
Subject Granular Differential Privacy in Federated
Learning

Virendra J. Marathe
Oracle Labs

virendra.marathe@oracle.com

Pallika Kanani
Oracle Labs

pallika.kanani@oracle.com

Abstract
This paper introduces subject granular privacy in the Federated Learning (FL) set-
ting, where a subject is an individual whose private information is embodied by
several data items either confined within a single federation user or distributed
across multiple federation users. We formally define the notion of subject level
differential privacy for FL. We propose three new algorithms that enforce subject
level DP. Two of these algorithms are based on notions of user level local differen-
tial privacy (LDP) and group differential privacy respectively. The third algorithm
is based on a novel idea of hierarchical gradient averaging (HiGradAvgDP) for
subjects participating in a training mini-batch. We also introduce horizontal com-
position of privacy loss for a subject across multiple federation users. We show
that horizontal composition is equivalent to sequential composition in the worst
case. We prove the subject level DP guarantee for all our algorithms and empiri-
cally analyze them using the FEMNIST and Shakespeare datasets. Our evaluation
shows that, of our three algorithms, HiGradAvgDP delivers the best model perfor-
mance, approaching that of a model trained using a DP-SGD based algorithm that
provides a weaker item level privacy guarantee.

1 Introduction
Data privacy enforcement, using Differential Privacy (DP) (5; 6), in the Federated Learning (FL)
setting (10) has been explored at two granularities: (i) item level privacy, where use of each data
item in model training is obfuscated (1); and (ii) user level privacy, where participation of each
federation user is hidden (13). User level privacy is generally understood to be a stronger privacy
guarantee than item level privacy since the former hides use of all data of each user, whereas the
latter may leak the user’s data distribution even if it individually protects each data item (12; 13).

Item or user level privacy are perhaps the right privacy granularities in the original cross-device FL
setting consisting of millions of hand held cell phones (2; 10) – an individual’s data typically resides
in just one cell phone that participates in a federation and one device typically only contains one
individual’s data. However, the cross-silo FL setting (8), where federation users are organizations
that are themselves gatekeepers of data items of numerous individuals (which we call “subjects”
henceforth), offer much richer mappings between subjects and their personal data.

Consider an online retail store customer C. C’s online purchase history, which contains a multitude
of orders placed in the past, is highly sensitive, and must be kept private. Furthermore, C may be
a customer at other online retail stores. Thus C’s aggregate private data may be distributed across
several online retail stores. These retail stores could end up collaborating with each other in a
federation to train a model using their customers’, including C’s, private purchase histories.

Item level privacy does not suffice to protect privacy of C’s data. That is because item level privacy
simply obfuscates participation of individual data items in the training process (1; 5; 6). Since
a subject may have multiple data items in the dataset, item level private training may still leak a
subject’s data distribution (13; 12). User level privacy does not protect the privacy of C’s data either.

Preprint. Under review.

User level privacy obfuscates each user’s participation in training (13). However, a subject’s data can
be distributed among several users, and it can be leaked when aggregated through FL. In the worst
case, multiple federation users may host only the data of a single subject. Thus C’s data distribution
can be leaked even if individual users’ participation is obfuscated.

In this paper, we consider a third granularity of privacy – subject level privacy (18)1, where a subject
is an individual whose private data is spread across multiple data items, which can themselves be
distributed across multiple federation users. The notion of subject level privacy is not new, and in
fact appears in some of the original work on DP (5; 6). However, most existing work has either
assumed a 1-to-1 mapping between subjects and data items (1), or has treated subjects as individual
silos of data (a.k.a. users) in a collaborative learning setting such as FL (13). Recent work has
addressed subject level privacy in a centralized setting (11), but no prior work has addressed the
problem in a distributed collaborative learning setting such as FL. To the best of our knowledge, our
work is the first study of subject level privacy in FL.

We formally characterize the notion of subject level privacy in terms of subject level differential
privacy. We present three novel algorithms, called UserLDP, LocalGroupDP, and HiGradAvgDP
respectively, that achieve subject level DP in the FL setting. Our algorithms assume a conservative
trust model between the federation server and its users: The users do not trust the federation server
(or other users) and enforce the subject level DP guarantee locally. All our algorithms are subtle
enhancements of a FL training algorithm based on the DP-SGD algorithm by Abadi et al. (1) that
provides the item level DP guarantee. We formally prove our algorithms’ subject level DP guarantee.

We introduce the notion of horizontal composition for subject level privacy loss across multiple fed-
eration users. We show that, in the worst case, horizontal composition is equivalent to sequential
composition, and as a result, adds additional constraints on the amount of training (number of train-
ing rounds in our algorithms) permitted under a given privacy loss budget compared to item level
DP. These constraints can adversely affect model performance.

We empirically evaluate our algorithms on the FEMNIST and Shakespeare datasets. Our evaluation
shows that while UserLDP and LocalGroupDP incur significant model utility overheads resulting
in poor model performance, HiGradAvgDP delivers models whose performance approaches that of
models trained using a baseline algorithm, called LocalItemDP, that provides a weaker item level
DP guarantee in FL. Our evaluation further explores effects of (i) changing subject data distributions
among federation users, and (ii) limiting federation data to a small number of subjects.

2 Subject Level Differential Privacy
We begin with the definition of Differential Privacy (5). Informally, DP bounds the maximum impact
a single data item can have on the output of a randomized algorithm A. Formally,
Definition 2.1. A randomized algorithm A : D → R is said to be (ε,δ)-differentially private if for
any two adjacent datasets D, D′ ∈ D, and set R ⊆ R,

P(A(D) ∈ R) ≤ eεP(A(D′) ∈ R) + δ (1)
where D, D′ are adjacent to each other if they differ from each other by a single data item. δ is the
probability of failure to enforce the ε privacy loss bound.

The above definition provides item level privacy. McMahan et al. (13) present an alternate definition
for user level DP in the FL setting. Let U be the set of n users participating in a federation, and Di
be the dataset of user ui ∈ U . Let DU =

⋃n
i=1Di. LetM be the range of models resulting from the

FL training process.
Definition 2.2. Given a FL training algorithm F : DU → M, we say that F is user level (ε, δ)-
differentially private if for any two adjacent user sets U , U ′ ⊆ U , and R ⊆M,

P(F(DU) ∈ R) ≤ eεP(F(DU ′) ∈ R) + δ (2)
where U , U ′ are adjacent user sets differing by a single user.

