139067.html, 2014. Document
version 5.0, updated 25 September 2014.

[JSMHB13] B. Johnson, Y. Song, E. Murphy-Hill, and R. Bow-
didge. Why dont software developers use static analy-
sis tools to find bugs? In ICSE, pages 672–681. IEEE,
2013.

[LL05] V. B. Livshits and M. Lam. Finding security vulner-
abilities in Java applications with static analysis. In
USENIX Security Symposium, 2005.

[MLL05] M. Martin, B. Livshits, and M. S. Lam. Finding
application errors and security flaws using PQL: A
program query language. In OOPSLA, pages 365–
383, 2005.

[MSA+04] R. Manevich, M. Sridharan, S. Adams, M Das, and
Z. Yang. PSE: Explaining program failures via post-
mortem static analysis. In FSE, pages 63–72. ACM,
2004.

[Owe06] M. Owens. The Definitive Guide to SQLite. Apress,
2006.

[SB15] Y. Smaragdakis and G. Balatsouras. Pointer analysis.
Foundations and Trends in Programming Languages,
2(1):1–69, 2015.

[SBL11] Y. Smaragdakis, M. Bravenboer, and O. Lhoták. Pick
your contexts well: Understanding object-sensitivity.
In POPL, pages 17–30. ACM, 2011.

[SGSB05] M. Sridharan, D. Gopan, L. Shan, and R. Bodik.
Demand-driven points-to analysis for Java. In OOP-
SLA, pages 59–76. ACM, 2005.

[SJSW16] B. Scholz, H. Jordan, P. Subotić, and T. Westmann.
On fast large-scale program analysis in Datalog. In
Compiler Construction, pages 196–206. ACM, 2016.

http:// www.oracle.com/technetwork/java/seccodeguide-139067.html
http:// www.oracle.com/technetwork/java/seccodeguide-139067.html

	Motivation
	Problem Definition
	Our Approach
	Implementation and Results
	Related Work
	Conclusion and Future Work

