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Abstract

Entailment Graphs based on open relation ex-
traction run the risk of learning spurious en-
tailments (e.g. win against F lose to) from
antonymous predications that are observed with
the same entities referring to different times.
Previous research has demonstrated the poten-
tial of using temporality as a signal to avoid
learning these entailments in the sports do-
main. We investigate whether this extends to
the general news domain. Our method intro-
duces a temporal window that is set dynami-
cally for each eventuality using a temporally-
informed language model. We evaluate our
models on a sports-specific dataset, and ANT —
a novel general-domain dataset based on Word-
Net antonym pairs. We find that whilst it may
be useful to reinterpret the Distributional Inclu-
sion Hypothesis to include time for the sports
news domain, this does not apply to the general
news domain.

1 Introduction

The ability to recognise textual entailment and para-
phrase is essential to many NLP applications, in-
cluding open-domain question answering over un-
structured data. This setting frequently poses the
challenge that the answer to the question is not ex-
plicitly stated in the text, and can only be inferred
using entailment rules and/or paraphrases. For ex-
ample, the question might ask “Did Arsenal play
Man United last night?” and the post-match report
states “Arsenal beat Man United 1-0”. A system
that can recognise that beat = play will be able to
provide the correct answer (“yes”).

Entailment Graphs (Berant et al., 2011, 2015;
Hosseini et al., 2018), learned using unsupervised
methods applied over large text corpora, have been
proposed as a means to support answering such
questions. Entailment Graphs comprise nodes rep-
resenting predicates, and edges representing the
entailment relation between them. They can be

learned using the Distributional Inclusion Hypoth-
esis (DIH), which states that a predicate p entails a
predicate g if the context set in which p can be used
is included in the context set of ¢ (Dagan et al.,
1999; Geffet and Dagan, 2005). For predicates, the
context set is usually interpreted as co-occurring
argument pairs.

However, the argument pair-based, atemporal
formulation of the DIH does not support the class
of predicate pairs that are antonyms and occur fre-
quently within a window of time with the same
argument pairs, such as winning and losing (Guil-
lou et al., 2020). For example, sports teams often
play against each other multiple times in a season,
likely with different outcomes, so that predicates
such as win against and lose to are both likely
to apply to the same sports team argument pairs
(e.g. Arsenal, Man United). Consequently, current
state-of-the-art methods for learning Entailment
Graphs may commonly learn erroneous entailment
relations between these pairs of highly correlated
predicates (e.g. fo win F to lose).

Guillou et al. (2020) propose an algorithm that
circumvents this issue by considering argument
pair occurrences only when the eventualities tem-
porally overlap. This effectively reinterprets the
DIH’s context set as containing both argument pairs
and time. They refine Entailment Graph induction
for the sports news domain. We extend their work
by applying the method to the general news do-
main, and propose setting different size temporal
comparison windows for the different predicates
contained in the general domain. We dynamically
assign a different window size for each eventuality
in the corpus using a temporally-aware language
model (Zhou et al., 2020) that predicts the expected
duration of the eventuality. We evaluate the Entail-
ment Graphs on the Sports Entailment Dataset of
Guillou et al. (2020), and ANT — a novel dataset
derived from WordNet (Miller, 1995) antonyms.

We find that refining the DIH’s context to include



time (in addition to argument pairs) is beneficial for
the sports news domain, but that this does not ex-
tend to the general news domain. We do, however,
identify predicates in legal news as another possible
area in which temporal information may be useful
for learning Entailment Graphs. Our contributions
are: 1) the application of a temporally informed
Entailment Graph learning method to the general
news domain, and 2) ANT, a novel general-domain
entailment dataset based on WordNet antonyms.

2 Background
2.1 Entailment Graphs

Entailment Graph Induction uses directional distri-
butional similarity measures to determine whether
an entailment relation holds between two predi-
cates p and g. Successful measures include the
purely directional Weed’s precision score (Weeds
and Weir, 2003), and the Balanced Inclusion score
(BInc) (Szpektor and Dagan, 2008), which com-
bines both symmetric and directional measures. We
use these two scores as our baselines. Both scores
are based on the Distributional Inclusion Hypoth-
esis (DIH), which states that p entails g if the set
of contexts in which p can be used is included in
the context set of g (Dagan et al., 1999; Geffet and
Dagan, 2005). When applying the hypothesis to
predicates, the context set has mostly been taken to
refer to argument pairs (e.g. by Berant et al. (2011)
and Hosseini et al. (2018)).