Let S be the set of subjects whose data is hosted by the federation’s users U . Our definition of
subject level DP is based on the observation that, even though the data of individual subjects s ∈ S
may be physically scattered across multiple users in U , the aggregate data across U can be logically
divided into its subjects in S (i.e. DU =

⋃
s∈S Ds).

1Wang et al. (18) identify what we call subjects in this paper as users in their paper.

2

Definition 2.3. Given a FL training algorithm F : DU → M, we say that F is subject level
(ε, δ)-differentially private if for any two adjacent subject sets S, S′ ⊆ S, and R ⊆M,

P(F(DS) ∈ R) ≤ eεP(F(DS′) ∈ R) + δ (3)

where S and S′ are adjacent subject sets if they differ from each other by a single subject.

Note that our definition completely ignores the notion of users in a federation. This user oblivi-
ousness is crucial to make the definition work for both cases: (i) where a subject’s data items are
confined to a single user (e.g. for cross-device FL settings), and (ii) where a subject’s data items are
spread across multiple users (e.g. for cross-silo FL settings) (18).

3 Enforcing Subject Level Differential Privacy
We assume a federation that contains a federation server and its users. The server is responsible for
(i) initialization and distribution of the model architecture to the federation users, (ii) coordination
of training rounds, (iii) aggregation and application of model updates coming from different users
in each training round, and (iv) redistribution of the updated model back to the users. Each user (i)
receives updated models from the federation server, (ii) retrains the received models using its private
training data, and (iii) returns updated model parameters to the federation server.

We assume that the federation users and the server behave as honest-but-curious participants in the
federation: They do not interfere with or manipulate the distributed training process in any way, but
may be interested in analyzing received model updates. Federation users do not trust each other or
the federation server, and must locally enforce privacy guarantees for their private data.

Our algorithms enforce subject level DP locally at each user. But to prove the privacy guarantee for
any subject, across the entire federation, we must ensure that the local subject level DP guarantee
composes correctly through the global aggregation, at the federation server, of parameter updates
received from these users. To that end we break down the federated training round into two func-
tions: (i) Fl, the user’s training algorithm that enforces subject level DP locally, and (ii) Fg , the
server’s operation that aggregates parameter updates received from all the users. We first present
our three algorithms for Fl and show that they locally enforce subject level DP. Thereafter we show
how an instance of Fg that simply averages parameter updates (at the federation server) composes
the subject level DP guarantee across multiple users in the federation.

Our algorithms are based on a federated version of the DP-SGD algorithm by Abadi et al. (1). DP-
SGD was originially not designed for FL, but can be easily extended to enforce item level DP in
FL: The federation server samples a random set of users for each training round and sends them a
request to perform local training. Each user trains the model locally using DP-SGD. Formally, the
parameter update at step t in DP-SGD can be summarized in the following equation:

Θt = Θt−1 + η(OLC(Θt−1) +N (0, C2σ2)) (4)

where, OLC is the loss function’s gradient clipped by the threshold C, σ is the noise scale calculated
using the moments accountant method, N is the Gaussian distribution used to calculate noise, and
η is the learning rate. Note that, in a mini-batch, the gradient for each data item is computed and
clipped separately to limit the influence (sensitivity) of each data item on the loss function’s gradient.

The users ship back updated model parameters to the federation server, which averages the updates
received from all the sampled users. The server redistributes the updated model and triggers another
training round if needed. The original paper (1) also proposed the moments accountant method for
tighter composition of privacy loss bounds compared to prior work on strong composition (7).

3.1 User Level Local Differential Privacy
In general, user level privacy (13) does not guarantee subject level privacy. However, we observe
that a stronger privacy guarantee, called Local Differential Privacy (LDP) (4; 9; 19), enforced at
user granularity, is sufficient to guarantee subject level privacy. There are strong parallels between
the traditional LDP setting, where a data analyst can get access to the data only after it has been
perturbed, and privacy in the FL setting, where the federation server gets access to parameter updates
from users after they have been locally perturbed by the users. In fact, in the FL setting (17), LDP
is a much stronger privacy guarantee than item level or user level DP in that it obfuscates the entire
signal from a user to the extent that an adversary, even the federation server, cannot tell the difference
between the signals coming from any two different users.

3

Algorithm 1: Pseudo code for UserLDP.
Parameters: Set of n users U = ui, u2, ..., un;Di, the dataset of user ui;M , the model to be trained; θ, the parameters of model

M ; noise scale σ; gradient norm bound C; mini-batch sizeB;R training rounds; the learning rate η.
1 UserLDP(ui):
2 for t = 1 to T do
3 S = random sample ofB data items fromDi

4 Compute gradients:
5 g(S) = OL(θ, S)
6 Clip gradients:
7 ḡ(S) = g(S)/max(1,

‖g(S)‖2
C)

8 Add Gaussian noise:
9 g̃(S) = ḡ(S) +N (0, σ2C2I)

10 θ = θ − ηg̃(S)

11 return θ

12 Server Loop:
13 for r = 1 toR do
14 Us = sample s users
15 from U
16 for ui ∈ Us do
17 θi = UserDPSGD(ui)

18 θ = 1
s

∑s
i=1 θi

19 SendM to all users
20 in U

Definition 3.1. We say that FL algorithm F : DU → M is user level (ε,δ)-local differentially
private, where DU is the aggregate dataset over users in set U , andM is the range of parameters of
the model getting trained, if for any two users u1, u2, and S ⊆M,

P(F(Du1
) ∈ S) ≤ eεP(F(Du2

) ∈ S) + δ (5)
where Du1

and Du2
are the datasets of users u1 and u2 respectively.

User level LDP is a stronger privacy guarantee than subject level DP. More formally,
Theorem 3.1. User level (ε,δ)-local differential privacy entails (ε, δ)-subject level differential pri-
vacy.
The formal proof for Theorem 3.1 appears in the appendix.

