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Abstract To harness the compute resource of many-core system with tens
to hundreds of cores, applications have to expose parallelism to the hardware.
Researchers are aggressively looking for program execution models that make
it easier to expose parallelism and use the available resources. One common ap-
proach is to decompose a program into parallel ‘tasks’ and allow an underlying
system layer to schedule these tasks to different threads.

Software-only schedulers can implement various scheduling policies and
algorithms that match the characteristics of different applications and pro-
gramming models. Unfortunately with large-scale multi-core systems, software
schedulers suffer significant overheads as they synchronize and communicate
task information over deep cache hierarchies. In order to reduce these over-
heads, hardware-only schedulers like Carbon have been proposed, to enable
task queuing and scheduling to be done in hardware.

This paper presents a hardware scheduling approach where the structure
provided to programs by task-based programming models can be incorporated
into the scheduler, making it aware of a task’s data requirements. This prior
knowledge of a task’s data requirements allows for better task placement by
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the scheduler which result in a reduction in overall cache misses and memory
traffic, improving the program’s performance and power utilization.

Simulations of this technique for a range of synthetic benchmarks and
components of real applications have shown a reduction in the number of cache
misses by up to 72% and 95% for the L1 and L2 caches respectively and up
to 30% improvement in overall execution time against FIFO scheduling. This
not only results in faster execution and in less data transfer with reductions of
up to 50%, allowing for less load on the interconnect, but also results in lower
power consumption.

Keywords Scheduling · Hardware Scheduling · Task based application ·
Dataflow

1 Introduction

Multi-core chips are now commonplace and provide applications with an op-
portunity to achieve much higher performance than the uniprocessor systems
of the recent past. Furthermore, the number of cores on a chip is growing
rapidly, thus increasing the performance potential. This trend has created
a renewed interest in high-level dataflow and task-based parallel program-
ming models such as OpenMP [1], Cilk [2], TBB [3], CUDA [4], OpenCL [5],
StreamIt [6], OoOJava [7] and StarSs [8]. These models provide constructs
to express parallelism and synchronization in a manageable way, and their
runtimes take care of resource management and scheduling.

For efficient execution a scheduler should ensure that:

– The execution units are well utilized, performing load balancing if needed.
– The number of concurrently active tasks remains within reasonable limits

so that the memory requirements are not unduly large.
– Only small scheduling overheads are imposed.
– Related tasks are placed on the same core and core cluster, if possible, in

order to take advantage of data locality, through utilizing the cache and
memory bank structure.

The ability of the scheduler to realize these properties is constrained by
the information available from the programming model. In this paper we de-
scribe our hardware implementation and testing of scheduling approaches for
dataflow programming models demonstrating how the structure present in
such models can be combined with simple hardware scheduling to provide
significant performance improvement. While this performance improvement is
dependent on the use of appropriate programming models to construct the ap-
plication, applications constructed with other programming models can still
run on hardware supporting this scheduling, just without the performance
benefit provided by the additional structure being exposed to the scheduler.

Schedulers can make decisions that improve data locality if they are aware
of the data requirements of the tasks, by placing tasks on cores whose caches
contain the required data. Currently in high performance applications running
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on dedicated resources, this is generally addressed explicitly by the program-
mer. Leaving aside the extra complexity which makes code harder to write and
more fragile, in the general case a program will not be executing on dedicated
resources. When sharing resources with other programs the programmer is
unable to gather the required information about the processing environment
in order to make the correct decisions, leaving them dependent on the system
scheduler.

In the general case information about which tasks use which data is absent
as a consequence of the way in which conventional imperative programming
models have been extended to include the ability to perform parallel execu-
tion. However, models like dataflow programming are designed for parallel
execution and contain additional information about the access patterns of the
computation. The main characteristics of the dataflow model are that the exe-
cution of an operation is constrained only by the availability of its input data.
The computation is performed by side effect free tasks and the execution is
triggered by the presence of data instead of the explicit flow of control. These
constraints prevent both deadlocks and race conditions. Pure dataflow as de-
scribed here introduces some limitations to the set of problems that can be
solved. These limitations are addresses through work combining the pure el-
ements with well managed areas of mutable state [9]. These modifications do
not effect the work presented here and are outside of the scope of this paper.

In this paper we demonstrate how the structure provided to programs by
the dataflow programming model can be incorporated into task schedulers,
making them aware of a task’s data requirements without any further help
from the programmer. Our major contributions are:

– An examination of how the use of a dataflow programming model can,
by allowing more intelligent scheduling techniques, improve system perfor-
mance.

– We propose two novel scheduling policies, ‘Token Scheduling’ and ‘Refer-
ence Scheduling’ and demonstrate how these scheduling policies result in
better resource utilization.

– We propose the design of a scalable hardware scheduler that has low hard-
ware complexity and is relatively insensitive to the access latency of the
hardware queues.

– A demonstration that the proposed architectural support has significant
performance benefits (section 5) and the scheduling policies have much
better resource utilization when compared with other scheduling policies.
Our scheduling policies result in a reduction in cache misses by up to
72% and 95% for the L1 and L2 caches respectively and up to a 30%
improvement in overall execution times against FIFO.

The rest of the paper is organized as follows: Section 2 introduces the
dataflow programming model explaining how it adds the required extra struc-
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ture to programs which our schedulars can then take advantage of. Section 3
introduces our proposed scheduling policies. Section 4 describes our scalable
hardware scheduler based on our scheduling policies. Section 5 presents our
experimental methodology and evaluation results. Section 6 discusses related
work, and Section 7 concludes the paper.