Entailment Graphs have been built for a range
of domains, including health (Levy et al., 2014),
news (Hosseini et al., 2018), and commonsense
(Yu et al., 2020). By focusing on the news domain
we are able to leverage two sources of temporal in-
formation: the publication dates of the articles and
the rich set of temporal expressions within them.
Previous work has also considered a number of op-
tions for representing nodes in the graphs: typed
binary predicates (Berant et al., 2011; Hosseini
et al., 2018), Open-IE propositions (Levy et al.,
2014), and eventualities (Yu et al., 2020). We use
typed predicates, following Hosseini et al. (2018).

2.2 Temporality and Entailment Graphs

Guillou et al. (2020) incorporated temporal infor-
mation into the graph learning framework of Hos-
seini et al. (2018), extending the local entailment
score computation method to incorporate tempo-
ral filtering of eventualities. This reinterprets the
DIH to include time in the context set of any given

predicate. Unlike in Hosseini et al. (2018) where
all eventualities of pairs of predicates that share
the same arguments are considered for compari-
son, Guillou et al. (2020) aim to compare only
those eventualities of predicates with shared argu-
ments for which the underlying eventualities are
temporally close to each other. The strength of
this method is its ability to separate out instances
of recurring eventualities, e.g. sports matches that
occur between the same pair of teams. Following
promising results for the sports domain, we extend
the method to the general news domain.

2.3 Evaluating Entailment Graphs

Entailment Graphs are typically evaluated using
datasets comprised of premise-hypothesis sentence
pairs with labels denoting the entailment relation
that holds between them. Dataset construction has
been framed as a number of manual annotation
tasks, e.g. image captioning (Bowman et al., 2015),
question answering (Levy and Dagan, 2016), and
fact verification (Schmitt and Schiitze, 2019).
Evaluating entailments that involve temporality
has received less attention. The FraCas test suite
(Cooper et al., 1996) contains only a small number
of temporal examples that based on entailments
between predicates. TEA (Kober et al., 2019),
which comprises sentence pairs in which tempo-
rally ordered predications have varying tense and
aspect, does not include non-entailments that can
be learned through the temporal separation of even-
tualities (e.g. outcome predicates win - lose). The
Sports Entailment Dataset (Guillou et al., 2020) of
entailment pairs between paraphrases of the pred-
icates play, win, lose, and tie, was developed to
address this gap. However, its narrow focus on
sports makes it unsuitable for evaluating graphs
for the general news domain. This motivates the
construction of the general-domain ANT dataset.

2.4 Antonym Detection

Related to our work is the field of antonym detec-
tion, in which antonyms are distinguished from
other semantic relations such as synonymy. We
focus on the related but distinct task of Recogniz-
ing Textual Entailment (RTE) in the presence of
antonymy, which can be seen as a more challenging
version of the typical RTE setup. Antonymy de-
tection is evaluated using various datasets, notably
the relation classification-style EVALution dataset
(Santus et al., 2015) and PPDB-based dataset of
Rajana et al. (2017), and the multiple-choice GRE



question dataset (Mohammad et al., 2013). To com-
pare our work to previous Entailment Graph mod-
els, we instead opt for the RTE paradigm, focusing
on sentences containing binary predications. We
note that the labels in ANT can easily be remapped
for the evaluation of antonym detection systems.

3 Method

3.1 Relation Extraction

We start by extracting relation triples from a cor-
pus of news articles. We use MONTEE (Bijl de
Vroe et al., 2021), an open-domain system that
uses the RotatingCCG parser (Stanojevi¢ and Steed-
man, 2019) and extracts relations consisting of
predicates and their arguments by traversing the
resulting CCG dependency graph. For each sen-
tence we extract all potential binary relations of
the form argl-predicate-arg2 (e.g. Arsenal-beat-
Man United)!. Arguments, which may be either
Named Entities or general entities (all other nouns
and noun phrases), are mapped to their fine-grained
FIGER types (Ling and Weld, 2012) (e.g. PER-
SON, DISEASE, etc.).

