ORACLE

What makes TruffleRuby run Optcarrot
O times faster than MRI?

Petr Chalupa

Principal Member of Technical Staff
Oracle Labs

February 4, 2017

c ®
OR Cl_e Copyright © 2017, Oracle and/or its affiliates. All rights reserved

Safe Harbor Statement

The following is intended to provide some insight into a line of research in Oracle Labs. It
is intended for information purposes only, and may not be incorporated into any contract.
It is not a commitment to deliver any material, code, or functionality, and should not be
relied upon in making purchasing decisions. Oracle reserves the right to alter its
development plans and practices at any time, and the development, release, and timing
of any features or functionality described in connection with any Oracle product or
service remains at the sole discretion of Oracle. Any views expressed in this presentation
are my own and do not necessarily reflect the views of Oracle.

: ‘ CI—E Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Outline

E» Optcarrot
E» TruffleRuby
E» Optimizations

e ®
OR CI—E Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Optcarrot

Nintendo Entertainment System emulator

e ®
OR CI—E Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Optcarrot

* NES Emulator
— 8-bit, CPU, PPU, 2kB RAM, 2kB VRAM
— Released in 1983
— github.com/mame/optcarrot

* A benchmark created to drive Ruby
MRI 3x3 improvements

* It runs the Lan Master game

Nintendo Entertainment System

https://en.wikipedia.org/wiki/Nintendo_Entertainment_System#/media/File:NES-Console-Set.jpg

e ®
OR CI_E Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Lets play

* Using:
— MRI
— TruffleRuby

ORACLE

[NON | MPlayer
LEVELDO1 DOMEDSD- TIMEO1S

Lan Master

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

MRI 2.4.0

Lan
master

==

B START
CODE
SFH»
BLH =

c ®
OR CI—E Copyright © 2017, Oracle and/or its affiliates. All rights reserved. | 8

TruffleRuby

c ®
OR CI—E Copyright © 2017, Oracle and/or its affiliates. All rights reserved. | &)

Results

ORACLE

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

10

Published results
* Without TruffleRuby

* 180 frames

Ruby implementation benchmark with Optcarrot

ruby23
ruby22
ruby21
ruby20
ruby193

ruby187 5.83fos

omrpreview
jruby9k
jruby17
rubinius EALEE
mruby 7.48fos
topaz

opal 0.0287 fos

0 10

28.1ips

25.5 fos

LS
[
o
=
3

25.0ips

21.4 fos

21.9fps

3E.7 fos

25.3f35

20 30

frame per second
I default mode

https://raw.githubusercontent.com/mame/optcarrot/master/doc/benchmark-default.png

ORACLE

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Benchmarking

* Implementations:
—MRI 2.0
—MRI 2.4
— JRuby, 9.0 indy server
— TruffleRuby, GraalVM 0.19

* Options
— 6000 frames
— Headless

ORACLE

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

12

Benchmarking

9.5 times
faster

FPS

ORACLE

240
220
200
180
160
140
120
100
80
60
40
20

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

é
§.-
R
a7
s
o’
0 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000 4500 5000 5,500
Frame

13

Optcarrot

Closer look

ORACLE

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

14

Total samples: 20371
Showing top 500 nodes
Dropped nodes with < 11 samples

Stackprof

Optcarrot::PPU#render_pixel
18731 (91.9%)

ORACLE

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. | 15

Stackprof

vsync Optcarrot::PPU#vsync
0.0%) 13 (0.1%)
0.4%) of 14 (0.1%)
1

sh_sound Optcarrot::PPU#run
'3 (0.1%) 0 (0.0%)
'9 (0.4%) of 19623 (96.3%)
) 19622
>U#tproceed Optcarrot::PPU#main_loop

19 (0.1%) 93(0.5%) QSIS —
f 63 (0.3%) of 39197 (192.4%) — ——
2 18731 150 122 86 71 57

w1 | Optearrot: :PPU#render_pixel

6 (0.0%) Optcarrot::PPU#wait_one_clock Optcarrot::PPU#evaluate,sp:‘rite(:(s)fz()(cylg Optcarrot::PPU#evaluate_sprites_even OptcaﬂOt:zppU#Opiglgg
ot 150 (0.7%) 2l 86 (0.4%)
of 42 (0.2%) 1 873 1 9 1 9(7 of 122 (0.6%) of 71 (0
. (0
9 51 0
‘Noise#sample Optcarrot::PPU#evaluate_sprites_odd_phase_1 Optcarrot::PPU#evaluate_sprites_odd_phase_9
19 (0.1%) 51 (0.3%) 30 (0.1%)

