JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

Automated GPU Out-of-Bound Access Detection
and Prevention in a Managed Environment

Alberto Parravicini, Graduate Student Member, IEEE, Davide B. Bartolini, Lukas Stadler, Arnaud
Delamare, Marco Arnaboldi, Marco Domenico Santambrogio, Senior Member, IEEE

Abstract—GPUs have proven extremely effective at accelerating general-purpose workloads in fields from numerical simulation to
deep learning and finance. However, even code written by experienced GPU programmers often offers little robustness, limiting the
GPUs’ adoption in critical applications’ acceleration. Out-of-bounds array accesses are one of the most common sources of errors and
vulnerabilities on GPUs and can be hard to detect and prevent due to the architectural characteristics of GPUs.

This work presents an automated technique ensuring detection and protection against out-of-bounds array accesses inside CUDA
GPU kernels. We compile kernels ahead-of-time, invoke them at run time using the Graal polyglot Virtual Machine and execute them
on the GPU. Our technique is transparent to the user and operates on the LLVM Intermediate Representation. It adds boundary checks
for array accesses based on array size knowledge, available at run time thanks to the managed execution environment, and optimizes

the resulting code to minimize the impact of our modifications.

We test our technique on 16 different GPU kernels extracted from common GPU workloads and show that we can prevent
out-of-bounds array accesses in arbitrary GPU kernels without any statistically significant execution time overhead.

Index Terms—Graphics processors, Compilers, Runtime environments, Arrays

1 INTRODUCTION

RAPHICS PROCESSING UNITS are beneficial in a mul-
Gtitude of fields (computer graphics, artificial intelli-
gence, engineering, and finance), thanks to the computing
power they offer and their ability to process large amounts
of data in parallel. However, programming a Graphics
Processing Unit (GPU) is inherently more complex than a
traditional CPU architecture. It requires the users to un-
derstand how the computational kernels are mapped to the
underlying GPU processors and memory architecture. This
deep level architectural understanding is often not required
when working with CPUs, making GPU programming more
error-prone and difficult to debug. Despite their success and
due to their peculiar architecture, GPUs require a relatively
low-level programming model and lack some of the pro-
gramming tools that are widespread for CPUs. For example,
GPU programming is largely done in native languages
(e.g., CUDA [1]) even though techniques to integrate GPUs
within managed languages and environments [2], [3] have
been recently proposed. For these reasons, programming
for a GPU still tends to be more complex and error-prone
than programming for a CPU. Given how computations are
mapped to GPU hardware [4], out-of-bounds (OOB) array
accesses, i.e. trying to access a non-existent position in an
array, represent a common type of programming errors.
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While managed languages can protect from OOB accesses
on CPUs, limited research exists in the context of GPUs [5].

The ease-of-programmability gap between GPUs and
CPUs has seen significant research effort [2], [6], [7]. In this
work, we leverage the Graal polyglot Virtual Machine (VM)'
[8] and, in particular, the recently-published GrCUDA envi-
ronment?, which is able to run GPU kernels from high-level
languages such as Python, Java and Ruby. The GrCUDA
environment also takes care of memory allocation/dealloca-
tion using managed memory [9], [10] and maps array types
to CUDA, preserving information on types and sizes that we
leverage. We use Nvidia hardware and the CUDA platform,
but similar considerations can be applied to AMD GPUs
and the OpenCL platform [11], given the availability of a
managed execution environment.

1.1 Motivation

Out-of-bounds array accesses can pose a variety of prob-
lems, such as unexpectedly ending or altering the program
execution, and be a major security vulnerability [12], [13].
OOB array accesses are often encountered in GPU program-
ming since the array sizes must be coordinated with offsets
determined by the subdivision of GPU threads and other ar-
chitectural characteristics. For example, when processing an
array in CUDA [1], the array indices that each core operates
on are determined using architecture-specific parameters
such as grid, thread block, and thread identifier for that
specific core (Section 2). The programmer is responsible for
ensuring that those indices lie within the array’s bounds: a
wrong choice of parameters, or missing boundary checks,
can lead to OOB array accesses as in Figure 1.

1. github.com/oracle/graal
2. github.com/AlbertoParravicini/grcuda
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OOB array accesses on GPUs can be challenging to detect
because they usually do not cause the program to crash;
when using global memory, they are not detected as errors
by the CUDA runtime. Moreover, numerical results might
be unaffected by these accesses, leaving programmers with
a false sense of security over the robustness of their code.
However, OOB accesses are still occurring, which introduces
vulnerabilities that can be exploited for malicious purposes,
as seen in [14], [15], [16]. The lack of OOB protection is a sig-
nificant deterrent in GPU adoption for applications where
data integrity is critical (e.g. in the finance industry). In that
context, the best practice is to only execute pre-defined and
hardened kernels on the GPU, limiting productivity. Our
goal is enabling users to run any custom GPU kernel, as
long as the source code is available, without having to worry
about the adverse effects of OOB accesses.

1.2 Contributions

We present a technique that combines static program anal-
ysis with the power of managed execution environments to
identify array accesses in CUDA GPU kernels automatically.
We enhance the original code with detection and protection
against OOB accesses and provide users with information
about problematic array accesses at run time. Our technique
operates on the LLVM Intermediate Representation (IR) [17],
[18] of the GPU kernel and enables a managed execution
environment to transparently provide kernels with the size
of input arrays known only at run time, and monitor the oc-
currence of OOB accesses, with no execution time overhead.
Existing techniques focus on the analysis or optimization
of this IR, but none can automatically add OOB accesses
protections to GPU code.

We validate our technique on several GPU kernels from
domains such as Linear Algebra, Al, and Graph Analytics,
taken from the Rodinia Benchmark Suite [19], [20], or in-
spired by open implementations by Nvidia [21]. Some GPU
kernels contain OOB array accesses that we identify and fix
with our technique. In other cases, we extend our bench-
mark suite by adding artificial OOB accesses in the original
kernels. We process each kernel with our technique and test
the result against an equivalent implementation containing
hand-written OOB protections, or against the original imple-
mentation if it did not contain problematic array accesses.
Manually added boundary protections are indicative of the
realistic kernel performance if OOB accesses were fixed at
source level by an experienced programmer.