We extended MONTEE to add temporal inter-
vals to binary relations where there is a path in the
dependency graph between the predicate and a tem-
poral expression in the text. The temporal intervals
consist of the start and end date of the eventuality,
and are derived using SUTime (Chang and Man-
ning, 2012) — a tool for automatically identifying
and resolving temporal expressions (such as “Mon-
day 7th March 2022”) found in the text, to a calen-
dar date range. Expressions such as “yesterday” are
resolved relative to the article’s publication date.

3.2 Graph Learning with Temporal Filtering

To learn Entailment Graphs we use the temporal
filtering method of Guillou et al. (2020) which ex-
tends the graph learning framework of Hosseini
et al. (2018). The input is the set of typed binary
relations paired with their time intervals. The out-
put is a set of graphs, one for each pair of FIGER
types found in the set of binary relations. We focus
on locally learned entailments, leaving an investi-
gation of the interaction between temporality and
globalisation to future work.

In Hosseini et al. (2018) similarity scores be-
tween predicates are computed over feature vectors,
with one feature vector per typed predicate. The

'As we are not concerned with the intersection of tempo-
rality and modality, we do not tag relations for modality.

play Arsenal Man United 18/1/2021
beat Arsenal Man United 18/1/2021
play Arsenal Man United 12/2/2021
lose to Arsenal Man United 12/2/2021
Pair play- beat- play- lose- beat- lose -
beat play lose play lose beat
Regular 2 1 2 1 1 1
Filtered 1 1 1 1 0 0

Figure 1: Above: Two sports matches between the same
teams. Below: Regular and temporally filtered counts.

feature in the vector is the argument pair from the
binary relation (e.g. Arsenal, Man United) and the
value is the pointwise mutual information (PMI)
between the predicate and argument pair. Guillou
et al. (2020) add a method to filter the counts of
predicate p according to whether each eventuality’s
time interval overlaps with any of ¢’s. That is, an
eventuality in p is retained (and counted) if it is
temporally close enough to any eventuality in q.
The goal of this process is to separate out different
instances of recurring eventualities involving the
same argument pairs.

For example, suppose two football matches are
held between Arsenal and Man United, one de-
scribed as happening on 8th January 2021 where
“Arsenal played and beat Man United.”, and another
on 12th February 2021 where “Arsenal played and
lost to Man United” (see the upper section of Fig-
ure 1). The algorithm computes a filtered count
for each argument pair for the pair p-g: the total
number of eventualities of predicate p with a time
interval that temporally overlaps with the time in-
terval of any eventuality of predicate g, and vice
versa. In this case the filtered count for play-beat =
1 and play-lose to = 1 as there is a temporal overlap
for the play and beat events in the first match and
the play and lose to events in the second. Crucially,
beat-lose to = 0 as there is no temporal overlap be-
tween the beat and lose to events, which occurred
on different days. See Figure 1 for an illustrated ex-
ample and Guillou et al. (2020) for further details.
We use the filtered counts to compute the temporal
similarity measures described in Section 3.4. The
regular, unfiltered, counts are used to compute their
(standard) non-temporal counterparts.

Following completion of the temporal filtering
process for all predicate pairs, we learn the follow-
ing entailment relations: beat F play, lose to F
play, and lose to ¥ beat (and its reverse). Without



temporal filtering a spurious entailment relation
between beat and lose to (and vice versa), which
occur within a similar context (i.e. they share the
same argument pair), would be learned.

3.3 Dynamic Temporal Window

Although a uniform temporal window is suitable
for sports matches, which are typically concluded
within a single day, it may be less suitable for other
eventualities. We follow the recommendation of
Guillou et al. (2020) and apply a dynamic win-
dow on a per-predicate basis to reflect that different
eventualities remain relevant for different lengths
of time. For example, the window around infor-
mation stating that a person is president should be
larger than a report of a person visiting a location.

We incorporate a temporally-aware language
model, TacolLM (Zhou et al., 2020), and use it
as the basis for per-predicate dynamic windowing.
TacoLLM predicts the expected duration of an even-
tuality using the context provided by the sentence
in which the eventuality mention occurs. For each
eventuality in a sentence it assigns a duration label
from the set {seconds, minutes, hours,days,
weeks, months, years, decades, centuries}. In
a small number of cases TacoLM is unable to make
a prediction, indicated by the no_prediction label?.

