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Abstract—Advanced statistical machine learning (ML) 

algorithms are being developed, trained, tuned, optimized, 

and validated for real-time prognostics for internet-of-

things (IoT) applications in the fields of manufacturing, 

transportation, and utilities.  For such applications, we 

have achieved greatest prognostic success with ML 

algorithms from a class of pattern recognition known as 

nonlinear, nonparametric regression.  To intercompare 

candidate ML algorithmics to identify the “best” 

algorithms for IoT prognostic applications, we use three 

quantitative performance metrics:  false alarm probability 

(FAP), missed alarm probability (MAP), and overhead 

compute cost (CC) for real-time surveillance.  This paper 

presents a comprehensive framework, SimML, for 

systematic parametric evaluation of statistical ML 

algorithmics for IoT prognostic applications.  SimML 

evaluates quantitative FAP, MAP, and CC performance as 

a parametric function of input signals’ degree of cross-

correlation, signal-to-noise ratio, number of input signals, 

sampling rates for the input signals, and number of training 

vectors selected for training.  Output from SimML is 

provided in the form of 3D response surfaces for the 

performance metrics that are essential for comparing 

candidate ML algorithms in precise, quantitative terms. 
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I.  INTRODUCTION  

I.1 Background: Electronic Prognostics (EP) 

Algorithmic Innovations Adapted for IoT 

Prognostics 

New prognostic algorithms are being adapted and 

optimized for real-time Internet-of-Things (IoT) 

applications across a variety of IoT customer industrial 

applications including Manufacturing, Utilities, and 

Transportation. 

Oracle has over the last 15 years developed and patented 

a suite of advanced statistical pattern recognition 

innovations for enterprise computing components, 

subsystems, and for integrated hardware-software 

systems in enterprise and cloud data centers. As is the 

case for large-scale IoT industrial applications, 

enterprise computing prognostics face challenges with 

very large collections of sensors from expensive assets. 

A typical enterprise server today contains hundreds of 

physical transducers (4RU server), and up to 3400 

transducers for a rack-sized engineered system. A 

medium size enterprise data center comprises over 1M 

sensors streaming digitized time-series signatures on a 

24x7x365 basis. In this paper we adapt large-scale 

dense-sensor prognostic algorithmics for IoT industrial 

applications and present a comprehensive pluggable 

framework, called SimML, for rapidly customizing, 

tuning, optimizing, and validating candidate prognostic 

machine learning (ML) algorithms for industrial IoT 

applications where one needs to rigorously validate that 

prognostic functional requirements are being met. 

Moreover, SimML allows quantitative intercomparison 

of candidate ML prognostic algorithms in terms of what 

we have found to be the most important prognostic 

functional requirements for business critical and mission 

critical IoT applications: the false alarm probability 

(FAP), missed alarm probability (MAP), and the 

overhead compute cost (CC) for real time prognostic 

surveillance. We begin with a brief background on the 

extensive portfolio of prognostic applications we have 

adopted from Oracle’s mature portfolio of enterprise 

data center prognostic applications to dense-sensor IoT 

applications. 

Electronic Prognostics (EP) for business-critical and 

mission-critical IT systems comprises a comprehensive 

methodology for proactively detecting and isolating 



failures, recommending condition-based maintenance 

(CBM), and estimating in real time the remaining useful 

life (RUL) of critical components. The key enabler for 

achieving Electronic Prognostics capabilities is Oracle’s 

continuous system telemetry harness (CSTH) [Ref. 1], 

which collects and preprocesses any/all types of time 

series signals relating to the health of dynamically 

executing components and subsystems. These time 

series signatures provide quantitative metrics associated 

with physical variables (a typical data center now 

contains > one million physical sensors inside the IT 

assets measuring distributed temperatures, voltages, and 

currents, power metrics, fan speeds, vibration sensors), 

performance variables (CPU & memory loads, 

throughputs, queue lengths, process metrics, etc.), and 

various quality-of-service (QOS) performance metrics. 

The CSTH signals are continuously archived to an 

offline circular file (i.e. the "Black Box Flight 

Recorder"), and are also processed in real time using 

advanced statistical ML algorithms for proactive 

anomaly detection and for RUL estimation with 

associated quantitative confidence factors. Oracle has 

achieved highest prognostic performance with lowest 

overhead compute cost by leveraging ML techniques 

from the class of mathematics known as nonlinear, 

nonparametric (NLNP) regression. Oracle's continuous 

system telemetry harness (CSTH) coupled with NLNP 

ML pattern recognition [Refs 2-6] help to increase 

component reliability margins and system availability 

goals while reducing (through improved root cause 

analysis) costly sources of "no trouble found" (NTF) 

events from spurious false alarms that cause down time 

in customer's critical assets. 