In all cases, we confirm that our technique preserves the
correctness of numerical results. Our experiments validate
that the execution time of the kernels processed with our
technique is not statistically worse than the one of the
original kernels, making it applicable to practical scenarios.
The rest of this document is organized as follows: Section 2
introduces why OOB accesses are commonly encountered
in the GPU programming model and why it is critical to
prevent them. Section 3 presents the existing research on this
topic and how our work differs from previous approaches
targeting CPUs or GPUs. Finally, we detail and evaluate our
technique, making the following contributions:

e An automated technique that modifies the IR of
GPU kernels with detection and protections against
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void axpy(float *x, float *y, float a, float *res) {
int i = * + ;
res[i] = a * x[i] + y[i];
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Fig. 1: An Axpy CUDA kernel, which scales an array x by a

scalar a and sums it to another array y. Processing an array
of size 14, using 4 blocks of size 4, will cause OOB accesses.
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OOB accesses, reducing the kernel attack surface and
increasing its robustness (Sections 4.1 to 4.3).

e A seamless integration within a managed runtime
execution environment that communicates informa-
tion to GPU kernels at run time (Section 4.4).

e A thorough evaluation of how GPU kernels are
affected by our technique, showing that our trans-
formations on average do not introduce statistically
significant execution time overhead (Section 5).

2 CONTEXT AND PROBLEM STATEMENT

GPUs are specialized computer architectures that process
large amounts of data in parallel by running computational
kernels on each data item (e.g. each pixel in an image
or elements of a list) or small groups of data items. The
architecture of a GPU is divided into different levels, which
can be roughly mapped to the logical levels that divide
the computation. In GPUs manufactured by Nvidia, the
computation is split across Stream Multiprocessors (SMs),
each containing multiple Stream Processors (SPs) (or CUDA
cores) that execute the same computational kernel on dif-
ferent data items. At a logical level, the computation is
mapped to grids, thread blocks, and threads, with each
thread processing a single data item or a small chunk of
data items. In this work, an array is a collection of data
items processed by the GPU [4].

The axpy kernel in Figure 1 is a simple GPU kernel that
we use as a driving example to illustrate our algorithmic
pipeline. We assume that the kernel source code is pro-
vided, but no assumption is made about its characteristics.
To compute the result of this kernel, the CUDA runtime
spawns a number of threads at least equal to the number of
elements in the input arrays, but that could be larger due
to the chosen grid structure®. Each block contains an equal
amount of threads: in our axpy kernel, if the user decides
to have 128 threads per block, and the input array has 1000
elements, it will be necessary to create [1000/128] = 8
blocks, for a total of 128 - 8 = 1024 threads. As the number
of threads is larger than the size of the array, OOB array
accesses will occur for values of i > 1000. Coordinating
array sizes and grid structure is not trivial: block size is
often determined by consideration about performance (and

3. The grid structure defines how many threads each block contains,
and how many blocks are employed
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void axpy_manual_mod(float *x, float *y,
float a, float *res, int size) {
int i = * + ;
A+ (i < size)
res[i] = a * x[i] + y[i];
}
void axpy_auto_mod(float *x, float *y,
float a, float *res, uint *array_sizes) {
int i = * + ;
(i >= 0 & i < array_sizes[0]) {
float x_i = x[1];
(i >= 0 & i < array_sizes[1]) {
B. float y i = y[i];
(i >= @ & i < array_sizes[2])
res[i] = a * x i + y_i;
}
¥
}
void axpy_auto_mod_opt(float *x, float *y,
float a, float *res, uint *array_sizes) {
int i = * + ;
c. | (i < array_sizes[0] &&
' i < array_sizes[1] &&
i < array_sizes[2])
res[i] = a * x[i] + y[i];
}

Fig. 2: Axpy Kernel, with manually-added boundary checks
@), and automatic boundary checks (highlighted), before
optimizations and after (C). The lower bound check i
>= 0 is removed as i is guaranteed to be non-negative.

must lie between 32 and 1024), while the number of blocks
is either a function of the input size or based on the available
SMs [22]. A well-written CUDA program usually provides
the user with the flexibility to adjust block size, and pos-
sibly the number of blocks, based on the target hardware,
instead of forcing values imposed by the code structure
or input size. In Figure 1 we schedule more threads than
strictly necessary, leading to OOB accesses due to the lack
of boundary checks. In this case, the computation result will
appear to be correct, as the accesses have been performed
on global memory, and the output array values are not
directly affected by OOB values. In more complex kernels,
OOB accesses can be a security vulnerability [12], [14], [15],
[16], and lead to interrupted executions or wrong results
(Section 5.1). For these reasons, it is critical to introduce
a mechanism that prevents OOB accesses from occurring,
instead of just detecting them after they occurred.

Due to this programming model, CUDA makes OOB ar-
ray accesses more likely than other memory issues (e.g. use-
after-free). In addition, memory allocation and deallocation
are handled transparently to the programmer by GraalvVM
and GrCUDA, outside of kernel execution, guaranteeing the
temporal validity of the memory exposed to the GPU kernel.

Figure 2 (A) reports the same axpy kernel with manually
added boundary checks: in practical applications, GPU ker-
nels are significantly more complex, and preventing OOB
accesses by hand is not as trivial. Our system operates on
the LLVM IR of the code, but to simplify the examples, we
present the results of equivalent transformations at source
level. Figure 2 (B) shows the result of these transformations.
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Fig. 3: Our pipeline to add boundary checks to CUDA ker-
nels. We highlight our contributions to the existing pipeline
for running pre-compiled GPU kernel in a polyglot VM.
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Compared to @, we need to be more restrictive in creating
boundary checks, as input arrays could have different sizes,
and indices might have negative values. Figure 3 represents
the main steps of our algorithmic pipeline (Section 4).
Automatically generated boundary checks can be further
simplified with the techniques in Section 4.3.2, obtaining
a result equivalent to Figure 2 (C). Thanks to these opera-
tions” intrinsic simplicity, additional checks do not make the
kernels slower than the original unsafe kernel (Section 5).