In the uniform window model, each eventuality
e is assigned a temporal interval e; = [tstart —
W, teng + w|, where tgiqr¢ and te,q are predicted
using SUTime(e), and w is the model’s fixed win-
dow size. In the dynamic window model, we in-
stead assign e; = [tstart — map(T LM (€)), teng +
map(T LM (e))]. Here map(TLM(e)) is
TacoLM’s prediction mapped to a concrete duration
value: {seconds, minutes, hours,days} ~— 5,
weeks +— 15, months — 30, years — 365,
decades — 3,650, centuries — 36,500. That
18, for shorter durations we maintain a uniform win-
dow of 5 days, extending it only for eventualities
with longer durations.

3.4 Similarity Measures

We compute both a symmetric and a directional
temporally-informed similarity measure to learn
entailments, making use of the temporally filtered
counts and PMI scores described in Section 3.2.
We adapted BlInc (Szpektor and Dagan, 2008) and
Weeds’ precision (Weeds and Weir, 2003).

2249,262 [0.61%] eventuality mentions in the NewsSpike
corpus

Temporal Weed’s precision: Weed’s precision
is computed using the temporally-filtered counts.

Temporal BInc-based measure: As a proxy to
computing Conditional PMI between an argument
pair, predicate p, and predicate g, which would
be computationally expensive (if not infeasible)
given the existing graph construction framework,
we scale the original PMI scores. The temporally
filtered PMI, = PMI - (¢;/c), i.e. the original
PMI multiplied by the ratio of filtered counts (c;)
to regular counts (c). We refer to this measure as T.
Binc (Ratio PMI).

4 Evaluation

We evaluate the Entailment Graphs using two dif-
ferent entailment datasets. 1) the Sports Entailment
Dataset (Guillou et al., 2020) which contains 1,312
entailment pairs, focusing on events that occur be-
tween two sports teams. 2) ANT, a novel dataset
based on WordNet antonym pairs. ANT addresses
the need for a general-domain, RTE-style dataset
containing antonyms.

4.1 ANT Dataset Construction Overview

ANT? contains entailment pair examples of the
form premise, hypothesis, label. The premise
and hypothesis take the form of natural English
sentences containing a subject, predicate, and ob-
ject. The label denotes one of four types of en-
tailment relation: 1) Antonym: non-entailments
between antonymous predicates (e.g. acquit - con-
vict), 2) Directional Entailments an antonymous
predicate and a related third predicate (e.g. acquit
E indict), 3) Directional Non-Entailments, the re-
verse of each Directional Entailment (e.g. indict
¥ acquit), and 4) Paraphrases of each predicate
in the antonym pair (e.g. acquit - absolve). For
a standard entailment evaluation setup, we map:
(Antonyms, Dir.Non-Entailments) — 0 and
(Paraphrases, Dir.Entailments) — 1. Our re-
leased dataset contains the original four labels as
these may be useful in future research.

Dataset construction was semi-automatic. The
manual steps were carried out by two expert anno-
tators: one native, and one fluent English speaker®.
Our dataset generation method uses the entailment
relations between manually annotated predicate
clusters to generate entailment pairs. By ensuring
that most of the annotation occurs at the predicate

3https://anonymous-link.com
*Both annotators were authors of this paper



level, rather than the predicate-pair or sentence-
pair level, we are able to generate thousands of
high quality entailment pairs from hundreds of an-
notated predicates. This is in contrast with the con-
struction processes of the Levy (Levy and Dagan,
2016) and SherLIiC (Schmitt and Schiitze, 2019)
datasets, which involved generating large numbers
of candidate entailment pairs of varying quality,
prior to manual annotation by crowd-source work-
ers. Our method also avoids the issue of selection
bias present in Zeichner et al. (2012) and SherLIiC,
that arises from using a similarity measure to auto-
matically pre-select candidate entailments.

