
1 Oracle Labs, Australia
2 KAIST, South Korea

Jihyeok Park 1, Seungmin An 2, and Sukyoung Ryu 2

Automatically Deriving JavaScript Static Analyzers
from Specifications using Meta-level Static Analysis

Copyright © 2022, Oracle and/or its affiliates2

Background - JavaScript Static Analysis

JS
Program

IR
Program

JS-IR
Compiler

IR
Analyzer

Analysis
Result

Compiler-based Approach

JavaScript Static Analyzer

f = /*0 to 99*/;
f ||= x => x;

f == [1,99] | x => x
f.name == undefined | "f"

1: f = ...
2: %0 = @bool(f)
3: if %0 -> 4
...
13: f.name = %5

Copyright © 2022, Oracle and/or its affiliates3

Problem - Manual Update of JS-IR Compiler

JS
Program

IR
Program

JS-IR
Compiler

IR
Analyzer

Analysis
Result

Compiler-based Approach

JavaScript Static Analyzer

Analyzer
Developer

JS Spec.
(ECMA-262)

read & understand

update

maintained by

Copyright © 2022, Oracle and/or its affiliates4

Problem - Fast Evolving JavaScript

20052000 2010 2015 2020

1997 - ES1
First edition

1998 - ES2
Editorial
Changes

1999 - ES3
RegExp, String,
Try/catch, etc.

2009 - ES5
Getters/Setters,

Strict mode,
Exceptions, etc

2011 - ES5.1
Editorial
Changes

2015 - ES6

2016 - ES7

2017 - ES8

2018 - ES9

2019 - ES10

2020 - ES11

2021 - ES12

- KJS
- SAFE
- TAJS

- WALA
- JSAI
- JSIL

Annual Update

JS Spec.
(ECMA-262)

maintained by

ECMAScript 2021 (ES12) - 879 pages

Copyright © 2022, Oracle and/or its affiliates5

Core Idea - Meta-level Static Analysis

JS Interpreter
(IR Program)

Interpreter-based Approach
JavaScript Static Analyzer

IR
Analyzer

Analysis
Result

JS
Program

Initial state
restrction

Copyright © 2022, Oracle and/or its affiliates6

• Why Interpreter-based
Approach?
- JavaScript specifications

are written in an
interpreter-based style

Core Idea - Meta-level Static Analysis

Evaluation algorithm for logical OR assignments in ES12 (ES2021)

Copyright © 2022, Oracle and/or its affiliates7

• Why Interpreter-based
Approach?
- JavaScript specifications

are written in an
interpreter-based style

- JISET: JavaScript IR-
based Semantics
Extraction (ASE 2020)
• Extracting JavaScript

definitional interpreters
as IRES programs from JS
Lang. Spec. (ECMA-262).

Core Idea - Meta-level Static Analysis

Extracted IRES function for logical OR assignments via JISET

Copyright © 2022, Oracle and/or its affiliates8

Core Idea - Meta-level Static Analysis

JS Interpreter
(IR Program)

Interpreter-based Approach
JavaScript Static Analyzer

IR
Analyzer

Analysis
Result

JS
Program

JS Spec.
(ECMA-262)