3 RELATED WORK

GPU OOB accesses are a serious security threat, as pre-
sented by Miele [14] and Di [12], and in recent vulnerabil-
ity disclosures CVE-2019-5684 and CVE-2019-5685 [15]
from Nvidia, and CVE-2018-6251 [16]. OOB accesses can
cause arbitrary code execution, alter numerical results, and
allow denial-of-service attacks (critical in contexts such as
autonomous driving, finance, or medical imaging). From
Miele’s work, even OOB array accesses on global memory
constitute a significant security threat, even when they do
not noticeably affect the computation and remain unnoticed
by less experienced programmers.

3.1 OOB Detection and Prevention on CPUs

Prevention, or mitigation, of OOB array accesses has been
investigated for years, focusing on CPU programming.
Detecting OOB accesses through static program analysis
is known to have limited effect because, in Turing com-
plete programming languages, the problem is equivalent to
the halting problem [23], [24]. Existing techniques rely on
heuristics that provide limited guarantees on the detection,
or the prevention, of OOB array accesses. Tools such as Joern
[25] can be used to identify OOB array accesses through
static program analysis, but they cannot modify the existing
code to offer protection against them.

Another technique consists of running the desired appli-
cation in a sandboxed environment [26], [27], [28], so that
a malicious actor who can exploit OOB accesses would not
be able to take control of the machine executing the code.
This approach does not prevent OOB accesses but is used
to mitigate their effects. During execution OOB accesses still
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occur, meaning that the application might provide wrong
results or interrupt its execution unexpectedly.

Existing research on array bound checking in managed
execution environments on CPUs has mostly focused on re-
moving unnecessary boundary checks, a problem symmet-
rical to ours [29], [30], [31]. Our work leverages some ideas
found in CPU boundary checks optimization, such as lever-
aging Static Single Assignment (SSA) code representation
to simplify dependency and alias analyses and performing
boundary check hoisting outside of loops to improve per-
formance. However, these approaches operate on languages
such as Java in which array sizes are made directly available
by the runtime environment, greatly simplifying analyses.
In our case, we need to link this information from the
managed execution environment (where sizes are known at
run time) to native CUDA code that is transformed statically
by augmenting the kernel input with run time information.

3.2 O0OB Detection and Prevention on GPUs

OOB accesses prevention on GPUs has been mostly focused
on optimizations for code generation, instead of modify-
ing existing CUDA code as in this work. In [5], [32], the
Habanero-Java language is extended with a safe keyword
to denote a section of generated GPU code that will not
raise exceptions during execution if it meets preconditions
manually specified by the programmer. The computation is
performed on the CPU through a slow JVM-based version of
the generated code if preconditions are not met. While this
approach can prevent unsafe GPU code execution, it relies
on the programmer to manually specify preconditions. It
forces the execution of a slower alternative if these condi-
tions are unmet. Alternatively, the CPU implementation is
run in parallel to the GPU code to detect exceptions that
would arise on the GPU. Our approach, instead, is fully
automatic and does not rely on code generation (it operates
directly on CUDA code) on a slow fallback execution path
nor on subtracting computational resources from the CPU
to perform additional validations. The technique in [33]
also generates OpenCL code starting from a subset of the
Java language, with a Just-in-Time (JIT) compiler that hoists
boundary checks as in [29]. Information about input data-
structures (for example, Java arrays) is directly leveraged to
guide code generation, making boundary checks generation
and pointer aliasing easier, as the association between arrays
and their size is immediately available as a property of
the data structure. In this work, we can process existing
arbitrary CUDA code and inject instructions for OOB pre-
vention and detection through static LLVM transformations.
This approach avoids invasive changes in the front-end
compiler and enables the interaction with other LLVM trans-
formations. Table 1 provides a summary of these techniques.

Common techniques used on CPUs might have limited
efficacy on GPUs: for example, Erb et al. employ canary
values to detect buffer overflows [13]. While this technique
works with arbitrary OpenCL code, it is unable to prevent
OOB accesses and introduces an execution overhead around
9%. The Futhark language [34] can detect OOB accesses in
generated GPU code, but once again cannot prevent them
from happening. Indeed, detection of OOB accesses, with-
out preventing their execution, is not sufficient to prevent

4

TABLE 1: Relevant existing approaches for OOB detection
(D) and prevention (P). Detection means that OOB accesses
still happen, but the computation is stopped afterwards or
errors are reported to the user. Prevention means that OOB
accesses do not happen in the first place.

Name of technique Target language Operationmode D P
Joern [25] C/C++, CPU Static v
Erb et al. [13] Arbitrary OpenCL  Run time v
Hayashi et al. [5], [32] Habanero-Java Static + Run time v Ve
Henriksen [34] Futhark DSL Run time v
CUDA-MEMCHECK Arbitrary CUDA Run time v
Our work Arbitrary CUDA Static + Run time vV

vulnerabilities and exploits [12], [14]. CUDA only supports
a subset of C/C++, with constraints on memory alloca-
tion/deallocation and invocation of unsupported arbitrary
functions (e.g. functions not compiled for device execution).
These constraints restrict the scope of solutions and make
code transformation, as we propose, a promising solution.
Although adding if-statements may lead to a more complex
GPU control flow and exacerbate wequ-divergence4 [35], we
introduce optimizations such as boundary check merging
and hoisting to mitigate the problem (Section 4.3.2).

The debugging tool CUDA-MEMCHECK® by Nvidia
runs the provided executable in a controlled environment
and detects out-of-bound accesses whenever they occur,
similarly to Valgrind [36]. CUDA-MEMCHECK cannot
transform the source code to prevent OOB accesses, and
programmers need to manually modify their code if an OOB
access is detected. Moreover, OOB accesses could occur
depending on the provided input and grid configuration,
meaning that users have to create ad-hoc tests to validate
each configuration they intend to run. Compared to existing
solutions, our transformations are fully automatic, making
the entire process transparent to the user: something that
tools such as CUDA-MEMCHECK could not achieve.