4.2 Antonym Pair Selection

We started by automatically collecting a list of
477 lemmatised verb antonym pairs from Word-
Net (Miller, 1995) and propose these as possible
conflicting predicate pairs. Although WordNet’s
antonym set is not large, the high quality of its an-
notations makes WordNet a reliable starting point.
We excluded antonym pairs that express a type
of temporal entailment (e.g. fall asleep and wake
up), as these appear to express a more complicated
relationship than simple antonymy. While these
predicate pairs are antonymous when interpreted
as simultaneous eventualities, they also entail each
other at some temporal distance (e.g. you cannot
fall asleep and wake up at the same time, but you
need to fall asleep before you can wake up). If one
of the two human annotators marked the antonym
pair as having a possible temporal entailment be-
tween the predicates, we removed it from the set.
This step resulted in 283 remaining antonym pairs.
We also removed pairs that were highly spe-
cific (e.g. dehydrogenate-hydrogenate) as these
are likely to be infrequent in the general domain,
pairs resulting from simple alternation of prepo-
sitions or morphemes (scale up-scale down; de-
ceive-undeceive), and duplicate pairs in the British
spelling.’ We were left with 114 antonym pairs.

4.3 Entailment Cluster Construction

For each antonym pair, we identified possible para-
phrases and third predicates that are entailed by
both. We used the online Merriam-Webster The-
saurus (Merriam-Webster, 2021), which includes
both (near) synonyms and antonyms, and the Relat-
edwords website (RelatedWords, 2021) — an online

SWe prefer American English spellings (e.g. colonize)

over British English spellings (colonise) as the training corpus
contains mostly American English news articles.

tool for finding related words beyond synonyms,
which combines a number of NLP resources in-
cluding word embedding spaces, ConceptNet and
WordNet. This helped us find less typical para-
phrases and often suggested entailed predicates.

For each antonym pair we created an entailment
cluster C = (A1, Ag, F), where A; and As are the
sets of predicates containing the first and second
predicate in the seed antonym pair respectively,
plus their paraphrases, and F is a set of predicates
entailed by all the elements in U( A1, A2).

Each cluster was then manually annotated with
a set of argument type pairs (distinct from the
FIGER types for Named Entities), which were
later used for instantiating simple sentences. For
example, the cluster for the antonym seed pair
refresh-tire receives a set containing a single ar-
gument type pair, activity#generic_person. We
allowed predicates with a specific word sense
to be assigned a specific set of types. For ex-
ample, for the enjoy-suffer through pair, the en-
tailed predicate see is assigned the set containing
just the type generic_person#entertainment_watch,
to avoid it being paired with arguments from
the entertainment_read type. This also enabled
us to specify argument order, allowing a pred-
icate pair like refresh(activity#generic_person) -
do(generic_person#activity).

4.4 Entailment Pair Generation

The aim of the generation step is to automatically
convert the entailment clusters into the dataset for-
mat required for evaluation: premise, hypothesis,
and a label denoting the type of entailment relation
that holds between them.

To generate entailment pairs we take the cross
product of different sets in the cluster. Directional
Entailments are generated by U(A; x E, Ay x E),
Antonyms by U(A; x Ag, Ay x Aj), Directional
Non-Entailments by U(E x A1, E x Ay) and Para-
phrases by U(A; x Ay, As x Aj), excluding du-
plicate predicates. We exclude an entailment pair
if no intersection is found in the sets of its argu-
ment types, or if it already occurs as part of another
antonym pair’s cluster.

To generate a sentence for a predicate we need
to populate its subject and object arguments. We
therefore manually created argument strings for
each argument type, ensuring they combine effec-
tively with all predicates in the cluster. For ex-
ample, the argument type politician maps to ar-



guments like Hillary Clinton, used to instantiate
sentences for predicates like govern. We used the
Relatedwords website (RelatedWords, 2021) for
inspiration. We then sampled an argument type
pair from the intersection of those that apply for
both predicates in the entailment pair. For each
argument type we sampled non-identical argument
strings. This produces an entailment example of
the form (argl, predicatel, arg2. argl, predicate?,
arg2. label). For example, (The school, admitted,
Jean. The school, evaluated, Jean. 1) represents
the directional entailment admit F evaluate. Fi-
nally, both annotators made a single pass over the
dataset to identify errors, and corrected the clus-
ters accordingly. For example, they encountered
unforeseen predicate-argument mismatches stem-
ming from word sense ambiguity. Whilst this re-
finement method may be repeated indefinitely, we
found that after a single manual pass the quality of
the generated sentence pairs was very high.