ORACLE

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. | 16

34

Optcarrot::CPU#zpg
23 (0.1%)
of 99 (0.5%)

|

Optcarrot::CPU#run
35 (0.2%)
of 388 (1.9%)

161 118

a T

Optcarrot:: TermInput#tick
265 (1.3%)

16

Optcarrot::CPU#r_op

Optcarrot::CPU#_beq

Optcarrot::CPU#w_op

1(0.0%) 1 (0.0%) 0 (0.0%)
of 161 (0.8%) of 118 (0.6%) of 16 (0.1%)
99 2 117 15

Optcarrot::CPU#_cmp
52 (0.3%)

76

\

Optcarrot::CPU#fetch
192 (0.9%)
of 193 (0.9%)

ORACLE

Optcarrot::CPU#branch
46 (0.2%)
of 123 (0.6%)

Optcarrot::CPU#store_mem
0 (0.0%)
of 15 (0.1%)

15

v

Optcarrot::CPU#store
2 (0.0%)
of 15 (0.1%)

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Stackprof

17

PPU — Source code

def render _pixel

* Instance variable reads

if @any_show]
pixel = @bg_enabled ? @bg_pixels[@hclk % 8] : 0 and writes
if @sp_active && (sprite = @sp_map[@hclk])
if pixel % 4 == °* FIxnum operations
pixel = sprite[2]
else
@sp_zero_hit = true if sprite[1] && @hclk != 255 ’ Array
pixel = sprite[2] unless sprite[0] — Access
end
end — Append
else

pixel = @scroll_addr_5 14 & 0x3f00 == 0x3f00 ? @scroll_addr_ 0 4:0
@bg_pixels[@hclk % 8] =0
end
@output_pixels << @output_color|[pixel]
end

e ®
OR Cl_e Copyright © 2017, Oracle and/or its affiliates. All rights reserved. | 18

CPU — Source code

op_r:_ldx, :imm

def r_op(instr, mode)
send(mode, true, false)
send(instr)

end

def imm(_read, write)
@data = fetch(@_pc)

@ pc+=1
@clk += CLK_2

end

def /dx

@ p _nz=@_x=@data
end

ORACLE

* Instance variable reads

and writes

* Integer operations
* Method calls

* Dynamic method calls

— #tsend

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. | 19

TruffleRuby

How does it work?

ORACLE

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

20

AST — Abstract Syntax Tree

def a_method
(6 +7).to_s(8)

end call :to_s
call :+ 8
6 7

OR CI—E Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

AST Interpreter

* Each node is an object with execute
method

class LiteralNode
def initialize(value)
@value = value
end

def execute
@value
end
end

call :to_s

/\

call :+ 8

/\

6

O c ®
R CI_E Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

AST Interpreter

class MethodCallNode
def initialize(name, receiver, arguments)
@name, @receiver, @arguments = name, receiver, arguments
end

def execute
receiver = @receiver.execute
method = lookup_method receiver, @name
method.call receiver, *@arguments.map(&:execute)
end
end

* Greatly simplified

e ®
OR Cl_e Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

23

Self-optimizing AST Interpreter

class UninitialisedMethodCallNode
def initialize(name, receiver, arguments)
@name, @receiver, @arguments = name, receiver, arguments; end

def execute
method = lookup_method @receiver.execute, @name

self.replace(CachedMethodCallNode.new method, @receiver, @arguments).execute; end
end

class CachedMethodCallNode * Node re P lacement
def initialize(method, receiver, arguments) _
@method, @receiver, @arguments = method, receiver, arguments; end * Monomo e hic cache

def execute

@method.call @receiver.execute, *@arguments.map(&:execute); end o Methogl lOOkUp 1S
end expensive

* Greatly simplified

e ®
OR Cl_e Copyright © 2017, Oracle and/or its affiliates. All rights reserved. | 24