Proactive fault monitoring is the ability to identify 

leading indicators of failure before the failure actually 

occurs. Empirical ML pattern recognition methods are 

frequently used in proactive fault monitoring, whereby 

the signal behaviors are modeled from telemetry signals 

collected during normal operation with undegraded 

assets. The pattern recognition model is constructed in a 

training phase, during which the (nonlinear) correlations 

among the input signals are learned. In the monitoring 

phase, the pattern recognition ML module is used to 

estimate the value of each signal as a function of the 

other signals. Significant deviations between the 

estimates and observed signals indicate a potential 

incipient degradation mode in the system. This paper 

reports a systematic framework for evaluation, tuning, 

optimization, and evaluation of candidate ML 

algorithms using real and synthesized data streams. 

 

The three most important evaluation criteria that make or 

break ML algorithms for end customer applications are 

the FAP, MAP, and ComputeCost. If any one or more of 

these 3 metrics fails to meet Prognostic Functional 

Requirements (PFRs), the ML technique can be useless 

(at best) and dangerous (for customers with safety-

critical assets) at worst.   

A related functional requirement adapted from EP 

prognostic applications for IoT [Refs 7-9] is that the FAP 

and MAP have to be separately configurable.  If one 

evaluates a candidate ML algorithm for which the 

"tuning" parameters cause the MAP to go up when one 

lowers the FAP, or vice versa, then the ML algorithm 

will not be useful for real-time prognostic applications.   

 

We approach the PFR evaluation with a systematic 

Design-of-Experiments (DOE) framework that evaluates 

the 3 primary functional requirements parametrically as 

a function of the following important variables for any 

IoT prognostic challenge: 

* Number of signals available 

* Sampling rate of signals  

* Degree of cross correlation among available signals 

* Signal-to-noise ratio for individual signals 

* Number of training vectors selected for prognostic 

model training 

* "Degree of severity" for anomalies one hopes to detect 

with the ML prognostics (SimML approaches this 

systematically and parametrically, by "analytically" 

dialing down the anomaly signatures to generate 

[FAP,MAP,ComputeCost] curves vs subtleness of 

injected anomalies. 

* Influence of lead/lag relationships between/among 

monitored signals.  [This often "invisible" aspect of 

time-series data sets will invalidate evaluations of most 

types of ML algorithms.  There are very many reasons 

that time-varying leads/lags get into time series datasets, 

whether from business applications, industrial IoT 

applications in manufacturing, utilities, transportation, 

military systems, and all types of enterprise computing 

and IoT cloud data center applications.  Most prognostic 

ML algorithms will give drastically varying results when 

there are time-varying leads/lags inherent in the testing 

datasets.] 

 

Finally, one of the most important aspects to be aware of 

when evaluating candidate ML algorithms for prognostic 

applications is an essential functional requirement we 

call "robustness".  Many naive approaches to ML 

prognostics research attempt to evaluate a ML algorithm 

by "how well it predicts" new observations, after being 

trained on historical observations.  Injudicious reliance 

on that criteria is dangerous for the following reason:  If 

the dataset of time series signals is a "good" data set in 

the sense that the signals really possess a good degree of 

inter-correlation, then it is correct that a good ML 

technique can be trained and can predict new 

observations on the basis of the other correlated 



variables, and in this case anomalies can be detected with 

high accuracy with the techniques described in this 

paper.  However, if a ML data scientist accidentally gets 

a data set where there is no correlation among the 

signals, many ML algorithms will "learn the noise" and 

seem like they are predicting well, but will have zero 

capability for detecting any real 

anomalies.  Our "Robustness" measurement achieves the 

following:  If a small disturbance is injected into signal 

#N, then Alerts are generated immediately for signal #N 

and for no other signals that do not have a 

disturbance.  Robustness needs to be an essential 

element of any framework for evaluation of candidate 

ML algorithms for IoT prognostic applications. 