We now present a new user level (ε,δ)-LDP algorithm called UserLDP. The underlying intuition
behind this algorithm is to let the user locally inject enough noise to make its entire signal indis-
tinguishable from any other user’s signal. In every training round, each federation user enforces
user level LDP independently of the federation and any other users in the federation. The federa-
tion server simply averages parameter updates received from users and braodcasts the new averaged
parameters back to the users.

UserLDP’s pseudo code appears in Algorithm 1. UserLDP appears significantly similar to DP-SGD.
The key difference is that while DP-SGD computes noise proportional to the gradient contribution
of any single data item in a mini-batch, UserLDP computes noise proportional to the gradient contri-
bution of the entire mini-batch, thus obfuscating the entire signal from the mini-batch. To guarantee
DP, we need to first cap the sensitivity of each user ui’s contribution to parameter updates. To that
end, we focus on change affected by any mini-batch b trained at ui.
Lemma 3.2. For every mini-batch b of a sampled user ui’s training round in UserLDP, the sensi-
tivity Sb of the computed parameter gradient is bounded by C; i.e. Sb ≤ |C|.
Theorem 3.3. UserLDP enforces user-level local (ε,δ)-differential privacy for each mini-batch b.

The proofs for above lemma and theorem appear in Appendix A.

Applying standard DP composition results (1; 7) to Theorem 3.3, and combining it with Theorem
3.1 locally proves subject level DP guarantee for UserLDP over individual training rounds.

3.2 Locally Enforced Group Level Differential Privacy

While user level LDP is a stronger guarantee than subject level privacy, it is known to induce exces-
sive noise in the training process, leading to significant utility degradation in the trained model (4; 9).
Intuitively, user level LDP is guaranteeing privacy at a coarser granularity (user level) as opposed
to granularity of individual data subjects. As a result, we need to find better alternatives that more
precisely calibrate noise proportional to a data subject’s influence on training. A direct method to
attain that is by obfuscating the effects of the group of data items belonging to the same subject.
We can apply formalism of group differential privacy (6) to achieve this group-level obfuscation.
Formally (from (6)),
Theorem 3.4. Any (ε, δ)-differentially private randomized algorithm A is (gε, ge(g−1)εδ)-
differentially private for groups of size g. That is, given two g-adjacent datasets D and D′, and
R ∈M, whereM is the output space domain,

P(A(D) ∈ R) ≤ egεP(A(D′) ∈ R) + ge(g−1)εδ (6)

4

Algorithm 2: Pseudo code for LocalGroupDP that guarantees subject level DP via group DP
enforcement.
Parameters: Set of n users U = ui, u2, ..., un;Di, the dataset of user ui;M , the model to be trained; θ, the parameters of model

M ; gradient norm bound C; sample of users Us; mini-batch sizeB; Z, largest group size in a mini-batch, σZ , noise
scale for group of size Z;R training rounds; T batches per round; the learning rate η.

1 LocalGroupDP(ui):
2 for t = 1 to T do
3 S = random sample ofB data items fromDi

4 for si ∈ S do
5 Compute gradients:
6 g(si) = OL(θ, si)
7 Clip gradients:
8 ḡ(si) = Clip(g(si), C)

9 Z = LrgGrpCnt(S)

10 g̃s = 1
B (

∑
i ḡ(si) +N (0, σ2

ZC
2I))

11 θ = θ − ηg̃s
12 returnM

13 Server Loop:
14 for r = 1 toR do
15 Us = sample s users from U
16 for ui ∈ Us do
17 θi = LocalGroupDP(ui)

18 θ = 1
s

∑
i θi

19 SendM to all users in U

where D and D′ are g-adjacent if they differ from each other in g data items.

Clearly, group DP incurs a big linear penalty on the privacy loss ε, and an even bigger penalty in the
failure probability (ge(g−1)εδ). Nevertheless, if g is restricted to a small value (e.g. 2) the group DP
penalty may be acceptable.

Theorem 3.4 is a bi-directional implication. So it can be restated as follows:

Corollary 3.5. Any (E ,∆)-group differentially private algorithm A, for a group size of g, is
(E/g,∆/(ge(g−1) Eg)-differentially private.

In the FL setting, subject level DP immediately follows from group DP for every sampled mini-batch
of data items at every federation user. Let S be a sampled mini-batch of data items at a user ui, and
M be the domain space of the ML model being trained in the FL setting.

Theorem 3.6. Let training algorithm Ag : S → M be group differentially private for groups of
size g, and l be the largest number of data items belonging to any single subject in S. If l ≤ g, then
Ag is subject level differentially private.
Composition of group DP guarantees over multiple mini-batches and training rounds also follows
established DP composition results (1; 7; 15). For instance, the moments accountant method
by Abadi et al. (1) shows that given an (ε,δ)-DP gradient computation for a single mini-batch,
the full training algorithm, which consists of T mini-batches and a mini-batch sampling frac-
tion of q, is (O(qε

√
T), δ)-differentially private. Theorem 3.4 implies that the same algorithm is

(O(gqε
√
T , ge(g−1)εδ)-group differentially private for a group of size g.

We now present our new FL training algorithm, LocalGroupDP, that guarantees group DP. We make
a critical assumption in LocalGroupDP: Each user can determine the subject for any of its data items.
Absent this assumption, the user may need to make the worst case assumption that all data items
used to train the model belong to the same subject. On the other hand, these algorithms are strictly
local, and do not require that the identity of the subjects be resolved across users.

LocalGroupDP (Algorithm 2) enforces subject level privacy locally at each user. Like prior work (1;
13; 16), we enforce DP in LocalGroupDP by adding carefully calibrated Gaussian noise in each
mini-batch’s gradients. Each user clips gradients for each data item in a mini-batch to a clipping
threshold C prescribed by the federation server. The clipped gradients are subsequently averaged
over the mini-batch. The clipping step bounds the sensitivity of each mini-batch’s gradients to C.