4 METHODOLOGY

We explain the main steps required to implement the algo-
rithmic pipeline that automatically adds boundary checks
on array accesses in a given GPU kernel, compiles the kernel
to a binary file, and executes it through a polyglot VM.
A polyglot VM such as GraalVM can run multiple guest
languages within the same runtime environment (such as
the Java Virtual Machine (JVM)) and provides information
about the current execution context across different guest
languages. As such, information about the array sizes is
made readily available to the GPU kernel. Our work is built
on top of the GrCUDA environment, used to compile and
invoke CUDA kernels. In the rest of this section, we present
in detail the main phases of our technique.

4.1 Intermediate Representation of GPU kernels

The pipeline’s input is the source code of a GPU kernel,
which is transformed into the LLVM IR through the Clang

4. different threads in the same warp executing different instructions,
inefficient on GPUs SIMD architecture
5. https://docs.nvidia.com/cuda/cuda-memcheck/index.html
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Transformed LLVM IR Code, boundary check: if (i < x_size) Original Source Code
define void (float*, float*, float, float*, i64*) void axpy(float *x, float *y, float a,
LLVM [...] int size, float *res) {
Transformation %size @ = i64, i64* %sizes, ... int i = B
%11 = i32 %10 to i64 o X [ [‘]~X + %5
P %12 = slt i64 %11, %size_@ ! resii] =a * xii] + ylil;
Original LLVM IR COd?’ i1 %12, label %start_access_0, label %end_access_0 | }
access and use of x[i] 1
define void (float*, float*, float, float*) i < x_size Transformed ‘LLVM £ .
[] Sour.ce Code Transformation
%x_i_ptr = float, float* %x, i64 %i start_access_6: void axpy(float *x, float *y, float a,
%x_i = load float, float* %x_i_ptr, ... f int size, float *res, int* sizes) {
[...] int i =
float %res_i, float* %res_i_ptr, ... XK X+ X

‘ ret void

if (i < sizes[@]) {
res[i] = a * x[i] + y[il; } }

end_access_0: i o= X size
ret void -

Fig. 4: How our transformations add a boundary check to one array access in the axpy LLVM IR. Relevant portions of the
code are highlighted. On the left, we show how our transformations manipulate the LLVM IR and the control flow graph.
On the right, equivalent transformations at source code level. Lower bound checks can be avoided as in Section 4.3.2.

compiler. Operating on the SSA LLVM IR simplifies the [ive-
liness variable analysis (Section 4.3.1 and the identification of
data dependencies. Moreover, operating at source-code level
makes generated boundary checks more reliant on further
LLVM optimizations: adding boundary checks in the source
code introduces a slowdown above 40% if no additional
optimization passes are applied to the code (Section 5.2).

We also leverage code-generation simplifications by
Clang: for example, different ways to access arrays in CUDA
(suchas x[i] and » (x + 1i)) are translated to the same IR,
greatly simplifying our subsequent analyses.

4.2 Extending kernels with array size information

Adding boundary checks to the GPU kernel code and de-
tecting possible OOB accesses requires run time knowledge
of the size of each array accessed inside the kernel. While
the size of local buffers inside the kernel might be fixed
and available at compile-time, we need a way to provide
information about the size of input arrays from the managed
runtime environment to the CUDA kernel. Moreover, we
want a way to track the kernel’s execution, monitor array
accesses, and return to the managed environment informa-
tion about the computation (e.g. if any OOB access could
have occurred). If an array (or pointer, we use the term
interchangeably as GrCUDA only supports pointers that
represent arrays, possibly containing a single item) is an
input to the GPU kernel, there are no guarantees that the
input arguments specify its size. Even if such an argument
is present, we cannot rely on the user’s value to be correct
or that this value is used to perform boundary checks.
Consequently, we need to extend the GPU kernel sig-
nature with an additional array: when invoking the kernel
from GrCUDA, this array provides the size of each array
from the GraalVM run time environment to the actual GPU
kernel, in the same order as they appear in the signature.
Optionally, we introduce a second array used to track the
occurrences of OOB accesses for each input array to provide
debugging information and stronger OOB detection.

4.3 Automatically adding GPU boundary checks

The transformation that identifies array accesses and adds
boundary checks is applied right after the kernel signature

extension. This second transformation directly applies opti-
mizations to the IR to minimize the number of OOB checks.

4.3.1 Identification of problematic array accesses

We initially perform a linear scan of the GPU kernel IR to
track aliases of known arrays and to identify array accesses.
We define as array access all instructions that read or write
data on a specified memory address, such as LLVM load/s-
tore and CUDA atomic memory operations.

Array accesses require the computation of an address,
i.e. a getelementptr (GEP) instruction in LLVM. For each
GEP, we need to identify which array is accessed starting
from the address computed through it. Most importantly,
we also need to identify the scope of the values loaded or
stored through the address, i.e. understand which instruc-
tions the array access will affect. Figure 5 illustrates our al-
gorithm on the LLVM basic block graph of a Sparse matrix-
vector multiplication (SpMV) kernel, similar to the BFS and
PR benchmarks in Section 5.1 and containing nested array
accesses and loops boundaries with array accesses.