Initial state
restrction

automatic
extraction

Copyright © 2022, Oracle and/or its affiliates9

Example

x ||= y PARSE

x ||= yJavaScript

IRES

AssignmentExpression

AssignmentExpressionLeftHandSideExpression

IdentifierReference IdentifierReference

IdentifierIdentifier

PARSE

x ||= y

AssignmentExpression

AssignmentExpressionLeftHandSideExpression

IdentifierReference IdentifierReference

IdentifierIdentifier

Copyright © 2022, Oracle and/or its affiliates10

Example

x ||= y

JavaScript

IRES

PARSE

x ||= y

AssignmentExpression

AssignmentExpressionLeftHandSideExpression

IdentifierReference IdentifierReference

IdentifierIdentifier

Copyright © 2022, Oracle and/or its affiliates11

AST Sensitivity

x ||= y

JavaScript

IRES

PARSE

x ||= y

AssignmentExpression

AssignmentExpressionLeftHandSideExpression

IdentifierReference IdentifierReference

IdentifierIdentifier

Copyright © 2022, Oracle and/or its affiliates12

AST Sensitivity

x ||= y

JavaScript

IRES

Copyright © 2022, Oracle and/or its affiliates13

AST Sensitivity

JavaScript AST Sensitivity in IRES

Flow-
Sensitivity

k-Callsite-
Sensitivity

Copyright © 2022, Oracle and/or its affiliates14

• JavaScript Static Analyzer via ECMAScript Representation

Our Tool - JSAVER

IRES
Functions

Analysis
Initializer

Analysis
Result

JS
Program

JS Spec.
(ECMA-262) JISET

JS Interpreter

JS
Parser

JS Abstract
Syntax Tree

Initial
Abs. State

Abs. Transfer
Function

Fixpoint
Computation

JSAVER

Copyright © 2022, Oracle and/or its affiliates15

JS Static Analyzer Derivation via JSAVER

JSAVER

Analysis
Result

JS
Program

JS Spec.
(ES12, ES2021)

DERIVE
JSAVER

Analysis
Result

JS
Program

JS Spec.
(ES12, ES2021)

JS Static Analyzer for ES12

Copyright © 2022, Oracle and/or its affiliates16

• Derived Analyzer - JSAES12

- JavaScript Static Analyzer derived from ES12 (ES2021) via JSAVER
• Comparison Targets
- State-of-the-art JavaScript Static Analyzers
• TAJS / SAFE

• Analysis Targets
- Test262 (Official Conformance Test Suite) maintained by TC39
• Used 18,556 applicable conformance tests

• Experiment Environment
- An Ubuntu machine
• 4.2GHz Quad-Core Intel Core i7 and 32GB of RAM.

Evaluation Setting

Copyright © 2022, Oracle and/or its affiliates17

• Can JSAES12 analyze JavaScript programs
using new language features in a sound way?

RQ1) Soundness

Copyright © 2022, Oracle and/or its affiliates18

• Can JSAES12 precisely analyze JavaScript programs compared to the existing
static analyzers?
- Targets: 3,878 programs soundly analyzable by all of five analyzers

RQ2) Precision & Performance

Copyright © 2022, Oracle and/or its affiliates19

Copyright © 2022, Oracle and/or its affiliates20

JavaScript is Everywhere

https://octoverse.github.com/

client-side

server-side

mobile/desktop apps

https://octoverse.github.com/

Copyright © 2022, Oracle and/or its affiliates21

JavaScript Complex Semantics

function f(x) { return x == !x; }

Always return false?

NO!!
f([]) -> [] == +[]

-> [] == false
-> +[] == +false
-> 0 == 0
-> true

Copyright © 2022, Oracle and/or its affiliates22

• In the 1990s, JavaScript semantics are defined with reference interpreters:

The Interpreter-based Nature of JavaScript

Guy Steele would ask a question about some edge-
case feature behavior. [. . .] they would each turn to
their respective implementation and try a test case.
If they got the same answer, that became the specified
behavior.

A. Wirfs-Brock and B. Eich, “JavaScript: The First 20 Years,” HOPL, Article 77, 189 pages.

Copyright © 2022, Oracle and/or its affiliates23

• RQ3) Configurability - Can we configure abstract domains and analysis
sensitivities for JavaScript in JSAES12?
- Abstract Domains
• Three Different String Domains – 1) String Set, 2) Character Inclusion, and 3) Prefix-Suffix

- Analysis Sensitivities
• Flow- and k-Callsite-Sensitivity

• RQ4) Adaptability - Can JSAVER adapt to new language features not yet
introduced in ES12?
- Pipeline Operator (|>)
- Observable Built-in Library

RQ3) Configurability / RQ4) Adaptability