The test portion® of ANT (based on 100 Word-
Net antonym pairs) contains 6,300 entailment pairs:
1,800 Antonyms, 1,465 Directional Entailments,
1,465 Directional Non-Entailments, and 1,570 Para-
phrases. For the purpose of evaluation we used
the following data subsets: 1) Base: Anfonyms
and Directional Entailments, and 2) Directional:
Antonyms and Directional Non-Entailments.

4.5 Error Analysis

To verify the dataset’s quality we conducted an er-
ror analysis on 200 examples, with 50 examples
per label sampled randomly from the test set. We
found 82.5% (165 /200) examples to be correct,
confirming that the dataset is of high quality. Of
the 35 incorrect examples we labelled five as a
syntactic error, 18 as a semantic error, and 12 as
unnatural/disfluent. The syntactic errors were at-
tributed to wrong verb tense or a missing auxiliary
verb in the predication. Sometimes semantic errors
resulted from the introduction of subtle meaning
change, such as for the directional non-entailment
“Morgan changed the server” - “Morgan upgraded
the server” (here changed might be interpreted as
replaced). They also arose due to predicate pairs
that were overlooked in cluster construction, e.g.
look down on is an antonym of like but not neces-
sarily a paraphrase of dislike - you can dislike (a
person) without looking down on (them). Unnatu-

® ANT also contains a small development set (based on 14
antonym pairs) for use with supervised learning techniques

ral sentences were often the result of odd argument-
predicate combinations, e.g. “Gale expended gas”.

5 Experimental Setup

We used the NewsSpike corpus of multi-source
news text (Zhang and Weld, 2013) for all of our
experiments. NewsSpike comprises approx. 0.5M
articles, collected over a period of 6 weeks.

Using MONTEE, we extracted 40,669,470 bi-
nary relation triples from NewsSpike. Of these
8,107,944 (19.94%) binary relations are extracted
with a temporal interval resolved by SUTime
(Chang and Manning, 2012) from a temporal ex-
pression in the text. As the temporal filtering
method relies on the information contained in the
time intervals to compute the temporal overlap of
two eventualities, the sparseness of temporal ex-
pressions in the text raises a problem. To address
this we employ the strategy described in Guillou
et al. (2020), using the SUTime temporal interval
if it is available and backing off to the document
publication date if not.

We used the entGraph’ framework with the ex-
tension of temporal filtering by Guillou et al. (2020)
to train the Entailment Graphs. See Appendix A
for hardware requirements and parameter settings.

We conducted experiments using two main set-
tings. For the sports domain we apply a uniform
window of 5 days on either side of the temporal
intervals. We chose this setting because the evalu-
ation predicates all refer to sports matches. Since
these have a short duration and occur frequently
between different pairs of teams, the window for
which a match stays relevant to the readers, and for
which the preconditions and consequences of the
eventuality hold, is typically short.

For the general domain the duration of eventu-
alities is highly variable, ranging from minutes or
hours, to years, decades, or even centuries. These
eventualities may also remain relevant for much
longer than the sports matches. We therefore apply
a dynamic window around each time interval® (see
Section 3.3 for details).

6 Results

Table 1 contains Area Under the precision-recall
Curve (AUC) scores for the Base and Directional
subsets of the Sports and ANT datasets. For the

"https://github.com/mjhosseini/entGraph
8We also investigated using a uniform window which led
to slightly worse results



Sports ANT

Base Dir. Base Dir.
0.75 0.3 0.3

Data subset
Recall < threshold 0.75

Similarity measure:

Weed’s Pr (Count) 0.440 0460 0.181 0.199
T. Weed’s Pr (Count)  0.455 0.472 0.180 0.198
BlInc (PMI) 0471 0432 0.161 0.178
T. BInc (Ratio PMI)  0.495 0437 0.161 0.178
BlInc (Count) 0462 0419 0.159 0.167
T. BInc (Count) 0481 0430 0.160 0.167

Table 1: AUC scores for the Base and Directional sub-
sets of the Sports Entailment and ANT datasets.

Sports subsets the temporal measures consistently
outperform their non-temporal counterparts. In
spite of the consistency across similarity scores,
the difference is not statistically significant. For the
Base and Directional subsets of ANT, performance
of the temporal measures and their non-temporal
counterparts is not significantly different. This sug-
gests that the atemporal formulation of the DIH by
Dagan et al. (1999) and Geffet and Dagan (2005)
is appropriate for the general domain.