2 Dataflow

Dataflow programming is a model of computation that provides an effective
means of constructing deterministic, race condition free parallel programs. It
was first seriously examined in the 1970s and 1980s when it was thought that
parallelism would soon become essential to achieve continuing increases in
performance. This resulted in the construction of real dataflow machines [10,
11] which demonstrated the scalability of the approach, and a large amount of
work on the implementation of programming languages suited to these systems
[12]. Refinements to the dataflow model were also developed which provided
data structure handling and support for lazy evaluation to enable the im-
plementation of more advanced functional programming approaches [13–15].
However, chip development at the time was able to make parallel programming
unnecessary in the general case. Now that this is no longer possible, dataflow
programming is under a range of guises [16,7,17] once again a serious area of
research.

In a dataflow model the program is split into independent deterministic
pieces called dataflow threads or dataflow tasks, each of which is only depen-
dent on a known set of inputs. Depending on the granularity of the program,
dataflow tasks can vary in size from a single instruction to whole functions
including calls to other functions. This allows arbitrarily large computational
units. Only once the set of inputs has been passed to a dataflow task can it be
scheduled for execution. To ensure that there are no race conditions introduced
between the use and modification of task inputs, all data used as task inputs
is immutable. When run, a task may generate outputs for other tasks and may
also generate additional tasks. This flow of data between tasks means that the
execution of the program can then be visualized as a directed acyclic graph
where the nodes are the dataflow tasks and the vertices are the data dependen-
cies between these. The dataflow model is asynchronous and self-scheduling
since the execution of nodes is constrained only by the data dependencies. An
example of this can be seen in Figure 1 and the corresponding code in Figure 2.

As dataflow tasks are only dependent on their input data and this data
is immutable, the scheduling of tasks is only dependent on the flow of data
between tasks, not on the explicit progression of a program counter. This adds
to the program an explicit description of when data is passed and the guaran-
tees that there are no additional data dependencies, so providing structure to
the program that is absent in traditional procedural programs, and it is this
structure that the work described in this paper builds on.
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Fig. 1 An instance of a dataflow graph to calculate the 5th Fibonacci number.

void fib()

{

int n = read(1); // receive n

if (n < 2) {

......

}

else {

f1 = schedule(&fib, 2); // spawn fib1, waiting for 2 arguments

f2 = schedule(&fib, 2); // spawn fib2, waiting for 2 arguments

f3 = schedule(&add, 3); // spawn add, waiting for 3 arguments

f1.arg1 = n-1; // send fib1, n-1

f1.arg2 = f3; // send f1 the target task for its result

f2.arg1 = n-2; // send fib2, n-2

f2.arg2 = f3; //send f2 the target task for its resuult

......

......

}

}

Fig. 2 A simplified part of a dataflow function for computing Fibonacci numbers. The
function takes as an argument the value it is to compute, the Fibonacci number. It checks
if this is the base case. If it is not, it constructs two new tasks, fib1 and fib2 which take fib

as their function with the arguments n-1 and n-2 respectively.
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2.1 Scheduling

Dataflow is an asynchronous and self-scheduling model where the execution
of nodes is constrained only by data dependencies. From the code, Figure 2,
we can see that each ‘fib’ function creates two new tasks ‘fib1’ and ‘fib2’.
The schedule(&fib, 2) creates a dataflow task which executes fib as its
function once all the dependencies are computed. It also informs the dataflow
scheduler that this task is waiting for only two pieces of input data to be ready
for execution. Finally, fib1’s and fib2’s arguments are set to the value n− 1
and n−2 respectively, and the task to pass their results to, making them ready
for execution. Tasks can be passed as arguments to other tasks, so there is no
requirement for all the input to come from the constructing task.

The sudo code used here is based on a C library and is used for familiarity,
more advanced libraries such as DFScala [18] allow for cleaner more concise
syntax.

Figure 3 shows how tasks are managed by a dataflow scheduler using exam-
ple code of Figure 2. Note that this is just an abstract view of the scheduling
of a task taking place, the discussion about the actual design and implemen-
tation of the scheduler is discussed in later sections. The process is split into
the following three stages.

Task Creation The first step in the life of any task is its creation. Tasks are
created by an existing tasks, in this case task t1 running on core 1. Created
tasks have a function that they are going to execute and a number of arguments
that they require. Note they do not need to know where these arguments will
come from. Newly created tasks are placed in the pending queue to await their
arguments.

Receive Arguments and Calculate Affinity Over the course of a tasks lifetime
it will receive arguments which are placed into its tuple. Once all of the argu-
ments have been received the task can be moved into the ready queue to await
execution. The scheduler maps a task to a core when it is moved to the ready
queue. This can be seen in step 2. At any given time there will be a set of
available cores and a set of available tasks that need to be mapped onto these
cores. It is how best to construct this mapping given the available information
that we explore here.

Schedule on a Core Once a task is in the ready queue it can be placed onto
an available core when a core requests for a task (step 3), in this case core 2.