To enforce group DP, LocalGroupDP also locally tracks the item count of the subject with the
largest number of items in the sampled mini-batch. This count determines the group size needed to
enforce group DP for that mini-batch. This group size, Z in Algorithm 2, helps determine the noise
scale σZ , given the target privacy parameters (E ,∆) over the entire training computation. More
specifically, we use the moments accountant method and Corollary 3.5 to calculate σ for ε = E/Z,
and δ = ∆/(Ze(Z−1) EZ). Note that the value of Z can vary between mini-batches, due to which we
represent the noise scale as σZ in the pseudo code. σZ is computed using the moments accountant
method. The rest of the parameters to calculate σZ – E , ∆, total number of mini-batches (T.R),
and sampling fraction (B/total dataset size) – remain the same throughout the training process.

5

Algorithm 3: Pseudo code for HiGradAvgDP that guarantees subject level DP via hierarchical
gradient averaging.
Parameters: Set of n users U = ui, u2, ..., un;Di, the dataset of user ui;M , the model to be trained; θ, the parameters of model

M ; gradient norm bound C; noise scale σ; sample of users Us; mini-batch sizeB;R training rounds; T batches per
round; η the learning rate; SS

a the subset of data items from set S that have a as their subject.
1 HiGradAvgDP(ui):
2 for t = 1 to T do
3 S = random sample ofB data items fromDi

4 for a ∈ subjects(S) do
5 for si ∈ SS

a do
6 Compute gradients:
7 g(si) = OL(θ, si)
8 Clip gradients:
9 ḡ(si) = Clip(g(si), C)

10 Average subject a’s gradients:
11 g(SS

a) = 1

|SSa |
(
∑

i ḡ(si))

12 g̃S = 1
B (

∑
a∈subjects(S) g(S

S
a) +N (0, σ2C2I))

13 θ = θ − ηg̃S
14 returnM

15 Server Loop:
16 for r = 1 toR do
17 Us = sample s users from U
18 for ui ∈ Us do
19 θi = HiGradAvgDP(ui)

20 θ = 1
s

∑
i θi

21 SendM to all users in U

LocalGroupDP enforces (E/Z,∆/(Ze(Z−1) EZ)-differential privacy, which by Corollary 3.5 implies
(E ,∆)-group differential privacy, hence subject level DP by Theorem 3.6.

3.3 Hierarchical Gradient Averaging
While LocalGroupDP may seem like an attractive alternative to UserLDP, the former’s utility
penalty due to group DP can be significant. For instance, even a group of size 2 effectively halves
the available privacy budget E for training. The key challenge to enforce subject level DP is that
the following constraint seems fundamental: To guarantee subject level DP, any training algorithm
must obfuscate the entire contribution made by any subject in the model’s parameter updates. Lo-
calGroupDP complies with this constraint by enforcing group DP.

Our new algorithm, called HiGradAvgDP (Algorithm 3), takes a diametrically opposite view to
comply with the same constraint: Instead of scaling the noise to a subject’s group size (as is done
in LocalGroupDP), HiGradAvgDP scales down each subject’s mini-batch gradient contribution to
the clipping threshold C. This is done in three steps: (i) collect data items belonging to a common
subject in the sampled mini-batch, (ii) compute and clip gradients using the threshold C for each
individual data item of the subject, and (iii) average those clipped gradients for the subject, denoted
by g(SSa). Clipping and then averaging gradients ensures that the entire subject’s gradient norm is
bounded by C. Subsequently, HiGradAvgDP sums all the per-subject averaged gradients along with
the Gaussian noise, which are then averaged over the mini-batch size B. HiGradAvgDP gets its
name from this average-of-averages step.

The Gaussian noise scale σ is calculated independently at each user ui using standard parameters –
the privacy budget ε, the failure probability δ, total number of mini-batches T.R, and the sampling
fraction per mini-batch B

|Di| . The calculation uses the moments accountant method to compute σ.

To formally prove that HiGradAvgDP enforces subject level DP, we first provide a formal definition
of subject sensitivity in a sampled mini-batch.

Definition 3.2 (Subject Sensitivity). Given a model M, and a sampled mini-batch S of training
data, we define subject sensitivity SS for S as the maximum difference caused by any single subject
a ∈ subjects(S) inM’s parameter gradients computed over S.

Lemma 3.7. For every sampled mini-batch S in a sampled user ui’s training round in HiGra-
dAvgDP, the subject sensitivity SS for S is bounded by C; i.e. SS ≤ |C|.
Theorem 3.8. HiGradAvgDP locally enforces subject-level (ε,δ)-differential privacy.
Proofs for Lemma 3.7 and Theorem 3.8 appear in the appendix.

3.4 Composition Over Multiple Training Rounds
Composition of privacy loss across multiple training rounds can be done by straightforward appli-
cation of DP composition results, such as the moments accountant method that we use in our work.
Thus the privacy loss εr incurred in any single training round r amplifies by a factor of

√
R when

federated training runs for R rounds. We note that privacy losses are incurred by federation users
independently of other federation users. Foreknowledge of the number of training rounds R lets us

6

calculate the Gaussian noise distribution’s standard deviation σ for a privacy loss budget of (ε,δ) for
the aggregate training over R rounds. Given an aggregate privacy loss budget of ε, since all users
train for an identical number of rounds R, they incur a privacy loss of εr = ε√

R
in each training

round r. Notably, this privacy loss per training round is the the same for all users even if their dataset
cardinalities are dramatically different.

3.5 Composing Subject Level DP Across Federation Users
At the beginning of a training round r, each sampled user receives a copy of the global model,
with parameters Θr−1, which it then retrains using its private data. Since all sampled users start
retraining from the same modelMΘr−1 , and independently retrain the model using their respective
private data, parallel composition of privacy loss across these sampled users may seem to apply
naturally (14). In that case, the aggregate privacy loss incurred across multiple federation users,
via an aggregation such as federated averaging, remains identical to the privacy loss εr incurred
individually at each user. However, parallel composition was proposed for item level privacy, where
an item belongs to at most one participant. With subject level privacy, a subject’s data items can span
across multiple users, which limits application of parallel privacy loss composition to only those
federations where each subject’s data is restricted to at most one federation user. In the more general
case, we show that subject level privacy loss composes sequentially via the federated averaging
aggregation algorithm used in our FL training algorithms.