Figure 2 contains the precision-recall curves for
the Sports Entailment and ANT datasets’. Each
point on the curve represents a different entailment
score threshold, with higher thresholds correspond-
ing to lower recall, and vice versa. To provide a
fair comparison between similarity scores that have
different recall ranges, we compute AUC under a
recall threshold, chosen separately for each dataset
(See threshold values in Table 1). For the Sports
Entailment Dataset we observe higher precision for
the temporal measures compared with their non-
temporal counterparts at the lower recall ranges.

For the ANT dataset we make two observations.
Firstly, recall is very low. This is due to the absence
of many of the entailment pairs in the Entailment
Graphs. Secondly, in contrast to the Sports En-
tailment Dataset, the curves for the temporal and
non-temporal measures are very similar, confirm-
ing that the temporal distributions for this domain’s
eventualities are such that temporal filtering has a
negligible effect. This is further confirmed by the
analysis presented in Table 2.

True False 6(T — F)

oort % Scaled 315 353 42
p % Overlap 72.8 65.8 7.1
anp  %Scaled 530 518 12
% Overlap 504 50.4 0.0

Table 2: Analysing the difference in effect of temporal
filtering between the Sports and ANT base datasets.

7 Analysis and Discussion

Table 2 contains statistics of temporal separation
for the Base subset of the Sports Entailment and
ANT datasets. % Scaled is the percentage of PMI
scores (for each co-occurrence P, Q), AP of rela-
tions (P, AP) where P and () are predicates, and
AP is an argument pair) that are scaled down by
the temporal filtering method. % Overlap is the
percentage of eventuality comparisons (e, e4) that
result in a temporal overlap. When the method is
effective, we expect % Scaled to be higher for false
predicate pairs than true predicate pairs (as scores
of antonymous predicate pairs should be scaled
down). Scaling should be inversely related to the
average Overlap, which we expect to be higher for
true predicate pairs than false predicate pairs.

We indeed find that % Scaled is higher for false
predicates pairs in the Sports Entailment Dataset,
whereas there is a small difference in the wrong di-
rection for the ANT dataset. This helps explain the
differences observed in the Base dataset precision-
recall graphs A (Sports Entailment Dataset) and C
(ANT dataset) in Figure 2. Furthermore, % Over-
lap has the expected correlation, showing that our
method works for the temporal distribution of the
sports domain data, but not for the general-domain
data. That is, it can be applied successfully when
there are antonymous predicate pairs that are found
applying to the same argument pairs in the data,
with occurrences that are temporally disjoint more
often than entailing predicate pairs. In our training
corpus, this distribution holds for sports predicate
pairs but not for general domain predicate pairs.

Breaking down the % Scaled statistic per predi-
cate pair in the ANT dataset, we do find antonyms
for which many scores are scaled down, indicating
that there may be predicates in the general domain
where temporality is a useful signal. For exam-
ple, the antonymous predicate pairs that are scaled

“We also include AUC scores and precision-recall plots for
the Levy/Holt dataset, used in previous research (Appendix B).
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Figure 2: Precision-recall plots for the Sports Entailment Dataset (A) base and (B) directional subsets, and the ANT

dataset (C) base and (D) directional subsets

most include violate-respect, convict-acquit, allow-
prohibit and (thing) kills (person)-(person) survives
(thing), suggesting that predicates in legal news are
worth exploring in future research. Examples found
in the corpus also support this idea for other pred-
icate pairs. We find “Cameron, who |[...], leaves
London today [...]” and “Cameron will instead
stay in London [...]”, referring to dates a month
apart. The atemporal baseline models use this data
to erroneously support that leave F stay in, whereas
our method successfully disentangles the evidence.

Future research could further investigate which
domains or predicates stand to benefit from tempo-
ral information. This could inform models that are
able to decide whether to apply temporal filtering
for particular predicate pairs. Another direction is
to explore how Entailment Graphs can be used to
learn temporal entailments (such as wake up - go to
sleep), which were excluded from the ANT dataset.
Combining this with recent work on Multivalent
Entailment Graphs will be essential here, as many
of the entailment edges may be multivalent (e.g.