2.2 Using Dataflow Dependencies for Cache Aware Scheduling

In multi-core processors typically cores or small groups of cores will have pri-
vate caches. If over the course of a program’s execution, tasks provided to
a thread pool are scheduled on different cores, but are working on the same
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Fig. 3 Dataflow Scheduling (abstract view).

data, cache misses will occur resulting in delays to the programs execution
and the use of system resources to transfer the required data to the computa-
tion. If both computations are scheduled to the same core this can be avoided,
as demonstrated in Figure 4. Unfortunately in standard procedural program-
ming models threads and tasks do not provide the scheduler with information
describing the data they will access, so the scheduler is unable to take this
information into account. In dataflow models, which data a task is going to
use and where its data was generated and used recently is known in advance.
This means that it is possible to group tasks that use the same data on the
basis of these data dependencies. It is important to note that the use of this
information is not an all or nothing situation, but is something that can be
included into existing scheduling algorithms when it is available to improve
their performance, falling back on traditional scheduling when the information
is not available.

3 Novel Scheduling Policies

In this section, we describe and discuss two strategies to allow the task sched-
ule to take advantage of the structure provided to programs by the dataflow
programming model. By using this information the scheduler is aware of a
task’s data requirements and can make better decisions. The detailed design
of suitable hardware to support these policies and the evaluation of their ef-
fectiveness is discussed in Sections 4 and 5.
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Fig. 4 An example of the time saving that can be achieved through data locality. On the
left the time if data locality is observed, on the right the events if it is not and the resulting
delay while data is transferred.

Fig. 5 Token Scheduling.
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Fig. 6 Reference Scheduling.

3.1 Token Scheduling

This scheduling strategy relies on the assumption that if a reference to a data
structure (Token) is passed from a task running on core x, the probability
of that structure being cached by core x is high. So scheduling the receiving
task on core x can result in better data locality and as a result better cache
utilization. It is important to remember that a task can be sent tokens from
many different tasks and not just the task that spawned it, and that it is not
uncommon for a parent task to spawn tasks and then not pass any data to
them.

To take advantage of this observation we change the following two steps in
the scheduling process.

Receive Arguments and Calculate Affinity Record the received reference argu-
ment (Token) AND the core that the argument was received from. Once all of
the arguments have been received the task can be moved into the ready queue
to await execution. Note that the scheduler knows which cores the data for a
task came from, so it updates the affinity information in the ready queue ac-
cordingly. The affinity of a task to a core is based on the number of references
it receives from a core.

Schedule on a Core Once a task is placed in the ready queue it is placed on
the core from which the highest proportion of references came from. Note this
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may be a core from which no references came from, for example when the
program first starts only one core will have passed any references to any tasks.
In this scenario if any other core requests for a task, the scheduler randomly
selects a task form the ready queue to be placed onto the requesting core. In
the event of multiple tasks with the same percentage of references from the
core, one can be selected at random from this set.

This is demonstrated in the example in Figure 5. In step 1a the task t1
running on core1 passes 2 arguments to task t2. In step 1b task t3 running on
core2 sends a single argument to task t2 thus making t2 ready for execution.
When core 1 requests a new task in step 2a, the scheduler looks at its list of
ready tasks and then assign the task which has the highest affinity value for
that processor as shown in step 2b.

3.2 Reference Scheduling

In reference scheduling, instead of the task recording where its inputs came
from, the scheduler records which references each core has recently accessed
and tasks are assigned to the cores by matching the set of references used by
the task to each cores reference history. This variant is able to take advantage
of the fact that the data may exist in multiple cores caches at the same time.
To take advantage of this observation we change the following two steps in the
scheduling process.

Receive Arguments and Calculate Affinity Record the received reference ar-
gument (Token) AND the core that the argument was received from. Once
all of the arguments have been received the task can be moved into the ready
queue to await execution. The scheduler maintains a reference history of each
core and the affinity of a task to a core is calculated by matching the set of
references used by the task to each cores reference history. The core with the
reference history that provides the highest affinity with the task arguments is
selected.

Schedule on a Core When a core sends a request for a task, the scheduler
selects a task to be scheduled based on the affinity calculated in the previous
step. Once the task is selected the scheduler updates the cores reference history
with the tasks arguments. As the function pointer is also a reference this can
also be included in the reference history allowing for improved caching of
both code and data. Each cores reference history is small and bounded with
a weighting placed on each entry to record its age. This reflects that older
items are less likely to still remain in the cache. When new items are added
existing items in the history are decayed until they are ultimately evicted on
the assumption they are unlikely to still be in the cache.

An example of this can be seen in Figure 6 showing how the reference
history is obtained and maintained by the scheduler using the task information
present in the programming model. When task t2 becomes ready, the scheduler
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void func1()

{

*struct_A = read(arg); //receive an arg: Reference to structure ‘A’.

.....

.....

.....

f1 = schedule(&func2, 1); // spawn func2

f1.arg = struct_A; //pass the pointer to the next task

}

Fig. 7 A dataflow function which takes as an argument a reference to a structure and passes
it onto the next function without ‘using’ it.

compares references passed to it in its argument list to the reference history of
the cores. In this case the scheduler sees that the reference to data structure X
is present in core 1’s history, so it assigns the task t2 to core 1. When the task
t2 is sent to core 1 for execution, the reference history of core 1 is updated so
that it now contains the reference to structure Z as well.

Our reference scheduling model differentiates between ‘used’ references
(references that are actually used by the dataflow task) and references that are
not used and are just passed through to the next task in the dataflow graph. In
Figure 7, reference to structure A is not considered when recording references
of this task for scheduling. In reference based languages such as Java, and
Scala [19] this status can be determined automatically at compile time with a
high degree of accuracy. For pointer based languages such as C and C++ this
would have to be inserted by the programmer.

All the affinities are only hints to the scheduler. The affinities do not bind
the tasks to any particular core and in cases where a scheduler gets a request
from a core for which it has no suitable tasks based on the affinities, the
scheduler will reply with a task picked using conventional scheduling methods.