The start of the array access scope usually coincides
with the GEP instruction, except in the presence of loop
boundaries or ¢ nodes (instructions used to select a value
based on previous basic blocks). In this case, we add the
boundary check by introducing a new basic block before the
one containing the loop boundary or ¢ node OQ@G). To
find where the array access scope terminates, we traverse in
a Depth-First-Visit fashion the dependency graph that starts
from the GEP instruction and identify all the leaf instruc-
tions of this graph. These instructions do not have further
unexplored children (i.e. users of its result), and usually
represent store instructions whose target is not accessed
in subsequent parts of the GPU kernel. In the simplest case,
all the leaves belong to the same basic block as the root of the
graph (the GEP instruction): in this situation, there are no
branches (such as pre-existing if statements) in the control
flow that affect the array access. The end of the array access
scope is determined by the leaf instruction that appears
last in the code. If there exist leaf instructions outside the
original basic block in which the GEP appears, we take as
the end of the scope the start of the next basic block that is
common to all the basic blocks in which the leaves appear
(which can be the end of the kernel, if no common block
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Function add_boundary_checks (kernel) :

array_accesses = []

- 1. Associate each input array to its size

array_size_map = parse_parameters (kernel)

- Track other arrays, e.g. local caches

array_size_map = add_other_arrays (kernel,
array_size_map)

- If no array was found, return

if array_size_map.size() == 0 then return

- 2. Find array accesses
for instruction € kernel.get _instruction () do
- Is the instruction a reference to an array?
check_if_array_alias (instruction)
- Handle array/pointer accesses, Section 4.3.1
if is_array_access (instruction) then
- For each array access identify the scope of
the access and other metadata
access = handle_access (instruction)
array_accesses.add(access)

- 3. Filter array access with existing
out-of-boundary access protection, Section 4.3.1

filter_accesses (array_accesses)

- 4. Merge equivalent array accesses, Section 4.3.2

simplify_array_accesses (array_accesses)

- 5. Add boundary check statements to protect each
array accesses, Section 4.3.3

add_array_access_protection (array_accesses)

Algorithm 1: Pseudo-code of the algorithm that adds
boundary checks to array accesses in a GPU kernel.

is determined), and introduce a new basic block before it
(4. If the result is used in the computation of the loop
boundary condition, we modify the condition to include
additional boundary checks. If a GEP is used as input to
another GEP (for example, in the case of nested array ac-
cesses), our algorithm adds boundary checks for both GEPs,
with the second boundary check computed only if the first
is successful (we un-nest the array accesses). We leverage
LLVM optimizations to simplify the modified basic block
graph: for example, the boundary check v+1<size (ptr)
is hoisted outside the loop boundary computation as it can
be computed only once during the first iteration (5).

Given that GrCUDA wraps all pointer inputs through
well-defined Java objects, it is not possible to introduce
aliasing on the input arrays (e.g. providing both pointers
x and x + 10 as inputs). Input arrays are the only valid
global memory locations during the kernel execution, lim-
iting the surface that we must cover through boundary
checks. Although CUDA allows memory allocations within
kernels, this practice is heavily discouraged due to poor per-
formance®. Extending our algorithm to support this scenario
does not require its in-depth rethinking, as we can deduce
the size of dynamically allocated arrays from the malloc
input parameters. In the case of function calls, we look for
usages of the function return value and array arguments
and optionally recursively process the function itself.

To guarantee that no OOB occurs, none of the instruc-
tions in the identified GEP scope must be executed, and
the program should still provide the expected result. While

6. docs.nvidia.com/cuda/cuda-c-programming-guide/index.html\
#dynamic-global-memory-allocation-and-operations

6

void spmv(...) {
int v =

‘ : ; IIIIIIIII
float r = 0; o
(int i = ptr[v]; i<ptr[v+1]; i++) v<size(ptr,
i1
' B.

1 00, with boundary checks | 02, with boundary checks

A.
vesize(ptr)

B.
i=ptr[v]

C. v+l < (:)

size(ptr)

r 4= val[i]
res[v] = r;

* vec[idx[1]];

}

D.i<ptr[v+l
> r=¢([r3,C],
[o,10)

E
)
Fidx[i]<
size(vec)
G.
rl+=...

H. i++

r2=4(
[r1,G], [r,D],
[r,EL [, FI)

]

I
r

Legend

L r=(
R

Standard basic
block jumps
block inserted
as common child
of predecessors

New boundary
checks jumps

Links between
optimization levels

Fig. 5: We add boundary checks to the basic block graph of
a SpMV kernel containing loops and indirect array accesses,
and leverage LLVM optimizations to minimize overheads.

this procedure could, in principle, alter the program se-
mantic, the instruction that cause OOB accesses should
not have been executed in the first place. Moreover, OOB
accesses result in undefined behavior, and not executing
them cannot affect the program’s correctness. The semantics
of a program that originally does not present OOB is not
affected. For example, in Figure 5 we increment r only for
valid array indices, and write it to res only if the index
v lies within the array’s bounds (6). Additional boundary
checks do not influence a correct execution, and their impact
on performance is negligible (Section 5.2). We also report
information to the user about the presence of mitigated OOB
accesses, by tracking at run time if the Boolean conditions
that represent our additional boundary are false for a given
thread or index, and either store the information for the
user or interrupt the computation, depending on the user
preference. Through this approach, we detect if a program
contains problematic array accesses, and we also prevent the
execution of instructions that can give rise to vulnerabilities.

4.3.2 Pruning unnecessary candidate boundary checks

We remove any duplicate candidate boundary checks and
filter all checks for which we can statically determine that a
stronger condition already exists (e.g. boundary checks on
arrays with size known statically). In this context, stronger
entails a stricter Boolean condition, and that the scope
protected by the pre-existing boundary check is larger or
equal to the scope of our candidate boundary check.

As an optional optimization step, we identify if two
boundary checks would protect the same scope and can
be concatenated. The boundary checks are hoisted from
their original location and concatenated with Boolean AND
operations, reducing the number of conditional branches in
the code through explicit instruction predication. We also
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# Allocate arrays on both CPU and GPU

N = ; a =

X = ( B
.format(N))

y = s
.format(N))

res = ( B
.format(N))

# Initialize arrays with sample values
for i in range(size):
x[i] = 1i; y[i] = i; res[i] =

# Load the GPU kernel
K = ( 3

# Invoke the kernel
( 3

)(X) y) a) r1es)

Fig. 6: Invocation of the Axpy kernel from GrCUDA, with
transparent inference of array sizes.

remove > 0 boundary checks whose index is a CUDA
identifier (e.g. threadIdx) or is a non-negative expression
computed from CUDA identifiers; by default, this last opti-
mization is disabled to prevent integer overflows. We show
these simplification in Figure 2 (C).

