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Background - JavaScript Static Analysis
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JavaScript Static Analyzer

f = /*0 to 99*/;
f ||= x => x;

f      == [1,99] | x => x
f.name == undefined | "f"

1: f = ...
2: %0 = @bool(f)
3: if %0 -> 4
...
13: f.name = %5
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Problem - Manual Update of JS-IR Compiler
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Problem - Fast Evolving JavaScript
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Editorial
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Editorial
Changes

2015 - ES6

2016 - ES7

2017 - ES8
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- KJS
- SAFE
- TAJS

- WALA
- JSAI
- JSIL
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ECMAScript 2021 (ES12) - 879 pages
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Core Idea - Meta-level Static Analysis
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• Why Interpreter-based 
Approach?
- JavaScript specifications 

are written in an 
interpreter-based style

Core Idea - Meta-level Static Analysis

Evaluation algorithm for logical OR assignments in ES12 (ES2021)
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• Why Interpreter-based 
Approach?
- JavaScript specifications 

are written in an 
interpreter-based style

- JISET: JavaScript IR-
based Semantics 
Extraction (ASE 2020)
• Extracting JavaScript 

definitional interpreters
as IRES programs from JS 
Lang. Spec. (ECMA-262).

Core Idea - Meta-level Static Analysis

Extracted IRES function for logical OR assignments via JISET
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Core Idea - Meta-level Static Analysis
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Example

x ||= y PARSE

x ||= yJavaScript

IRES
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AssignmentExpressionLeftHandSideExpression

IdentifierReference IdentifierReference

IdentifierIdentifier
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AST Sensitivity
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AST Sensitivity
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JavaScript
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AST Sensitivity

JavaScript AST Sensitivity in IRES

Flow-
Sensitivity

k-Callsite-
Sensitivity
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• JavaScript Static Analyzer via ECMAScript Representation

Our Tool - JSAVER
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JS Static Analyzer Derivation via JSAVER
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• Derived Analyzer - JSAES12

- JavaScript Static Analyzer derived from ES12 (ES2021) via JSAVER
• Comparison Targets
- State-of-the-art JavaScript Static Analyzers
• TAJS / SAFE

• Analysis Targets
- Test262 (Official Conformance Test Suite) maintained by TC39
• Used 18,556 applicable conformance tests

• Experiment Environment
- An Ubuntu machine
• 4.2GHz Quad-Core Intel Core i7 and 32GB of RAM.

Evaluation Setting
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• Can JSAES12 analyze JavaScript programs 
using new language features in a sound way?

RQ1) Soundness
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• Can JSAES12 precisely analyze JavaScript programs compared to the existing 
static analyzers?
- Targets: 3,878 programs soundly analyzable by all of five analyzers

RQ2) Precision & Performance
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JavaScript is Everywhere

https://octoverse.github.com/

client-side

server-side

mobile/desktop apps

https://octoverse.github.com/
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JavaScript Complex Semantics

function f(x) { return x == !x; }

Always return false?

NO!!
f([]) -> [] == +[]

-> [] == false
-> +[] == +false
-> 0 == 0
-> true
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• In the 1990s, JavaScript semantics are defined with reference interpreters:

The Interpreter-based Nature of JavaScript

Guy Steele would ask a question about some edge-
case feature behavior. [. . .] they would each turn to 
their respective implementation and try a test case. 
If they got the same answer, that became the specified 
behavior.

A. Wirfs-Brock and B. Eich, “JavaScript: The First 20 Years,” HOPL, Article 77, 189 pages.
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• RQ3) Configurability - Can we configure abstract domains and analysis 
sensitivities for JavaScript in JSAES12?
- Abstract Domains
• Three Different String Domains – 1) String Set, 2) Character Inclusion, and 3) Prefix-Suffix

- Analysis Sensitivities
• Flow- and k-Callsite-Sensitivity

• RQ4) Adaptability - Can JSAVER adapt to new language features not yet 
introduced in ES12?
- Pipeline Operator (|>)
- Observable Built-in Library

RQ3) Configurability / RQ4) Adaptability