Formally, consider a FL training algorithmF = (Fl,Fg), whereFl is the user local component, and
Fg the global aggregation component of F . Given a federation user ui, let Fl : (M, Dui

) → Pui
,

where M is a model, Dui
is the private dataset of user ui, and Pui

is the updated parameters
produced by Fl. Let Fg = 1

n

∑
i Pui

, a parameter update averaging algorithm over a set of n
federation users ui.
Theorem 3.9. Given a FL training algorithm F = (Fl,Fg), in the most general case where a sub-
ject’s data resides in the private datasets of multiple federation users ui, the aggregation algorithm
Fg sequentially composes subject level privacy losses incurred by Fl at each federation user.
We term this sequential composition of privacy loss across federation users as horizontal compo-
sition. Horizontal composition has a significant effect on the number of federated training rounds
permitted under a given privacy loss budget.
Theorem 3.10. Consider a FL training algorithm F = (Fl,Fg) that samples s users per training
round, and trains the modelM for R rounds. Let Fl at each participating user, over the aggregate
of R training rounds, locally enforce subject-level (ε,δ)-DP. Then F globally enforces the same
subject-level (ε,δ)-DP guarantee by training for R√

s
rounds.

The main intuition behind Theorem 3.10 is that the s-way horizontal composition via Fg results
in an increase in training mini-batches by a factor of s. As a result, the privacy loss calculated
by the moments accountant method amplifies by a factor of

√
s, thereby forcing a reduction in

number of training rounds by a factor of
√
s to counteract the privacy loss amplification. This

reduction in training rounds can have a significant impact on the resulting model’s performance, as
we demonstrate in section 4. Proofs for Theorem 3.9 and Theorem 3.10 appear in the appendix.

4 Empirical Evaluation
We implemented all our algorithms (UserLDP, LocalGroupDP, and HiGradAvgDP), and a version
of the DP-SGD algorithm by Abadi et al. (1) that enforces item level DP in the FL setting (Lo-
calItemDP). We also compare these algorithms with a FL training algorithm, FedAvg (10), that
does not enforce any privacy guarantees. All our algorithms are implemented in our distributed FL
framework built on distributed PyTorch.

We focus our evaluation on Cross-Silo FL (8), which we believe is the most appropriate setting
for the subject level privacy problem. We use the FEMNIST and Shakespeare datasets (3) for our
evaluation. In FEMNIST, the hand-written numbers and letters can be divided based on authors,
which ordinarily serve as federation users in FL experiments by most researchers. In Shakespeare,
each character in the Shakespeare plays serves as a federation user. In our experiments however,
the FEMNIST authors and Shakespeare play characters are treated as data subjects. To emulate the
cross-silo FL setting, we report evaluation on a 16-user federation.

We use the CNN model on FEMNIST appearing in the LEAF benchmark suite (3) as our target
model to train. More specifically, the model consists of two convolution layers interleaved with

7

FEMNIST

0 20 40 60 80 100

Training Rounds
0

10

20

30

40

50

60

70

80

%
 A

cc
ur

ac
y

FedAvg
LocalItemDP
LocalUserDP
LocalGroupDP
HiGradAvgDP

0 20 40 60 80 100

Training Rounds

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Lo
ss

1 2 3 4 5 6 7 8

Group Size
0

2500

5000

7500

10000

12500

15000

17500

20000

M

in
i-b

at
ch

es

450 460 470 480 490

Subjects/mini-batch
0

250

500

750

1000

1250

1500

1750

Fr
eq

ue
nc

y

(a) (b) (c) (d)
Shakespeare

0 25 50 75 100 125 150 175 200

Training Rounds

20

30

40

50

60

%
 A

cc
ur

ac
y

FedAvg
LocalItemDP
LocalUserDP
LocalGroupDP
HiGradAvgDP

0 25 50 75 100 125 150 175 200

Training Rounds

2

4

6

8

10

12

14

Lo
ss

1 2 3 4 5 6 7 8

Group Size
0

200000

400000

600000

800000

M

in
i-b

at
ch

es

70 75 80 85 90 95

Subjects/mini-batch
0

25000

50000

75000

100000

125000

150000

175000

Fr
eq

ue
nc

y

(e) (f) (g) (h)

Figure 1: Average test accuracy and loss on the FEMNIST (a),(b) and Shakespeare (e),(f) datasets over training
rounds for various algorithms. For DP guarantees: ε = 4.0 and δ = 10−5 budgeted over all 100 and 200
training rounds for FEMNIST and Shakespeare respectively. Model performance for the subject level privacy
algorithms is constrained by the limited number of training rounds (25 for FEMNIST, and 50 for Shakespeare)
permitted under the prescribed privacy budget. Number of mini-batches with subject group sizes over the
entire training run for FEMNIST (c) and Shakespeare (g). Number of mini-batches with distinct subjects per
mini-batch for FEMNIST (d) and Shakespeare (h).
ReLU activations and maxpooling, followed by two fully connected layers before a final log softmax
layer. For the Shakespeare dataset we use a stacked LSTM model with two linear layers at the end.

We use 80% of the training data for training, and 20% for validation. Test data comes separately
in FEMNIST and Shakespeare. Training and testing was done on a local GPU cluster comprising 2
nodes, each containing 8 Nvidia Tesla V100 GPUs.

We extensively tuned the hyperparameters of mini-batch size B, number of training rounds T , gra-
dient clipping threshold C, and learning rate η. The final hyperparameters for FEMNIST were:
B = 512, T = 100, C = 0.001, and learning rates η of 0.001 and 0.01 for the non-private
and private FL algorithms respectively. Shakespeare hyperparameters were: B = 100, T = 200,
C = 0.00001, and learning rates η of 0.0002 and 0.01 for the non-private and private FL algorithms.

4.1 FEMNIST and Shakespeare Performance
We first conduct an experiment that reports average test accuracy and loss at the end of each training
round, over a total of 100 and 200 training rounds for FEMNIST and Shakespeare respectively. The
FEMNIST dataset contains 3500 subjects, and the Shakespeare dataset contains 660 subjects. In
both datasets each subject comprises hundreds of data items. Each subject’s data items are uniformly
distributed among the 16 federation users.