4.3.3 Optimized insertion of array boundary checks

We insert boundary checks by embodying the instructions
belonging to the identified array access scope inside a
conditional block that is executed only if the index used to
access the array lies in the array’s valid size. We introduce
optimized IR sequences that are often faster than a source-
code equivalent, especially if few additional LLVM transfor-
mations are applied (e.g. —~00 optimization level, Section 5).
Algorithm 1 reports the pseudocode of this algorithm.

4.3.4 Detection of OOB boundary checks

In some cases, users might want to monitor the occurrence
of OOB accesses without affecting their program’s control
flow. Through the same boundary check conditions used to
prevent OOB accesses, we can insert instructions that track
the occurrence of OOB accesses by (atomically) updating the
tracking array provided in the extended kernel signature.
These instructions are inserted after each GEP instruction,
without affecting the original control flow. We also display
which array or index has been involved in the OOB access.
After execution, we inspect the tracking information to issue
warnings or raise exceptions if any OOB access has oc-
curred. Prevention and detection are not mutually exclusive:
our system can prevent OOB accesses and still provide
users with information about OOB accesses that might have
occurred in their code. In this case, tracking instructions are
inserted in an additional else basic block that is executed
only when a OOB access is prevented. To our knowledge,
our technique is the only one offering both prevention and
detection of OOB accesses in arbitrary CUDA code.

4.4 GPU code integration with runtime environment

Compilation of the transformed IR can happen in advance
or performed Just-in-Time once the run time environment
loads the kernel. The GPU kernel’s binary code is loaded

7

Naive Boundary Check, Source Level

Optimized Boundary Check, LLVM

; load array sizes
%x_size = [...]

intis= XK XF X5
for (int 11 = @; 11 < N; ++l1)

%y_size = [...]
for (int 15 = @; 15 < N; ++15) j %12 = sgt %x_size, %i
if (1 < x_size && i < y_size) ! %13 = sgt %y_size, %i
y[i] = x[l %if res = i1 %12, %13
i1 %if res
Optimized i“)L\AM,H . label %start_access_0,
Boundary Check Optimizations label %end_access_0
intis= LXK X X; start_array_access_0:

[...] ; begin loops

%x_i = i32, 132*% %x_ptr
132 %y i, 132*% %x_i

[...] 5 jump to next iteration

end_o:

ret void

if (i < x_size && 1 < y_size)
for (int 11 = @; 11 < N; ++11)

for (int 15 = @; 15 < N; ++15)
y[il = x[il;

Fig. 7: LLVM code hoisting ensures that boundary checks
inside deeply nested loops are moved at the start and
executed only once per thread, minimizing the overhead

inside a polyglot VM, allowing users to choose an arbitrary
language to interact with the GPU kernel. The VM converts
input/output data from their original format to the format
suitable for the GPU kernel. In our system, we leverage
the GraalVM polyglot VM. The example in Figure 6 shows
how a user can load and call a GPU kernel using Python
as the host language; the size of input arrays is inferred
automatically when the user invokes the kernel. In principle,
any system capable of invoking CUDA kernels can leverage
our technique, as long as it can perform memory alloca-
tion/deallocation and is aware of array sizes at run time.
From a practical standpoint, using a polyglot VM makes the
process simpler and easy to integrate with multiple high-
level languages, without language-specific bindings.

5 EXPERIMENTAL EVALUATION

We tested the algorithm on 16 GPU kernels commonly used
as building blocks for Linear Algebra, Artificial Intelligence,
and Graph Analytics GPU applications. These kernels come
from the Rodinia GPU Benchmark Suite [19], [20], or have
been adapted from openly available code samples by Nvidia
[21]. We divide kernels into two categories:

1) The first group contains kernels with OOB accesses
in the original source code. These kernels have been
processed with our technique and compared against
manually modified kernels to test our approach
against hand-optimized boundary checks.

2) The second group contains kernels originally free of
OOB array accesses, but presenting complex index-
ing expressions, or OOB accesses that arise if certain
constraints on the input size are not met. We give
these kernels additional robustness and measure the
overheads over the original code.

Table 2 lists the kernels in our evaluation grouped by
testing methodology. We provide information about input
data size (the number of elements in each input array) and
the types of OOB array accesses in each kernel. Further
details about each kernel are provided in Section 5.1.

5.1 Testing Methodology

Tests were performed on an Nvidia Tesla P100 16GB PCle
3.0 GPU. Kernels have been executed 50 times on randomly
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TABLE 2: Summary of kernels in the evaluation. Input Size is the number of elements in each input array/matrix.

Kernel Group Kernel Name (Short Name) Domain Isr.lput OoB Accesses Hard-Coded
ize in Kernel Sizes in Kernel
vs. Modified Kernel ~ Axpy (AXPY) Linear Algebra 4-10%  Global memory -
Dot Product (DP) Linear Algebra 106 Global, shared Yes
Convolution 1D (CONYV) Signal Processing 106 Global, shared Yes
Auto-covariance (ACV) Signal Processing 108 Global, shared Yes
Hotspot 3D (HP3D) PDE Solver 1283 Global memory -
NN - Forward Pass (NN1) Deep Learning 2-10°  Global memory -
Breadth First Search (BFS) Graph Analytics 10° Global memory -
PageRank (PR) Graph Analytics 2-10°  Global memory -
Nested Loops (NEST) Synthetic Benchmark 103 Global memory -
vs. Original Kernel =~ Matrix Multiplication (MULT)  Linear Algebra 3-10° - -
Hotspot (HP) PDE Solver 6002 - Yes
NN - Backpropagation (NN2)  Deep Learning 4-10% - -
Gaussian Elimination (GE) Linear Algebra 40962 - -
Histogram (HIST) Statistics 2.10% - Yes
LU Decomposition (LU) Linear Algebra 24002 Global, shared Yes
Needleman-Wunsch (NW) Bioinformatics 24002 Global, shared Yes
generated data. Baseline and automatically modified kernels Lsx Lsx
use copies of the same data to guarantee consistent cache % L2x § L2x L1z 1.19
usage and identical data movement between host and GPU. & wd 12| B x__ §
We choose a list of kernels that highlight different chal- g 7 0.89 g
lenges of OOB accesses prevention on GPU: usage of shared =T =T
memory, thread concurrency and synchronization, multi- £ "™ £ %
dimensional arrays, atomic operations, and more. E 0.2x ] E 0.2x ]
The first group contains kernels with OOB accesses in 0.0x 0.0x
global memory or shared memory. OOB accesses in global B | B B | B B | B B | B
memory do not generally cause the kernel execution to 00 02 00 02
terminate but can be a security threat nonetheless [14]. OOB 23 Baseline Kernel ZZ] Transformed Kernel 2 Compilation Time, Baseline Kernel
[ Setup Time 22 Compilation Time, Transformed Kernel

accesses on shared memory cause the computation to stop
abruptly. For each of these kernels, we compare the per-
formance of hand-optimized boundary checks added to the
source code against boundary checks inserted automatically
by our technique. We detail below each kernel.