4 Architectural Support for Task Scheduling

In this section we describe the hardware design of our scheduler. A central-
ized queue is the simplest way to implement task queues in scheduling, and
the block diagrams demonstrating our scheduling policies showed centralized
queues for simplicity. In a centralized system, all the tasks are enqueued and
dequeued from a single shared queue. While this is sometimes acceptable, a
single queue can quickly become a bottleneck as the number of cores scale
up. To address this bottleneck and allow better throughput and latency times,
software and hardware schedulers often use distributed tasks queues with task
stealing [20–24].
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Fig. 8 Example of many-core system with our hardware support for task queues. The
shaded portions are additional hardware for the scheduler.

4.1 Design

Our design provides for low overhead distributed task queues, and is tolerant
to increasing on-die latency as the number of cores in the system scales. This
is achieved by implementing the distributed task queues in the hardware. The
tasks are stored in the hardware queues, scheduling is implemented in hard-
ware, and we have hardware task prefetchers so that each hardware thread
can start a new task as soon as it finishes its current one.

From the tasks queue hardware perspective, a task is simply a tuple. In this
implementation, it is a tuple of 64-bit values; a function pointer and pointers to
shared data passed to a task as arguments. Similarly the core reference history
is also a tuple of 64-bit values. Reference histories could be implemented as
bloom filters [25] to make the comparison between task reference and history
references cheaper, thus making the hardware for comparison much simpler,
quicker and more energy efficient. The hardware task queues have limited
capacity, in order to support a virtually unbounded number of tasks for a
given processor, and to support virtually unbounded number of processors, we
can extend our model to move tasks out of the hardware tasks queues into the
memory system using a mechanism like those used in Carbon [26].

Our design considers a Chip Multi-Processor (CMP) where the cores and
last-level caches are connected by an on-die network. This design has two main
components: a centralized global scheduling unit (GSU) and a per-core local
scheduling unit (LSU). Figure 8 shows our design.

4.1.1 Global Scheduling Unit (GSU)

The Global scheduling unit holds enqueued tasks in a set of hardware queues
with one queue per core in the system. This could be extended to implement
a hardware queue per hardware context. To keep the hardware simple the
hardware queues support insertion and deletion of tasks at either end of the
queue but not in the middle. In Section 5 we use the simulator to evaluate
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the cost of not allowing random access to the hardware queues in order to
maintain simpler hardware. The global scheduling unit implements the task
scheduling policies described in Section 3. Since the queues are physically
located close to each other, the communication latency between the queues is
minimized.

4.1.2 Local Scheduling Unit (LSU)

Centralized scheduling systems may not scale with the number of cores in
the system. This issue is addressed with Local Scheduling Units. Each core in
the system has a local scheduling unit that provides an interface between a
core and the GSU. The LSU is used to hide the latency of dequeueing a task
from the GSU by buffering a small number of ready tasks, this number would
typically be a single task. To do this the LSU contains a task prefetcher and a
small task prefetch buffer. Without the LTU, if a thread sends a task request
to a GSU it will stall waiting for the response from the GSU, with the LTU
the GSU only has to find a new task for each core in the time it takes a task to
complete its execution, this should take many orders of magnitude longer than
the task selection. Eventually there may be enough cores for this to become an
issue which will require further parallelisation in the GSU or course grained
tasks, but we do not believe this will occur in the near future within a single
shared memory system.

When a task is requested by the core’s hardware thread, the LSU returns
a task to the core and sends a prefetch request for the next task to the GSU.
The LSU buffer should be large enough to hide the latency of accessing the
GSU. In our benchmarks we find that buffering a single tasks is sufficient to
hide the GSU dequeue latency. Because the dataflow graph has provided in
advance the information about which references a task will use, a buffer of 1
can be implemented without loss of precision.

4.2 Physical vs Virtual Addresses

All addresses currently stored by our implementation are virtual addresses.
The likelihood of a collision on a specific address is small as this has to be
the address that is passed to the task, not just an address reachable from
the passed arguments. In the event that this does happen the code will still
execute correctly, just with potentially less optimal scheduling, something we
would like to explore as part of our further work. If it turns out that this does
become an issue, it can be addresses either by flushing the reference history
on a core every time it changes context as the likelihood of values surviving
in the cache is small, or by converting to physical addresses and accepting the
extra complexity.
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Parameter Configuation

#Processor 1-32
L1 ICache Private, 64KB, 4-way, 2 cycles
L1 DCache Private, 64KB, 4-way, 2 cycles
L2 Cache Private, 2MB, 8-way, 20 cycles
Main Memory 500 cycles
Interconnection Network 2D-Mesh

Table 1 Architectural parameters used.

5 Evaluation

To conduct an evaluation we used the gem5 simulator [27]. gem5 includes a
range of processor and memory models, with processor from purely functional
to detailed out-of-order models and memory models from simple classic sys-
tems to the detailed Ruby modules. As our concern is the effect of scheduling
on locality, precision in the micro architectural model was not necessary, so we
model comparatively simple in-order X86 processors (the SimpleTiming model
in gem5), accompanied by Ruby cache with a MOESI coherence protocol.

While we vary the number of processors simulated, all the experiments were
carried out with 64KB private L1 data caches and a 2 MB unified private L2
caches. All caches were 4-way set associative. Table 1 summarizes the base
system configuration.