Figure 1 shows performance of the models trained using our algorithms. FedAvg performs the
best since it does not incur any DP enforcement penalties. Item level privacy enforcement in Lo-
calItemDP results in performance degradation of 8% for FEMNIST and 22% for Shakespeare. The
utility cost of user level LDP in UserLDP is quite clear from the figure. This cost is also reflected
in the relatively high observed loss for the respective model. LocalGroupDP performs significantly
better than UserLDP, but worse than LocalItemDP, by 15% on FEMNIST, and 18% on Shakespeare.
The reason for LocalGroupDP’s worse performance is clear from Figure 1(c) and (g): the group size
for a mini-batch tends to be dominated by 3 on both FEMNIST and Shakespeare, which cuts the pri-
vacy budget for these mini-batches by a factor of 3, leading to greater Gaussian noise, which in turn
leads to model performance degradation.

HiGradAvgDP performs competitively with LocalItemDP for the 25 and 50 rounds it is trained
for on FEMNIST and Shakespeare respectively. Figure 1 (d) and (h) show that instances of sam-
pling multiple data items corresponding to the same subject in a single mini-batch are relatively low
– the number of distinct subjects sampled per mini-batch of 512 for FEMNIST averages to 475,
and per mini-batch of 100 for Shakespeare averages to 86. As a result, HiGradAvgDP incurs in-
significant performance degradation for both datasets. However, the training round restriction does
result in degradation of the final model produced by HiGradAvgDPcompared to LocalItemDP: For
FEMNIST, HiGradAvgDP gives 75.24% prediction accuracy after 25 rounds compared to 77.96%

8

0

10

20

30

40

50

60

70

80

90

1 2 4 8 16

%
 A

cc
ur

ac
y

α (power distribution)

FedAvg LocalItemDP LocalUserDP LocalGroupDP HiGradAvgDP

Figure 2: Model performance over FEMNIST dataset of our algorithms over different subject data distributions
dictated by the parameter α of the power distribution.

0 20 40 60 80 100

Training Rounds
0

20

40

60

80

%
 A

cc
ur

ac
y

FedAvg
LocalItemDP
LocalUserDP
LocalGroupDP
HiGradAvgDP

0 20 40 60 80 100

Training Rounds

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Lo
ss

1 2 3 4 5 6 7 8

Group Size
0

1000

2000

3000

4000

5000

M

in
i-b

at
ch

es

165 170 175 180 185 190 195 200 205

Subjects/mini-batch
0

100

200

300

400

500

600

Fr
eq

ue
nc

y

(a) (b) (c) (d)

Figure 3: Average test accuracy (a) and loss (b) measured over training rounds for various algorithms on the
Small-FEMNIST dataset (350 subjects) distributed among 16 federation users. For DP guarantees: ε = 4.0
and δ = 10−5. Observed grouping sizes per mini-batch in LocalGroupDP aggregated across all mini-batches
at all federation users in the training run (c), and number of subjects observed per mini-batch in HiGradAvgDP
aggregated across all mini-batches at all federation users in the training run (d).accuracy after 100 rounds with LocalItemDP. For Shakespeare, HiGradAvgDP gives 41.58% model
accuracy after 50 rounds compared to 45.91% accuracy with LocalItemDP after 200 rounds.

4.2 Effect of Subject Data Distribution
While evaluation of our algorithms using a uniform distribution of subject data among federation
users is a good starting point, often times the data distribution is non-uniform in real world settings.
To emulate varying subject data distributions, we conduct experiments on the FEMNIST dataset
where subject data is distributed among federation users according to the power distribution

P (x;α) = αxα−1, 0 ≤ x ≤ 1, α > 0

Figure 2 shows performance of the models trained using our algorithms over varying subject data
distributions of FEMNIST. As expected, different data distributions clearly do not significantly affect
FedAvg, LocalItemDP, and User-Local-SGD. However, performance of the model trained using
LocalGroupDP degrades substantially as the unevenness of data distribution increases, resulting in
test accuracy under 50% for α = 16. This degradation is singularly attributable to growth in subject
group size per mini-batch – the average group size per mini-batch ranges from 3 when α = 2 to
6 when α = 16. This increase in group size significantly reduces the privacy budget leading to
increase in Gaussian noise that restricts test accuracy. On the other hand, HiGradAvgDP appears
to be much more resilient to non-uniform subject data distributions among federation users – test
accuracy drops by just about 5% from α = 1 (75.84% accuracy) to α = 16 (71.89% accuracy). The
corresponding subjects per minibatch observed in our experiments goes from an average of 475 to
310 respectively (not reported in detail due to space constraints).

4.3 Small-FEMNIST Performance
HiGradAvgDP appears to generally perform well when the number of subjects in the federation is
sufficiently large. To study the effects of fewer subjects in a federation we experimented with a
trimmed down version of FEMNIST, called Small-FEMNIST, that contains just the first 350 sub-
jects in the aggregate dataset. For these experiments we reduced mini-batch size to 256. Figure 3
shows the performance of our algorithms on Small-FEMNIST. We note a substantial drop in the
performance of LocalGroupDP, which can be explained by the increase in subject group size (to
an average of 4) as can be seen in Figure 3 (c). There is also a noticable drop in performance of
HiGradAvgDP, which is attributable to a decrease in distinct subjects occuring per mini-batch (from
Figure 3 (d)). This drop in number of subjects adversely affects performance of models trained using
the algorithms that enforce subject level privacy.

9

5 Conclusion
While various prior works on privacy in FL have explored DP guarantees at the user and item lev-
els (12; 13), to the best of our knowledge, no prior work has studied subject level granularity for
privacy in the FL setting. In this paper, we presented a formal definition of subject level DP. We also
presented three novel FL training algorithms that guarantee subject level DP by either enforcing
user level LDP (UserLDP), local group DP (LocalGroupDP), or by applying hierarchical gradient
averaging to obfuscate a subject’s contribution to mini-batch gradients (HiGradAvgDP). Our empir-
ical evaluation on the FEMNIST dataset suggests that while both UserLDP and LocalGroupDP can
significantly degrade model performance, HiGradAvgDP tends to incur little loss in performance
compared to LocalItemDP, an algorithm that provides a weaker item level privacy guarantee. We
observe an interesting new aspect of horizontal composition of privacy loss for subject level privacy
in FL that results in model performance degradation, which we intend to research in future work.