Partial evaluation

* Eliminates overhead of nodes

* Evaluates constants
— Final fields

— Compilation final fields

* Result is a compilation unit for Compiler

e ®
OR CI_E Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

25

Partial evaluation

class CachedMethodCallNode
attr_final :method, :receiver, :arguments
def initialize(method, receiver, arguments)
@method, @receiver, @arguments = method, receiver, arguments; end
def execute
@method.call @receiver.execute, *@arguments.map(&:execute); end
end

class LiteralNode
attr_final :value

def initialize(value) * Final fields

@value = value; end
def execute — Let’s assume Ruby

@value; end has them for the
end example

O c ®
R Cl_e Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

26

Partial evaluation

CachedMethodCallNode

:to_s

L~

CachedMethodCallNode

:to_s

LiteralNode
8

AN

LiteralNode
6

LiteralNode
7

.[] represents existing values

ORACLE

@method.call @receiver.execute, *@arguments.map(&:execute)
@method.call @receiver.execute, *[LiteralNode[8]].map(&:execute)
@method.call @receiver.execute, LiteralNode|[8].execute
@method.call @receiver.execute, 8

@method.call receiver = @receiver.execute, 8

receiver = @receiver.execute

receiver = @method.call @receiver.execute,
*@arguments.map(&:execute)

receiver = @method.call @receiver.execute, 7

receiver = @method.call LiteralNode[6].execute, 7

receiver = @method.call 6, 7

receiver = direct_call(Method[Integer, :+], 6, 7)

@method.call receiver = direct_call(Method[Integer, :+], 6, 7), 8
@method.call direct_call(Method|Integer, :+], 6, 7), 8
direct_call(Method[Integer, :to_s],

direct_call(Method|[Integer, :+], 6, 7),

8)

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. | 27

Compilation

direct_call(
Method|Integer, :to_s],
direct_call(Method[Integer, :+], 6, 7),
8)

* Compiled by Graal compiler
* Next time the compiled code is called instead of interpreting the AST

— No longer calls the 5 execute methods on the nodes
— Any overhead of the self-optimizing AST interpreter is eliminated

e ®
OR CI_E Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

28

TruffleRuby example

@CoreMethod(names ="+", required = 1) o Fi

public abstract static class AddNode extends CoreMethodArrayArgumentsNode { F IXnu m#+
public abstract Object executeBuiltin(VirtualFrame frame, Object... arguments); DSL
@Specialization(rewriteOn = ArithmeticException.class) .
public int add(int a, int b) { return Math.addExact(a, b); } * Annotation processor
@Specialization — Generates node for each
public long addWithOverflow(int a, int b) { return (long) a + (long) b; } specialization
@Specialization(rewriteOn = ArithmeticException.class) — Creates polymorphic
public long add(long a, long b) { return Math.addExact(a, b); } chain for more

@Specialization specializations

public Object addWithOverflow(long a, long b) { . T . | .
return fixnumOrBignum(Biglinteger.valueOf(a).add(Biginteger.valueOf(b))); ype SpeCIa Ization

}
/...

O c ®
R CI—E Copyright © 2017, Oracle and/or its affiliates. All rights reserved. | 29

Instance variable access

ORACLE

Instance variable access

* Ruby objects are DynamicObjects

— Or a primitive type like int, long, float if
possible

* Values of instance variables are
stored in DynamicObject

* Shape defines mapping between
instance variable names and fields

DynamicObject

shape

Shape (immutable)

fieldl

:@name at fieldl

field2

:@email at field2

fields|]

OR Cl_e Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Instance variable access — Implementation

public abstract class ReadObjectFieldNode extends RubyBaseNode {
private final Object defaultValue;
protected final Object name;

public ReadObjectFieldNode(Object name, Object defaultValue) {
this.name = name;
this.defaultValue = defaultValue;
}
@Specialization(guards = "receiver.getShape() == cachedShape", limit = "getCacheLimit()")
protected Object readObjectFieldCached(DynamicObject receiver,
@Cached("receiver.getShape()") Shape cachedShape,
@Cached("cachedShape.getProperty(name)") Property cachedProperty) {
if (cachedProperty != null) {
return cachedProperty.get(receiver, cachedShape);
} else {
return defaultValue;

}

e ®
OR CI—E Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

32

Instance variable read — IGV

18 Ci0)
37 LoadIndexed

‘J
56 LoadIndexed

67 G121
73 LoadIndexed

‘;
94 LoadIndexed
109 G4y

115 Loadindexed

def read; @var; end

* After specialization it only:

— Reads arguments
* Including self object

— Reads the shape of self

— Ensures it’s a correct shape against a
constant

44 &1289e 4" ([ya pl20lina alse
AAd ==
516 FixedGuard(!=false) TransferTolnterpreter |

| 483 ConditionAnchor(!=false) |

— Read the value of instance variable
from a constant offset in self object

e ®
OR CI_E Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

|484 GuardedUnsafelLoad |

524 Box

Instance variable access — IGV

zero-page addressing
def zpg(read, write)
@addr = fetch(@ _pc)
@ pc+=1
@clk += CLK_3
if read
@data = @ram[@addr]
@clk += CLK_2 if write
end
end

* Many accesses to instance variables

* Checks are merged

— Only access to a constant offset
remains

e ®
OR CI—E Copyright © 2017, Oracle and/or its affiliates. All rights reserved. | 34

Instance variable access — IGV

139 Pi 1289 KillingBegin

[716 C(@76864060{"@ppu"-cl6][final=true], "@apu"c[5][.) | [712 LoadField#DynamicObjectimpl.shape | | 1388 LoadField#DynamicObjectimpl.shape

891 == | [1027 == | 863 == | [719 ==

e
:
&
m
Q
(o)
I
3
@

Tolnterpreter 5067 FixedGuard(!=false) TransferTolnterpreter ‘ l 5063 FixedGuard(!=false) TransferTolnterpreter

ORACLE

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

35

Instance variable access — IGV

598 Unbox

139 Pi 1289 KillingBegin

 \\

712 LoadField#DynamicObjectimpl.shape

716 C(@76864060{"@ppu":c[6][final=true), "@apu":c[5][...) 1388 LoadField#DynamicObjectimpl.shape

0058 FixedGuard(!=false) Transferlolnterpreter

ORACLE

1699 == | (1394 ==

T
\

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

36

Splitting

ORACLE

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

37

CPU — Source code

loop { send(*DISPATCH[@opcode]) } * Send - dynamic method call

send :op_r, :_ldx, :imm

def r oplinstr, mode) * Optimized with 2-dimensional

send(mode, true, false) polymorphic inline cache
send(instr)
end — Caches already called methods by

. | name and receiver
def imm(read, write)

@data = fetch(@_pc)
@ pc+=1
@clk += CLK 2

end

def /dx
@ _p _nz=@_x=@data
end

e ®
OR CI—E Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

Two dimensional polymorphic inline cache

receiver.is_a? Integer

—

Method == :to_s

.

Method == :succ

—

Call :to_s on Integer receiver.is_a? Array receiver.is_a? Integer Uninitialized
Call :to_s on Integer Uninitialized Call :succ on Integer Uninitialized

ORACLE

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

39

Why split?

def r_op(instr, mode)
send(mode, true, false)
send(instr)

end

def imm(read, write)
@data = fetch(@_pc)

@ pc+=1
@clk += CLK 2
end

def /dx

@ p nz=@_x=@data
end

ORACLE

* There are 2 sendsinr_op
* Each has to have its own cache to
specialize effectively

— Modes: #abs, #imm, #zpg, #ind vy,
Habs x

— Instructions: #_ida, # and, # cmp,
Idx, # Idy, # adc, # ora

* Only finds the method in the cache

— Avoids expensive method lookup in
Ruby modules/classes

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. | 40

The cache representation in the IGV

BasicObjectNodesFactory$SendNodeFactory$SendNodeGen

CallDispatchHead

CachedBoxedDispatch abs_x

/\

OptimizedDirectCall

ORACLE

CachedBoxedDispatch ind_y

/\

CachedBoxedDispatch zpg

OptimizedDirectCall

OptimizedDirectCall

CachedBoxedDispatch imm

/\

OptimizedDirectCall CachedBoxedDispatch abs

/\

OptimizedDirectCall UnresolvedDispatch

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

41

Splitting — summary

* Applied to all methods

* Important for core Ruby methods
— #feach, #step, #==, #to_s

* Avoids megamorphic nodes

* Truffle framework does it automatically

e ®
OR CI_E Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

42

Inlining

ORACLE

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

43

Why inlining?

* Splitting ensures methods are specialized in their calling context

* They are optimized independently
— Same guards cannot be merged across methods
— Same code cannot be eliminated across methods

* Compiler cannot see into called methods

— Cannot move things above or bellow method invocations

e ®
OR CI_E Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

44

Why inlining?