e Axpy: the kernel multiplies a vector by a scalar and
sums it with another vector, as in Figure 1.

e Dot Product: scalar product between two vectors,
implemented as in [21]. It shows how we support
atomic operations and shared memory storage.

e Convolution 1D: convolution of two vectors, with
complex expressions indexing global memory.

e Auto-covariance: auto-covariance of a time-series,
using 2D shared memory and atomic additions.

o Hotspot 3D: from the Rodinia suite, the Hotspot 3D
kernel solves a series of differential equations [37].
The original kernel contains OOB accesses on global
memory that can produce wrong output values.

o Neural Network - Forward Pass: forward pass of a
feed-forward neural network [38], from Rodinia.

o BFS: breadth-first visit performed on a sparse graph,
adapted from the Rodinia suite [39] to store a graph
as CSR. Tested on a random sparse graph with 10°
vertices and maximum degree 10.

o PageRank: one iteration of PageRank, implemented
starting from the BFS kernel. It contains indirect
nested array accesses (e.g. y[x[1i]]) that are non-

(a) Relative execution times  (b) Relative compilation times

Fig. 8: Geometric mean of the kernel relative execution times
@ and compilation times ®), using 00/02 optimization
levels, compared to the respective baselines.

trivial to optimize, as the outer index is obtained only
after the inner access has been completed. Indirect
OOB array accesses can crash the application.

e Nested Loops: we created this kernel to test the
limitations of our code transformations. The kernel
contains array accesses inside a sequence of deeply
nested for loops, and naively generated boundary
checks (i.e. inside the loop nest) severely decrease
the kernel performance. By leveraging LLVM code
hoisting, we compute the boundary check outside of
the loop nest, only once per thread (Figure 7).

The second group contains kernels that can be consid-
ered free of OOB array accesses if certain constraints on
the input size are satisfied. There are also boundary checks
that cannot be inferred automatically as they depend, for
example, on how a 2D matrix is stored in a 1D array. In these
cases, we enhance the existing boundary checks with addi-
tional controls to prevent OOB accesses in complex indexing
expressions. We process each kernel with our technique
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vs. Manually Modified Kernels
1

vs. Original Kernels
1
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Fig. 9: Relative kernel execution time of automatically modified kernel vs manually modified and unmodified kernels, with
-02 optimization level. We distinguish between kernel execution time and total execution time, which includes GrCUDA

[ Setup Time

overheads such as loading the kernel. On average, modified code is only 6% slower than the original, unprotected, version.

and compare its performance against the original kernel.
Programmers can lightheartedly adopt our technique if it
ensures higher robustness for little-to-no overhead.

Matrix Multiplication: the product of two row-
linearized dense matrices.

Hotspot: from Rodinia, a 2D simulation of the tem-
perature of a processor, using 2D shared memory.
Neural Network - Backpropagation: a Rodinia ker-
nel that computes the weights update phase over a
layer of a feed-forward neural network [38].
Gaussian Elimination: taken from the Rodinia suite,
this kernel is part of the Gaussian Elimination algo-
rithm used to solve linear systems of equations [40].
Histogram: from the Rodinia suite and used in Hy-
brid Sort, it counts how many elements of a list fall
into equally sized intervals [41]. The original kernel
requires a specific block size to work correctly.

LU Decomposition: from the Rodinia suite and part
of the LU Decomposition algorithm [42], this kernel
makes large use of 2D local caches and nested loops.
Needleman-Wunsch: from Rodinia, it computes the
alignment score of two nucleotide sequences, as part
of the Needleman-Wunsch algorithm [43]. This ker-
nel uses 2D caches and calls another kernel whose
input requires OOB accesses protection. It demands
specific input and block sizes to avoid OOB accesses.

tion levels

5.2 Evaluation of compilation and execution overheads

We measure how our transformation affects each kernel’s
compilation and execution time and the overheads intro-
duced by GrCUDA. Tests are performed using optimization
levels —~00 and -02, to assess the performance difference
between manually and automatically generated boundary
checks, and the overall overheads of additional boundary
checks. We focus on -02 as it is the most common optimiza-
tion level in production environments, but other optimiza-

(e.g. —01, —03) were statistically identical to -02.

Automatically modified kernels have been processed using
boundary check merging optimizations (Section 4.3.2).

5.2.1 Relative execution time versus baseline kernels

First, we evaluate the execution time of each automatically
modified kernel relative to its baseline. Kernels in the first
group are compared to kernels where boundary checks have
been manually added; kernels in the second group are com-
pared against the original kernels without any modification.

Figure 8 presents the geometric mean of relative kernel
execution and compilation times. Code compiled with -00
is 44% faster than the baseline, showing the benefits of
adding boundary checks at IR level instead of modifying
the source code. -02 is only 2% slower than the baseline,
showing overall negligible overheads due to our transfor-
mations, even after applying equal optimizations to both
versions of the kernels. Compilation is also not significantly

slower, averaging less than 20% slowdown.