 

I.2 Sequential Probability Ratio Test (SPRT) for 

Fault Detection 

A prognostic technique based upon empirical NLNP 

regression coupled with a SPRT for fault annunciation 

provides a superior surveillance tool because it is 

sensitive not only to disturbances in signal mean, but also 

to very subtle changes in the statistical moments (mean, 

variance, skewness, kurtosis) of the monitored signals 

and the patterns of correlation between/among multiple 

types of signals. Our prognostic algorithms adapted from 

EP to IoT prognostic challenges employ a statistical 

pattern recognition technique called the Sequential 

Probability Ratio Test (SPRT) [Refs 9-13], which 

provides the basis for detecting very subtle statistical 

anomalies in noisy process signals at the earliest 

mathematically possible time, thereby providing 

actionable warning-alert information on the type and the 

exact time of onset of the disturbance. Instead of simple 

threshold limits that trigger faults when a signal 

increases beyond some threshold value, the SPRT 

technique is based on user-specified false-alarm and 

missed-alarm probabilities (FAPs and MAPs), allowing 

the end user to control the likelihood of missed 

detections or false alarms. For sudden, gross failures of 

sensors or IoT system components the SPRT annunciates 

the disturbance as fast as a conventional threshold limit 

check. However, for slow degradation that evolves over 

a long time period (gradual decalibration bias in a sensor; 

very subtle voltage drift from the variety of aging 

mechanisms that cause resistances to change very slowly 

with age; bearing out-of-roundness degradation, 

lubrication dryout, shaft centerline eccentricities, 

rotator-vane imperfections, or buildup of a radial rub in 

all types of rotating machinery and centrifugal pumps; 

the gradual appearance of new vibration spectral 

components in the presence of noisy background signals, 

etc.), the SPRT raises a warning of the incipience or 

onset of the disturbance long before it would be apparent 

to any conventional threshold based rules.  

II. EXAMPLE RESULTS FOR SIMML MONTE CARLO 

SIMULATION COMPUTATIONS WITH TWO CANDIDATE 

ML ALGORITHMS 

Example computations with SimML are presented for 

intercomparison of two prognostic ML algorithms, both 

of which are integrated with a SPRT “detector” 

algorithm for annunciation of anomalies in noisy process 

variables.  The first candidate technique is Auto 

Associative Kernel Regression (AAKR), as developed 

by our collaborating partner prognostics researchers at 

the U. of Tennessee [Refs 11,14].  The 2nd candidate 

technique is the Multivariate State Estimation Technique 

(MSET) [Refs 15-19].  SimML is employed to conduct 

a parametric prognostic accuracy and compute-cost 

analysis for these two candidate algorithms using 

identical signal data sets for the corresponding runs, and 

while varying through all possible permutations and 

combinations of the number of signals under 

surveillance, the number of observations (and hence the 

sampling rates for the signals), the degree of cross 

correlation among the monitored signals, and the signal-

to-noise ratio for the individual signals (which we 

systematically vary by superimposing noise onto 

otherwise well-correlated signals…to simulate 

increasingly challenging cases where the correlation 

content…which empirical ML algorithmics thrive on, 

becomes increasingly obscured by “background noise”). 

 

Fig 1. Shows just one (of hundreds) of data sets we 

employ for this exhaustive design-of-experiments 

analysis.  In this case, we begin with 12 monitored 

signals, 11 of which are “real” process variables with a 

moderate degree of cross correlation (correlation 

coefficients slightly greater than .6), and a 12th signal that 

is purely random. 

 

 
 

Fig. 1. Example Signal Dataset for Analysis: 11 Signals 

with Process Correlation + 1 random signal 



The reason we include one random signal to each data 

set under analysis is twofold:  (1) in very many types of 

industrial prognostic applications the sensors have 

shorter mean-time-between-failure (MTBFs) than the 

assets being monitored.  It can commonly be the case that 

a sensor may fail in service and go unnoticed.  Prognostic 

pattern recognition algorithms need to be robust to 

individual sensor failures; and (2) if a human data 

scientist accidentally includes a signal in the surveillance 

framework that is not correlated with any other 

signals,that “dilutes” the prognostic accuracy for the 

remaining process signals.  Of course we know that even 

crude prognostic algorithms will do outstanding if fed 

extremely well correlated signals.  In practice, a ML 

researcher is lucky to get clusters of signals with 

correlation coefficients > .5, and with high resolution 

(high signal-to-noise ratios) for the individual signals.  