To experiment with hardware scheduling, we add the hardware described
in section 4 to the system. We applied a 20 cycle delay for an access (e.g.,
enqueue or dequeue) to the global task unit. This is in addition to the latency
for the cores to message the GSU over the on-chip network. In Section 5.2.2
we evaluate if the sensitivity of the design and if this figure needs further
consideration.

Within this simulator we implemented the five different scheduling poli-
cies: Random, FIFO, Source, Token and Reference Scheduling. These different
strategies represent increasing levels of complexity for the scheduler. Our pro-
posed policies of Token and Reference scheduling are already explained in
detail in Section 3. Here we will briefly discuss the other scheduling policies
with which we will be comparing our proposed schemes.

Random each processor is randomly assigned a task from a set of available
tasks. This strategy is included to demonstrate that any improvements are
not simply because we are introducing an element of randomness to the
scheduling.

FIFO is our baseline and schedules tasks strictly in the order that they be-
come ready.

Source Scheduling is a strategy that can take advantage of programs which
are split into distinct parts. With this strategy, cores will preferentially run
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tasks created by other tasks on that core. This approach is similar to one
used by Carbon [26].

5.1 Benchmarks

To test the effects of our scheduling policies in the scheduler, we used a set of
six benchmarks: Block matrix multiplication, iterative refinement for motion
estimation, index searching, route planning, and two versions of kmeans. If we
constrain these relatively small examples to the dedicated hardware available
in HPC, it is in principle possible to manually achieve the same potential
using conventional solutions, however this makes solutions that are fragile and
may not exhibit performance portability. As programs increase in size and
become more complex, or in more general scenarios where resources are not
dedicated, but are shared with other programs, effective hard coding become
untractable. The hard coding of strategies into the program also assumes that
the programmer is able to correctly determine the appropriate strategy, real
world problems are often too complex especially when such problems include
input that is outside of the programmers control.

We will now discuss each of these benchmarks in more detail before dis-
cussing their performance for different memory scheduling techniques.

5.1.1 Block Matrix Multiplication

Block matrix multiplication of matrices A and B is a technique used to struc-
ture parallelism and reduce the size of the working set such that it fits within
the processor’s cache, improving overall performance. With this approach the
resultant matrix C is split into blocks, each of which is calculated indepen-
dently. Each independent calculation is computed from the matrix multipli-
cation of two sub-matrices drawn from the rows of A and the columns of B.
By correctly choosing the blocks size for moderate sized matrices it is possible
to fit the whole of the two sub matrices in the cache, reducing accesses to
main memory. Once a block is computed, if the next block to be computed is
adjacent then only one of the sub-matrices needs to be replaced to continue,
further reducing accesses to memory. To exercise the scheduler, each block in
this example is computed by a separate task.

5.1.2 Iterative Refinement

With iterative refinement a transformation is repeatedly applied to a dataset
until the data satisfies some convergence criteria. This is used for solving a
range of numerical problems especially when there is no closed form solution.
In this instance we examine the HornShunk [28] motion estimation algorithm,
later extending this to a complete pipeline to calculate the transformation
between 3D images. Examples of such images would be ultrasound scans of a
beating heart.
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In summary, the algorithm can be divided into the following tasks:

1. Calculate the derivatives of the image intensities with respect to spatial
and temporal coordinates: Ix; Iy; Iz; It.

2. Calculate the cross-products of the derivatives.
3. Convolve each one of the components with a Gaussian filter.
4. Iteratively solve the system of linear equations described by the HornShunk

algorithm to generate a motion field.
5. Apply the motion field to the moving image, resample and go back to step

1.

For this benchmark we test both the iterative solution computed at step
4 and the iterative solution computed by the entire pipeline. The structure
of the graph is that the each task computes for part of the image, then the
tasks pass information to an evaluator task that decides if another iteration is
required, or if the solution has converged.

5.1.3 Sharded Index

This benchmark searches a brother-son index for the number of occurrences
of a collection of words that appear in a corpus of books drawn from Project
Gutenberg [29]. The index is sharded into independent pieces, with the shard
that any given word belongs to being determined by a hash of the prefix of
the word. Sharding structures in this way is a common way of distributing the
memory foot print of a data structure across a cluster to improve performance,
for example a web indexes where sharding allows the entire structure to be
maintained in RAM. Here maintaining locality improves the portion of the
data structure maintained in the level one and level two cache.

5.1.4 Routing

This benchmark uses Dijkstra’s algorithm to determine the shortest path be-
tween a set of sources and a set of destinations. Each source and destination
pair is passed to a thread as a pair of arguments and these are then scheduled
for execution.

5.1.5 Kmeans and Kmeans-complex

K-means [30] is arguably the most commonly used clustering technique, clus-
tering a set of points into a number of groups based on their spatial locality.

We experiment with two implementations of kmeans. In kmeans-a, the
points and centers are stored in an array; In kmeans-l they are stored as
linked-lists. The different implementations allow us to analyze the effect on
data reuse, data locality and cache utilization of more complex structures
relative to simple array accesses.
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5.2 Results

When evaluating the scheduling policies, we observe improvements in data
locality, measured through cache misses which can be seen in Figure 9. This
shows the number of L2 misses as a percentage of those seen when using FIFO
scheduling. We see that for all benchmarks our Reference and Token scheduling
policies perform at least as well as the best alternate policy. In case of Routing
benchmark, the Reference scheduling policy reduces the cache misses to 30%
of the FIFO level on 32 cores. On the average the Reference scheduling policy
reduces the L2 cache misses to about 50% of the FIFO level. The advantage
of the Reference scheduling policy is that the scheduler knows exactly which
data was most recently sent to which processor, which as expected results in
the best data locality.