“A kills B” E “B is dead”, see also McKenna et al.
(2021)). We might also consider the interaction of
temporality and modality, since the temporal signal
should be more able to separate antonymous data
when it does not include binary relations that are
stated as occurring with some degree of uncertainty
(see also Guillou et al. (2021)).

8 Conclusion

We applied the temporal filtering method of Guil-
lIou et al. (2020) to the construction of Entailment
Graphs for the general news domain. We evaluated
the performance of the temporal filtering method on
two entailment datasets. The results on the Sports
Entailment Dataset suggest that a reformulation of
the Distributional Inclusion Hypothesis to incorpo-
rate time would be beneficial for the sports domain.
In contrast, the results on the general-domain ANT
dataset suggest that the atemporal formulation of
the DIH is appropriate for the general domain, al-
though there may still be specific predicates for
which the temporal formulation is effective.
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A Experimental Settings / Requirements

With the following exceptions we used MONTEE’s
default settings to extract binary relations. We
enabled the SUTime component to ensure that
each binary relation with a predicate that could
be linked to a time expression was assigned a
time interval derived from SUTime [includeTem-
poral=True]. These time intervals were used when
computing the temporal similarity measures but ig-
nored during the computation of the non-temporal
measures. We disabled unary relation extraction
[writeUnaryRels=False], and restricted binary rela-
tions to only those that include at least one named
entity [acceptGGBinary=False].

We used the entGraph framework of Hosseini
et al. (2018) to construct Entailment Graphs. We
raised the threshold values for infrequent predicates
[minPredForArgPair=4] and argument pairs [mi-
nArgPairForPred=4] for all type-pair graphs (with
the exception of the very large THING#THING
graph for which we used settings of 6 and 6 respec-
tively), and used the default values for all other
parameters.

All of the experiments were conducted on a sin-
gle server which has two Intel Xeon E5-2697 v4
2.3GHz CPUs (each with 18 cores) and 330GB
RAM. The computational cost of training a single
Entailment Graph is approximately one day and
160GB RAM. Evaluation of both the Levy/Holt
and ANT datasets using the entGraph evaluation
scripts takes approximately 6 hours per graph.

B Results on the Levy/Holt Dataset

Previous work on Entailment Graphs has reported
performance on the general-domain Levy/Holt
(Levy and Dagan, 2016; Holt, 2018) dataset of
18,407 entailment pairs (Hosseini et al., 2018, 2019,
2021; McKenna et al., 2021; Guillou et al., 2021).
Although not designed for evaluating performance
on the task of temporally separating eventualities,
we also include results on the Levy/Holt dataset for
the interested reader. We use the same dev/test split
proposed by (Hosseini et al., 2018): 5,486 pairs for
dev and 12,921 pairs for test.

AUC scores are provided in Table 3. Figure 3
contains the precision-recall plots for the Levy/Holt
dev and test sets, and their directional-only compo-
nents. (Note that the uniform class distribution is
not shown for the dev and test sets as they fall be-
low the 0.3 precision threshold. The uniform class
distribution is 0.198 precision for dev and 0.219
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Dev Test

Data subset All Dir. All Dir.
Recall < threshold 0.45 0.5 0.45 0.5
Similarity measure:

Weed’s Pr (Count) 0.215 0.217 0.207 0.220
T. Weed’s Pr (Count) 0.215 0.216 0.204 0.219
Blnc (PMI) 0.221 0203 0.212 0.203
T. Blnc (Ratio PMI) 0.221 0.199 0.209 0.203
Blnc (Count) 0.217 0.208 0.205 0.201
T. Blnc (Count) 0.217 0.200 0.202 0.199

Table 3: AUC scores for the Levy/Holt datasets: All
examples and Directional only examples for the dev and
test sets. Settings: dynamic window, 5 day default.

precision for test.)

As for the ANT dataset, we observe that perfor-
mance of the temporal and non-temporal measures
are very similar on the Levy/Holt dataset. This
further supports the claim in Section 6 that the
temporal distributions for the eventualities in the
general domain are such that temporal filtering has
a negligible effect.
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Figure 3: Precision-recall plots for the Levy/Holt dataset subsets: (A) dev, (B) dev directional-only component, (C)
test, and (D) test directional-only component
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