For this evaluation we make sure to include increasingly 

challenging scenarios wherein we systematically 

diminish the degree of correlation between/among 

monitored signals, and we increase the noise 

contamination on the signals to explore accuracy, false-

alarm avoidance, and overall compute cost under these 

increasingly challenging scenarios. 

 

Fig. 2 shows a typical output with a model estimated 

signal (in this case with AAKR) superimposed on the 

monitored signal.  Both AAKR and MSET do quite well 

predicting the correlated components in the monitored 

process signals.  With only 50 training vectors (out of 

1000 observations), we can see that the “residuals” 

(difference between the measured signal and the 

predictions) are quite small (Fig. 3).  We also see in Fig. 

3 there are no false alarms from the SPRT Detector while 

monitoring this process which has no anomalies present, 

as desired.  That is the case for both AAKR and MSET 

for the example data set shown. 

 
Fig. 2. AAKR Estimates: 12 signals, 50 training vectors 

 

 
 

Fig. 3. AAKR SPRT: H=1, 12 signals, 50 training vectors 

 

One challenge we encounter with conventional AAKR is 

that the “kernel bandwidth parameter,” H, needs to be 

selected judiciously to obtain good predictions with 

AAKR.  If H is not optimized for every data set and every 

signal in the data set, predictions and false-alarm 

performance can be quite degraded.  This is illustrated in 

Fig. 4 where we plot the prediction uncertainty (in root-

mean-square-error, RMSE) for the AAKR predictions vs 

H. Although prognostic performance is good when H is 

optimized, this optimization step increases the compute 

cost for AAKR applications.  By contrast, MSET does 

not need any tuning optimizations.   

 
 

Fig. 4.  Kernel Bandwidth Optimization for AAKR 

 

 

 

For the hundreds of cases analyzed as part of this 

investigation, MSET consistently gives significantly 



higher prognostic accuracy  Fig. 5 shows the accuracy of 

estimates from AAKR as a function of the standard 

deviation of the analyzed signals and the number of 

training vectors selected for modeling.  The 

corresponding accuracy as a function of the same control 

variables is shown in Fig. 6. 

 

 

 
 

Fig. 5 AAKR Prediction Uncertainty vs Noise Contamination on 

Signals vs # of Training Vectors Selected 

 

 

 

 
 

Fig.6  MSET Prediction Uncertainty vs Noise Contamination on 

Signals vs # of Training Vectors 

 

Fig. 7 shows the compute cost for AAKR (implemented 

in Java) for test analyses where the number of signals, 

and the number of observations per signal are varied.  

The corresponding results for MSET (also implemented 

in Java) are shown in Fig. 8. 

 
 

Fig. 7   AAKR Compute Cost versus Number of Signals and Number 

of Observations per Signal  

 

 

 
 

 
Fig. 8  MSET Compute Cost versus Number of Signals and Number 

of Observations per Signal  

 

 

CONCLUSIONS 
Advanced statistical machine learning (ML) algorithms are 

being developed, trained, tuned, optimized, and validated for 

real-time prognostics for internet-of-things (IoT) applications 

in the fields of manufacturing, transportation, and utilities.  

Greatest prognostic success to date has been achieved with ML 

algorithms from a class of pattern recognition known as 

nonlinear, nonparametric (NLNP) regression. A 

comprehensive framework, SimML, has been developed for 

systematic parametric evaluation of statistical ML algorithmics 

for IoT prognostic applications. SimML evaluates quantitative 

FAP, MAP, and CC performance as a parametric function of 

input signals’ degree of cross-correlation, signal-to-noise ratio, 

number of input signals, sampling rates for the input signals, 

and number of training vectors available for training.  Output 

from SimML is provided in the form of 3D response surfaces 

for the performance metrics that are essential for comparing 

candidate ML algorithms in precise, quantitative terms.  For 



any candidate ML algorithms coded in Matlab or in Java, 

SimML employs a nested-loop structure to enable a 

comprehensive design-of-experiments evaluation of FAP, 

MAP, and CC as a function of the dependent variables and 

computes 3D response maps for all pair-wise combinations if 

dependent variables.  Examples have been presented in this 

paper for two candidate ML prognostic algorithms:  AAKR and 

MSET.  Results have shown that MSET achieves substantially 

better prognostic performance, higher accuracy for signal 

predictions, higher sensitivity for detection of subtle anomalies 

in noisy process variables, lower FAP and MAP, and 

significantly lower compute cost (approximately 80% lower) 

for real time surveillance applications. 
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