References
[1] Martin Abadi, Andy Chu, Ian Goodfellow, H. Brendan McMahan, Ilya Mironov, Kunal Talwar,

and Li Zhang. Deep learning with differential privacy. In Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications Security, pages 308–318, 2016.

[2] Keith Bonawitz, Hubert Eichner, Wolfgang Grieskamp, Dzmitry Huba, Alex Ingerman,
Vladimir Ivanov, Chloé Kiddon, Jakub Konecný, Stefano Mazzocchi, H. Brendan McMahan,
Timon Van Overveldt, David Petrou, Daniel Ramage, and Jason Roselander. Towards federated
learning at scale: System design. CoRR, abs/1902.01046, 2019.

[3] Sebastian Caldas, Peter Wu, Tian Li, Jakub Konečný, H. Brendan McMahan, Virginia Smith,
and Ameet Talwalkar. LEAF: A benchmark for federated settings. CoRR, abs/1812.01097,
2018.

[4] John C. Duchi, Michael I. Jordan, and Martin J. Wainwright. Local privacy and statistical
minimax rates. CoRR, abs/1302.3203, 2013.

[5] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating noise to sensi-
tivity in private data analysis. In Proceedings of the Third Conference on Theory of Cryptog-
raphy, TCC’06, pages 265–284, 2006.

[6] Cynthia Dwork and Aaron Roth. The algorithmic foundations of differential privacy. Founda-
tions and Trends in Theoretical Computer Science, 9(3–4):211–407, August 2014.

[7] Cynthia Dwork, Guy N. Rothblum, and Salil P. Vadhan. Boosting and differential privacy.
In 51th Annual IEEE Symposium on Foundations of Computer Science, FOCS, pages 51–60,
2010.

[8] Peter Kairouz, H. Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Bennis, Ar-
jun Nitin Bhagoji, Keith Bonawitz, Zachary Charles, Graham Cormode, Rachel Cummings,
Rafael G. L. D’Oliveira, Salim El Rouayheb, David Evans, Josh Gardner, Zachary Garrett,
Adrià Gascón, Badih Ghazi, Phillip B. Gibbons, Marco Gruteser, Zaı̈d Harchaoui, Chaoyang
He, Lie He, Zhouyuan Huo, Ben Hutchinson, Justin Hsu, Martin Jaggi, Tara Javidi, Gauri
Joshi, Mikhail Khodak, Jakub Konecný, Aleksandra Korolova, Farinaz Koushanfar, Sanmi
Koyejo, Tancrède Lepoint, Yang Liu, Prateek Mittal, Mehryar Mohri, Richard Nock, Ayfer
Özgür, Rasmus Pagh, Mariana Raykova, Hang Qi, Daniel Ramage, Ramesh Raskar, Dawn
Song, Weikang Song, Sebastian U. Stich, Ziteng Sun, Ananda Theertha Suresh, Florian
Tramèr, Praneeth Vepakomma, Jianyu Wang, Li Xiong, Zheng Xu, Qiang Yang, Felix X.
Yu, Han Yu, and Sen Zhao. Advances and open problems in federated learning. CoRR,
abs/1912.04977, 2019.

[9] Shiva Prasad Kasiviswanathan, Homin K. Lee, Kobbi Nissim, Sofya Raskhodnikova, and
Adam D. Smith. What can we learn privately? CoRR, abs/0803.0924, 2008.

[10] Jakub Konecný, Brendan McMahan, and Daniel Ramage. Federated optimization: Distributed
optimization beyond the datacenter. CoRR, abs/1511.03575, 2015.

10

[11] Daniel Levy, Ziteng Sun, Kareem Amin, Satyen Kale, Alex Kulesza, Mehryar Mohri, and
Ananda Theertha Suresh. Learning with user-level privacy. CoRR, abs/2102.11845, 2021.

[12] Yuhan Liu, Ananda Theertha Suresh, Felix X. Yu, Sanjiv Kumar, and Michael Riley. Learning
discrete distributions: user vs item-level privacy. CoRR, abs/2007.13660, 2020.

[13] H. Brendan McMahan, Daniel Ramage, Kunal Talwar, and Li Zhang. Learning differentially
private recurrent language models. In 6th International Conference on Learning Representa-
tions, ICLR 2018, 2018.

[14] Frank McSherry. Privacy integrated queries: an extensible platform for privacy-preserving data
analysis. In Proceedings of the ACM SIGMOD International Conference on Management of
Data, pages 19–30, 2009.

[15] Ilya Mironov. Renyi differential privacy. CoRR, abs/1702.07476, 2017.

[16] Shuang Song, Kamalika Chaudhuri, and Anand D. Sarwate. Stochastic gradient descent with
differentially private updates. In IEEE Global Conference on Signal and Information Process-
ing, pages 245–248, 2013.

[17] Stacey Truex, Ling Liu, Ka Ho Chow, Mehmet Emre Gursoy, and Wenqi Wei. Ldp-fed:
Federated learning with local differential privacy. In Proceedings of the 3rd International
Workshop on Edge Systems, Analytics and Networking, EdgeSys@EuroSys 2020, Heraklion,
Greece, April 27, 2020, pages 61–66. ACM, 2020.

[18] Jianyu Wang, Zachary Charles, Zheng Xu, Gauri Joshi, H. Brendan McMahan, Blaise Aguera
y Arcas, Maruan Al-Shedivat, Galen Andrew, Salman Avestimehr, Katharine Daly, Deepesh
Data, Suhas Diggavi, Hubert Eichner, Advait Gadhikar, Zachary Garrett, Antonious M. Gir-
gis, Filip Hanzely, Andrew Hard, Chaoyang He, Samuel Horvath, Zhouyuan Huo, Alex In-
german, Martin Jaggi, Tara Javidi, Peter Kairouz, Satyen Kale, Sai Praneeth Karimireddy,
Jakub Konecny, Sanmi Koyejo, Tian Li, Luyang Liu, Mehryar Mohri, Hang Qi, Sashank J.
Reddi, Peter Richtarik, Karan Singhal, Virginia Smith, Mahdi Soltanolkotabi, Weikang Song,
Ananda Theertha Suresh, Sebastian U. Stich, Ameet Talwalkar, Hongyi Wang, Blake Wood-
worth, Shanshan Wu, Felix X. Yu, Honglin Yuan, Manzil Zaheer, Mi Zhang, Tong Zhang,
Chunxiang Zheng, Chen Zhu, and Wennan Zhu. A field guide to federated optimization, 2021.