The Source policy which prioritises the processor where a given task was
created shows almost identical performance to FIFO. This policy relies on the
observation that a tasks children are more likely to share data requirements
than a random task elsewhere in the system. Unfortunately this observation
fails to work for a range of models including those that converge to a single
task to perform some control logic before returning to work on the dataset.
Examples of this model include MapReduce [16] and the ForkJoin [31] frame-
works. Random, as expected, performs progressively worse as the number of
processors increases. This is because the probability of finding a good schedule
by chance decreases as the number of processors rises. The apparent improve-
ments of Random for Matrix Multiply and Sharding reflects the failure of FIFO
and Source to adapt well to these benchmarks as the core count increases.

In Figure 10, we see the reduction in L1 cache misses for four of the bench-
marks. Iterative refinement and Routing show no significant effect on the L1
cache misses from changing scheduling policy. This is because the inputs for
threads are too large to fit in the L1 cache. This emphasises that any schedul-
ing policy will only obtain an advantage from locality if the data is partitioned
such that it remains in the cache between threads. Scheduling cannot remove
the need for appropriate partitioning of the problem.

Figure 11 shows the network traffic and network utilization for all the
benchmarks. The network traffic consists of request controls, response data,
write back data, write back control etc. As can be seen from the graphs, the
reference scheduling policy generates the least amount of traffic which results
in a reduction in network contention and also helps reduce power consump-
tion. On the average, on 32 cores, the reference scheduling reduces the network
traffic by about 50%. The reduction in network traffic has a direct and propor-
tional impact on the dynamic power consumption of the network. This relation
can be seen by looking at the power consumption graphs in Figure 12

The difference in cache misses leads to an improvement in execution time
as well. Figure 13 shows the scaling in execution time for the scheduling poli-
cies evaluated. Speedups are shown relative to FIFO on the same number of
processors. We can see that the changes in execution time closely track the
changes in cache misses. In the case of the Sharder Index benchmark, we get a
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(a) Matrix Multiply (b) Iterative Refinement

(c) Sharded Index (d) Routing

(e) kmeans-a (f) kmeans-l

(g) Average

Fig. 9 Number of L2 misses, as a percentage of those seen with FIFO scheduling.

speedup of up to 30% and the average speedup for 32 processors is 14%. This
shorter execution time combined with the lower network power usage results
in an even better improvement in the overall energy consumed by the network.

The comparison of speedup graphs of kmeans-a and kmeans-l provides
an insight into the effect of these strategies on different styles of applications.
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(a) Matrix Multiply (b) Iterative Refinement

(c) Sharded Index (d) Routing

(e) kmeans-a (f) kmeans-l

(g) Average

Fig. 10 Number of L1 misses, as a percentage of those seen with FIFO scheduling.

Even though both the benchmarks show a reduction in cache misses when using
the reference scheduling policy, with kmeans-l, the reference scheduling policy
results in significant performance improvement as compared to kmeans-a. The
reason for this is the access patterns of the two benchmarks. As kmeans-a
works on an array based structure, it has very consistent and predictable access
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(a) Matrix Multiply (b) Iterative Refinement

(c) Sharded Index (d) Routing

(e) kmeans-a (f) kmeans-l

(g) Average

Fig. 11 Network Traffic, normalized against FIFO scheduling.

patterns which are very cache friendly, therefore the overall cache miss rate is
very small and improving this miss rates does not have any significant impact
on the performance of the benchmark. Matrix multiplication is also array based
and demonstrates a similar pattern. However, kmeans-l uses a linked-list, and
Sharded uses a brother-son tree making them more representative of general



Architectural Support for Task Scheduling 21

(a) Matrix Multiply (b) Iterative Refinement

(c) Sharded Index (d) Routing

(e) kmeans-a (f) kmeans-l

(g) Average

Fig. 12 Runtime dynamic power consumed by the network for each scheduling mechanism,
normalized against FIFO scheduling.
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(a) Matrix Multiply (b) Iterative Refinement

(c) Sharded Index (d) Routing

(e) kmeans-a (f) kmeans-l

(g) Average

Fig. 13 Speedup, normalized against FIFO scheduling.

purpose applications. Figure 14 shows the comparison of L1 cache miss rates
of kmeans-a and kmeans-l.
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Fig. 14 L1 cache miss rate comparison using Reference scheduling, as the processor count
varies from 2 to 32 cores.

5.2.1 Comparison with random access global queue

In Section 4 we restricted the scheduler accesses to the top and bottom of each
core’s queue. We will now examine the performance effect of opting for this
simpler design instead of allowing any ready task to be scheduled at any time.
To do this we simulated a version of the design where a global queue contains
all the ready tasks. When a request is sent to the scheduler, it looks at the
entire queue to find the best match based on references. The task with highest
affinity is then taken out of the queue and sent to the requesting core.

By allowing random access to the queue can result in better scheduling
decisions as the task with the highest affinity is always selected by the sched-
uler producing better performance. In order to perform the comparison, the
hardware scheduler in both the distributed and global queues takes the same
amount of time to respond to a task request from a core. In reality inspecting
the entire queue on every task request could make it take a much longer time
to respond to and results in more complex hardware, but in this experiment
we are examining if it would be worth it.