Several kernels have hard-coded parameters that define
the size of local caches or the value of indexes (see the
Hard-coded Sizes in Kernel column in Table 2). Users must
use precise values for the number of threads per block or
the number of blocks to prevent the kernel from crashing.
This constraint is not robust enough for real-life applica-
tions: our technique avoids OOB accesses even under these
circumstances. We selected benchmarks from the Rodinia
suite with different characteristics (presence of nested loops,
local caches, etc.). Other Rodinia benchmarks are similar to
ours or have features currently not supported by GrCUDA,
such as using classes/structs as input arguments. Our tech-
nique is straightforward to extend to those applications once
GrCUDA is updated to supports the missing features.

GrCUDA,

Figure

In no case,

Figure 9 shows the kernel execution time, and the over-
all execution time comprehensive of overheads added by
normalized with respect to the corresponding
baseline execution time. Results are aggregated using ge-
ometric mean, and we display the 95% confidence interval.
we observe a large performance gap between the
original and automatically modified kernels. The slowdown
is only 9% in the worst case (on the NN2 kernel, which has
many array accesses and little computation).
10 compares the execution time distribution of
automatically modified kernels with their baselines. Out-
liers do not explain the results of Figure 9, and the shape
of distributions is not affected by our modifications. (e.g.
kernels with fat tails like NN1 preserve this characteristic).



JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

bp / /\\\
j SN
o N e

HP R HIST

NN2 ~

Y
PR/,JJI\L

\
L
o

MULT

Y
w _ MU

T T T T T T T T T T T T
0% 80% 90%  100% 110% 120% 70% 80% 90%  100% 110%  120%

Relative Kernel Execution Time Relative Kernel Execution Time

[ Baseline Kernel [ Automatically Modified

Fig. 10: Relative kernel execution time distribution of auto-
matically modified kernel vs baseline kernels. Vertical axes
do not have the same scale, for better readability.

5.2.2 Statistical test on execution times

We validate if the small performance differences in Figure 9
are statistically significant. Each kernel is tested 50 times on
random data, with each run using the same data for man-
ually and transformed kernels, making samples dependent
and paired. We test statistical difference through the non-
parametric Wilcoxon test [44], as executions times are not
normally distributed (Figure 10). If the null hypothesis is re-
jected, one distribution has a higher median than the other.
As shown in Table 3, most automatically modified kernels
are statistically not slower than their respective baselines.
In 9 cases, no statistical difference is observed (given the
number of tests, we consider a test significant if its p-value
is extremely low, e.g. < 10~%), and in 3 cases, automatically
modified kernels are even faster than the baselines.

Auto-covariance NN - Forward Pass  Matrix Multiplication =~ Needleman-Wunsch
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Fig. 11: Scalability and overheads of different kernels com-
piled with -02 level optimizations, with 95% confidence
intervals. In all cases, the behaviour of the baseline and
automatically modified kernels follow the same trend.

5.2.3 Scalability Testing

We measured the execution time with increasing input
sizes to test how the performance of each kernel scales,

10

TABLE 3: Wilcoxon test applied to the execution time of
each kernel with and without automatic boundary checks.
Absence of statistical difference is denoted with a dash (-).

02 Optimization Level

KemetName  ieoon - Tater

vs. Modified Kernel

AXPY 0.0255 -

DP 0.039 -

CONV 4.58 x 107  Manually Modified
ACV 9.15 x 10~7 Manually Modified
HP3D 5.61 x 1076 Automatically Modified
NN1 4.48 x 10~8 Automatically Modified
BFS 0.00857 -

PR 0.0267 -

NEST 0.0044 -

vs. Original Kernel

MULT 7.87 x 10~ Original Kernel

HP 4.33 x 1076 Automatically Modified
NN2 0.00109 -

GE 0.00442 -

HIST 0.00977 -

LU 0.000146 Original Kernel

NW 0.202 -

Harmonic Mean 0.117 -

and to observe how the overheads diminish. Figure 11
presents a selection of the results, showing the execution
time and the overheads of four kernels compared against
their baselines, all compiled with -02 level optimizations.
The first two kernels are compared against manually mod-
ified code, the other two against the original, unmodified
code. Other kernels display similar trends. The execution
time of automatically modified code scales identically to the
baselines. We also measure the overheads of calling kernels
through GrCUDA, as a percentage of the overall execution
time: this overhead, while noticeable for small input sizes
with computations ending in about 1 millisecond, becomes
irrelevant (less than 5%) for realistic input sizes.

5.2.4 Relative execution time versus unmodified kernels

We compare the execution time of automatically modified
kernels with the execution time of kernels to which no
modification was applied, even if the original computation
presents OOB accesses. We selected all kernels where OOB
accesses do not prevent the computation from completing, even
if numerical results are wrong. Namely, the AXPY, HP3D,
NNT1, BES and NEST kernels contain OOB accesses on arrays
stored in global memory. All kernels are compiled with -02
level optimizations. On average, we see a slowdown of
only 2% compared to the original, unprotected code, with
results close to the ones in Figure 9. Our technique does not
introduce any practical disadvantage, as it can prevent OOB
array accesses while avoiding wasted computation on OOB
values at the same time.
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Fig. 12: Relative kernel execution time of automatically mod-
ified kernels versus unmodified ones. 5 of these unmodified
kernels contain OOB accesses that our technique prevents.

6 CONCLUSION

We presented a novel technique to detect and prevent out-
of-bounds array accesses in CUDA kernels, leveraging the
LLVM toolchain to transform CUDA code at compile-time,
add information about array sizes, and enhance the code
with boundary checks. We introduce no overhead in the
modified kernels. The execution time of 16 GPU kernels
processed with our technique is statistically equivalent
to both unmodified kernels and kernels with hand-tuned
boundary checks. As future work, we will extend our tech-
nique to cover the CUDA language’s features currently not
supported by the GrCUDA environment (such as arbitrary
input data structures) and dynamic memory allocations in
kernels. We will also investigate if our technique effectively
protects C/C++ code executed in GraalVM through the
Sulong LLVM bitcode interpreter [45].

Our technique seamlessly integrates with the GraalVM
polyglot VM: information about array sizes is transparently
provided to GPU kernels at run time. This approach greatly
extends GPU acceleration’s flexibility and makes it readily
available to data scientists and engineers who might be
unwilling to deploy GPU-based solutions without having
the robustness of managed runtime environments.
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