* Methods and blocks are inlined into their callers
— The already specialized and split AST replaces the direct method call

* Creates big chunk of code — compilation unit
— Can be analyzed and optimized by compiler together

— More optimizations can be applied

* Guards merged
* Repeated and dead code eliminated

* Truffle framework does it automatically

OR CI—E Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

45

Examples

* A Fixnum #+ method is turned into just 2 instructions %addi, %jo after
inlining in the calling method

* Ruby blocks
—Is a very important abstraction in Ruby
— Are used abundantly
— Can be fully inlined in TruffleRuby

e ®
OR CI_E Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

46

Block inlining

def read
@var

ORACLE

def block
-> { @var }.call
end

Block inlining

#read method before optimizations

ORACLE

#block method before optimizations

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

48

Block inlining

#read method after optimizations

ORACLE

#block method after optimizations

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

49

Conclusion
What makes TruffleRuby run Optcarrot 9 times faster than MRI?

* Combination of several optimizations

— Quick instance variable access

— Truffle
* Splitting
* Inlining
* Partial evaluation
— Graal
* High quality compiler

e ®
OR CI_E Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

50

Acknowledgements

Benoit Daloze
Brandon Fish

Petr Chalupa
Duncan MacGregor
Kevin Menard
Chris Seaton

Jruby & Rubinius Contributors

Oracle

Danilo Ansaloni
Stefan Anzinger
Cosmin Basca
Daniele Bonetta
Matthias Brantner
Petr Chalupa
Jurgen Christ
Laurent Daynes
Gilles Duboscq
Martin Entlicher
Bastian Hossbach
Christian Humer
Mick Jordan
Vojin Jovanovic

ORACLE

Oracle (continued)
Peter Kessler

David Leopoldseder
Kevin Menard
Jakub Podlesak
Aleksandar Prokopec
Tom Rodriguez
Roland Schatz

Chris Seaton

Doug Simon

Sté&pan Sindelar¥
Zbynék Slajchrt
Lukas Stadler
Codrut Stancu

Jan Stola

Jaroslav Tulach
Michael Van De Vanter
Adam Welc
Christian Wimmer
Christian Wirth

Paul Wogerer
Mario Wolczko
Andreas WoR
Thomas Wirthinger

Oracle Interns
Brian Belleville
Miguel Garcia
Shams Imam
Alexey Karyakin
Stephen Kell
Andreas Kunft
Volker Lanting
Gero Leinemann
Julian Lettner
Joe Nash

David Piorkowski
Gregor Richards
Robert Seilbeck
Rifat Shariyar

Alumni

Erik Eckstein
Michael Haupt
Christos Kotselidis
Hyunjin Lee

David Leibs

Chris Thalinger
Till Westmann

JKU Linz

Prof. Hanspeter Mossenbock

Benoit Daloze
Josef Eisl

Thomas Feichtinger
Matthias Grimmer
Christian Haubl
Josef Haider
Christian Huber
Stefan Marr
Manuel Rigger
Stefan Rumzucker
Bernhard Urban

University of Edinburgh
Christophe Dubach

Juan José Fumero Alfonso
Ranjeet Singh

Toomas Remmelg

LaBRI
Floréal Morandat

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. |

University of California, Irvine

Prof. Michael Franz
Gulfem Savrun Yeniceri
Wei Zhang

Purdue University
Prof. Jan Vitek
Tomas Kalibera
Petr Maj

Lei Zhao

T. U. Dortmund

Prof. Peter Marwedel
Helena Kotthaus
Ingo Korb

University of California, Davis

Prof. Duncan Temple Lang
Nicholas Ulle

University of Lugano, Switzerland

Prof. Walter Binder
Sun Haiyang
Yudi Zheng

Safe Harbor Statement

The preceding is intended to provide some insight into a line of research in Oracle Labs. It
is intended for information purposes only, and may not be incorporated into any contract.
It is not a commitment to deliver any material, code, or functionality, and should not be
relied upon in making purchasing decisions. Oracle reserves the right to alter its
development plans and practices at any time, and the development, release, and timing
of any features or functionality described in connection with any Oracle product or
service remains at the sole discretion of Oracle. Any views expressed in this presentation
are my own and do not necessarily reflect the views of Oracle.

: ‘ CI—E Copyright © 2017, Oracle and/or its affiliates. All rights reserved. | 52

Integrated Cloud

Applications & Platform Services

ORACLE

ORACLE