Figure 15 shows the comparison of our reference scheduling hardware model
which uses distributed double-ended queues, with hardware scheduler which
uses a random access global queue. From the results it is clear that the perfor-
mance of our distributed queue model is very close to the global queue version.
The performance of our model gets better with the increase in the number of
cores. As there is a separate hardware queue for each core, with the increase
in the number of cores the scheduler gets better opportunities to group similar
tasks in the same queue and to get better data locality which results in better
performance. On the average, for 2 cores, the distributed version performs at
96% of the global queue based scheduling which increases to 97% for a 32
core machine. This shows that additional queues improve performance, it also
shows that mostly the performance gain is marginal.

This is because for most applications it is either best to run the tasks they
have just created, or the run tasks that where created at the same time as
the current task. Collectively these represent points at each end of the queue.
The notable exceptions are Matrix-Multiply and Kmeans-l which have a large
number of tasks created and made ready at once. As future work we would
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(a) Matrix Multiply (b) Iterative Refinement

(c) Sharded Index (d) Routing

(e) kmeans-a (f) kmeans-l

(g) Average

Fig. 15 Speedup comparison of hardware scheduler with distributed double-ended queues
vs. global random access queue. Speedup, normalized against hardware with a global random
access queue, as the processor count varies from 2 to 32 cores.
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like to investigate if this effect can be overcome by some form of sorting of the
available tasks as this would allow relevant tasks to be grouped.

5.2.2 Sensitivity to the latency of the GSU

Another question with our design is the sensitivity of the design to the speed
with which tasks can be dispatched. In our current design, the GSU takes 20
cycles to process each request. Like to other schedulers [26] our hardware sched-
uler uses LSUs to hide the latency of the GSU by buffering and prefetching
tasks. In this subsection we measure the effectiveness of the latency tolerance
mechanism.

Figure 16 shows the comparison of execution times with a high latency GSU
taking 300 cycles to serve a request and with GSU that takes 0 cycles. As can
be seen from the graphs, increasing the latency of the GSU has nearly no effect
on the execution times of the benchmarks. This result was expected, as the
presence of the LSUs and the large size of individual task help in hiding the
latency of the GSU. By increasing the buffer size of the LSUs, the hardware can
hide the latency effect of the GSU even if the task size in the benchmarks is very
small. These mechanisms can be used with random global queue scheduling
mechanism in order to further improve the scheduler performance, as latencies
of delaying the affinity calculation can be hidden by the LSU.

6 Related Work

We will now consider where else this strategy is already used and look at what
existing schedulers do to maximize cache reuse.

6.1 Cluster Computing

Although dataflow codes are not yet common enough for hardware sched-
ulers to have been constructed for commodity multi-core processors, schedul-
ing computations that map onto dataflow for locality of data can be found in
many cluster computing environments. Probably the most well-known of these
and the most important as it is also being used as a model for programming
multi-core devices is MapReduce [16]. MapReduce is a functional programming
model developed by Google to make it easier to construct parallel codes. It has
been widely accepted both for large scale computing projects and multi-core
machines.

In their paper describing this work [16] Google make reference to the effect
that scheduling for data locality has on network traffic and congestion. By
scheduling tasks to execute on the same machine as their Google File System
(GFS) block resides they are able to avoid inter node transfers and so reduce
delays to the specific task, but also network contention. As not all data will be
local, so some data movements must occur, and reducing delays in the network
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(a) Matrix Multiply (b) Iterative Refinement

(c) Sharded Index (d) Routing

(e) kmeans-a (f) kmeans-l

(g) Average

Fig. 16 Execution time comparison of high latency (300 cycles) GSU with ideal (0 cycle
latency) GSU. Execution times are normalized against ideal GSU. The processor count varies
from 2 to 32 cores.
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reduces delay to the program as a whole. It is clear from our results that the
technique applied to GFS when executing dataflow programs on a cluster
can also be effectively applied to scheduling for cache locality on multi-core
processors.

6.2 Schedulers

Schedulers for more traditional parallel frameworks are software based. There
exists a large body of work on dynamic task scheduling in software [32,2,33,
3,34,1,35]. Software-only schedulers maintain queues in software, and threads
communicate and exchange work implicitly through shared memory. There
have been several optimizations that have been proposed to avoid the use
of locks in most local enqueue/dequeue operations [2] or to use non-blocking
stealing protocols [36,23]. However, to get effective speedup the tasks con-
structed within these frameworks have to be sufficiently large such that the
overhead of the scheduler does not dominate the execution time. For tasks of
this size it was considered fair to ignore reuse of the cache as the time to re-
place every element in the cache is an insignificant part of the overall execution
time.

To allow multi-core processors to be used for more general problems it
is necessary to be able to efficiently construct and use smaller tasks. This
has lead to the design of hardware schedulers such as Carbon [26] which have
sufficiently low latencies to allow small tasks to be used efficiently. Carbon uses
a centralized global task unit (GTU), which contains one hardware FIFO queue
per hardware thread. Applications then use special instructions to enqueue and
dequeue task descriptors directly to and from registers. Task descriptors have
a fixed size of 4 64-bit words. A small local task unit (LTU) per core is used
as a task buffer to hide enqueue and dequeue latencies from GTU. At this
scale, which is more suited to general purpose use of multi-core processors,
improvements in cache locality were observed, however the frameworks lacked
any way to observe the dependencies of the tasks. Instead the benefits occur
as a by product of the separate queues that are constructed for each core, as a
tasks’ children are more likely to share data requirements than a random task
located elsewhere in the system. Unfortunately this observation fails to work
for a range of models including those that converge to a single task to perform
some control logic before returning to work on the dataset. Examples of this
model include MapReduce [16] and the ForkJoin [31] frameworks. This can be
seen with our experiments with the source scheduling scheme.

Sanchez et al [40] present a combined hardware-software approach for
scheduling that proposes asynchronous direct messages (ADM). This provides
direct exchange of asynchronous messages between threads in the CMP with-
out going through the memory hierarchy. This work focuses on programs that
use fine-grain parallelism, with tasks as small as a thousand cycles, and on
on minimizing the custom hardware structures by introducing simple general
primitives that have multiple uses rather than fixed-function hardware like
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those in Carbon. The evaluation is done by simulating cache-coherent, tiled
CMPs with a packet switched interconnect. Although the work claims to have
reduced the amount of hardware required in comparison with Carbon, it still
requires custom hardware by adding ADM messaging unit per core and us-
ing an extra virtual network [42] in the packet-switched interconnect to route
message packets, which requires extra buffering in the routers.

Yoo et al [43] provide a quantitative analysis of exploiting task locality
for unstructured parallelism. The work involves developing a locality analysis
framework and an offline scheduler that takes workload profile information as
input and generates schedules that are optimized for the target cache hier-
archy. The effectiveness of the scheduler is evaluated on three specific many-
core cache hierarchies that they claim represent distinct and very different
points in the many-core design space. Through a graph-based locality analysis
framework and a generic, recursive scheduling scheme, the paper demonstrate
that significant potential exists for locality-aware scheduling. The simulation
results of three distinct 32-core systems show significant performance improve-
ment over randomized schedule and the baseline schedule, Parallel Depth First
(PDF) scheduling [41]. By increasing the hit rates in the caches closer to the
cores, a locality aware schedule also reduces the average energy consumption in
the memory hierarchy beyond the L1 caches relative to the random and base-
line schedule. The work also highlight the importance of locality-aware stealing
when the tasks are scheduled in a locality aware fashion, and demonstrate that
a recursive stealing scheme can effectively exploit significant locality while load
balancing.

Chen et al [39] evaluates the impact of thread scheduling algorithms on
on-chip cache sharing for multithreaded programs. Many multithreaded pro-
grams provide opportunities for constructive cache sharing, where concurrently
scheduled threads share a largely overlapping working set, as opposed to de-
structive competition for cache spaces among threads. It compares the per-
formance of two schedulers: Parallel Depth First (PDF) [37,38], scheduler
designed for constructive cache sharing, and Work Stealing (WS). The pa-
per claims to be the first in demonstrating the effectiveness of PDF on real
benchmarks, providing a direct comparison between PDF and WS. This study
demonstrates that the PDF scheduler, which was designed to encourage coop-
erative threads to constructively share cache, either matches or outperforms
the WS scheduler on a CMP machines for all the fine-grained parallel pro-
grams studied. The paper also shows that the task granularity plays a key role
in CMP cache performance.

7 Conclusion

To take advantage of increasing number of cores in a CMP, applications must
expose their thread-level parallelism to the hardware. One common approach
to doing this is to decompose a program into parallel tasks and allow an
underlying software layer to schedule these tasks to different threads.
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In this paper we have described how task based programming models can
have their runtime extended to improve the locality of the data used by taking
advantage of the explicit tracking of the movement of data within a computa-
tion. We propose two scheduling techniques, ‘token scheduling’ and ‘reference
scheduling’ that make use of the information provided by the dataflow pro-
gramming model. We also propose a scalable hardware scheduler design that
has low hardware complexity and demonstrate that it is relatively insensitive
to the access latency of the hardware queues.

Simulations of this technique for a range of synthetic benchmarks and com-
ponents of real applications have shown that our scheduling policies can reduce
the number of cache misses by up to 72% and 95% for the L1 and L2 caches re-
spectively and up to 30% improvement in overall execution time against FIFO.
This not only results in faster execution, and in less data transfer, allowing for
less load on the interconnect, but also results in lower power consumption.

7.1 Future Work

There are currently five areas we would like to continue the exploration of this
work into:

Larger Applications The size of the applications that we have run has been
restricted by the run time of the simulator. While benchmarks such as Iterative
Refinement form the kernel of real applications we would like to expand the
runs out to larger applications including all the supporting code.

Multiple Applications We would like to perform experiments exploring what
measures are required when executing multiple applications. Specifically how
to balance fairness with through put, as an application what has a history of
using many cores will likely maintain the use of those cores due to greater
affinity. While this is beneficial for through put, it is less good for the respon-
siveness of applications.

Alternative Queuing Mechanisms As demonstrated in Section 5.2.1 while most
of the time a double ended queue per processor is sufficient, when spawning a
large number of simultaneously ready tasks there is potential benefit to having
a single random access queue. However, the complexity, power consumption,
scalability and responsiveness of such a solution are likely to render such an
option infeasible. As such we would like to explore different heuristics and
queue structures to further improve the available performance. Such solutions
could include some form of sorting of tasks based on their arguments at the
point that they become ready.

Evaluation on many-core design space One of the areas we are interested in
is to evaluate the effectiveness of our scheduling policies on various many-core
cache hierarchies representing distinct and different points in many-core design
space. These experiments will be similar to the work done by Yoo et al [43].
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Better Scheduling Algorithms We are already working on improving our cur-
rent scheduling techniques and looking into ways of getting information re-
garding structure and size of the data from a program into the scheduling
decision making process. For example, the scheduler not only looks into the
number of references but also size of the data that is being referred to.
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