[19] Stanley L. Warner. Randomized response: A survey tech-nique for eliminating evasive answer
bias. Journal ofthe American Statistical Association, 60(309):63–69, 1965.

A Proofs

Proof for Theorem 3.1: The definition of user level local DP can be easily reframed as a group
differential privacy instance, where groups are as large as the entire dataset of each user. More
specifically, Equation 5 is the definition of (ε, δ)-group differential privacy for groups of size g =
|Du1

|+ |Du2
|.

Beyond this observation, a simple application of Theorem 3.6 proves (ε, δ)-subject level differential
privacy.

Proof for Lemma 3.2: The gradient clipping step of UserDPSGD() forces the bound on the gradient:
‖g(S)‖2 ≤ C. Thus the sensitivity of parameter gradient Sb ≤ |C|.

Proof for Theorem 3.3: For any two users u1 and u2, the parameter gradient for each mini-batch
is identically bounded by C. The Gaussian noise added per mini-batch parameter gradient is also
drawn from the same distribution N (0, σ2C2I) scaled to the gradient bound C.

Over T mini-batches, the cumulative parameter gradient is bounded by TC. Thus the aggregate
sensitivity of parameter gradients over a training round (T mini-batches) for both u1 and u2 is TC.

For every training round, we use the moments accountant technique (1) to compute the correct noise
scale σ given a privacy budget of ε, and a DP failure probability of δ.

11

The resulting parameter updates from both u1 and u2 received by the federation server in a training
round are effectively locally randomized (9).

Parameter updates from both u1 and u2, as observed by the federation server, can each be broken
down into a signal bounded by |TC| (we can ignore the scaling factor of the learning rate η since it
is identical for all users), and the cumulative noise from the distribution N (0, Tσ2C2I) (by linear
composition of random variables with identical Gaussian distributions). More precisely, let C be the
change in parameters affected by any user ui. Then

|C(ui)| ≤ η(|TC|+ |N (0, Tσ2C2I|) (7)

Also note that a dataset containing just u1 is adjacent to a dataset containing just u2 since they
differ from each other in just one data item. Thus we can apply the classic proof of (ε,δ)-DP for the
Gaussian mechanism (6) Theorem A.1 to show that

P(F(u1,M) ∈Mo) ≤ eεP(F(u2,M) ∈Mo) + δ (8)

We can further extend this guarantee over multiple training rounds with a σ computed correctly
using the moments accountant DP-composition technique.

Proof for Lemma 3.7: Clipping gradients for each data item belonging to subject a ∈ S before
averaging the clipped gradients over the SSa ensures that the averaged gradients’ L2-norm is bounded
by C. Hence SS ≤ |C|.

Proof for Theorem 3.8: Bounding subject sensitivity SS ≤ |C| and scaling the Gaussian noise to
that sensitivity bound clearly results in (ε, δ)-DP guarantee in gradient computation for each subject
of each mini-batch S. The mini-batch wide averaging of gradients g̃S done using the mini-batch
size B is justified since the per subject gradients’ average can be restated as aggregation of scaled
down gradients for data items corresponding to a subject a; i.e. g(SSa) =

∑
i
ḡ(si)
|SS

a |
. This gives us

B distinct gradient quantities for the data items in the sampled mini-batch S, and averaging these
quantities requires the term B in the denominator of the expression that computes g̃S . We can apply
the moments accountant method for privacy budget composition to extend the subject level (ε,δ)-
DP guarantee over T mini-batches in a training round, aggregated over R training rounds. Thus
HiGradAvgDP locally enforces subject level (ε,δ)-differential privacy.

Proof for Theorem 3.9: Assume two distinct users u1 and u2 in a federation that host private data
items of subject s. Let ε1 and ε2 be the respective subject privacy losses incurred by the two users
during a training round.

It is straightforward to see that, in the worst case, data items of s at users u1 and u2 can affect
disjoint parameters inM. Thus parameter averaging done by Fg simply results in summation and
scaling of these disjoint parameter updates. As a result, the privacy losses, ε1 and ε2 incurred by u1

and u2 respectively are retained to their entirety by Fg . In other words, privacy losses incurred for
subject s at users u1 and u2 compose sequentially.

Proof for Theorem 3.10: The proof of training round constraints on horizontal composition can be
broken down into two cases: First, each user in the federation locally trains for exactly T mini-
batches per training round, with exactly the same mini-batch sampling fraction q. Since horizontal
composition is equivalent to sequential composition in the worst case, the moments accountant
method shows us that the resulting algorithm will be (O(qε

√
TRs), δ)-differentially private. To

compensate for the
√
s factor scaling of the privacy loss, F can be executed for R√

s
training rounds,

yielding a (O(qε
√
TR), δ)-differentially private algorithm.

In the second case, each user ui may train for a unique number of mini-batches per training round,
with a unique mini-batch sampling fraction dictated by ui’s private dataset. Let T1, T2, ..., Ts, and
q1, q2, ..., qs be the number of mini-batches per training round and mini-batch sampling fraction for
the sampled users u1, u2, ..., us respectively.

12

All our algorithms 1, 2, and 3 locally enforce subject level (O(qiε
√
TiR),δ)-DP at each user ui.

Privacy enforcement is done independantly at each federation user ui. Furthermore, note that the
privacy loss is uniformly apportioned among training rounds. Let E = qiε

√
TiR. Note that E is

identical for each user ui in the federation. Thus if E is the total privacy loss budget over R training
rounds, a sampled user incurs εr = E/R privacy loss in a single training round r. Similarly, each
of the s sampled users in round r incurs identical privacy loss εr despite having different mini-
batches per training round Ti and mini-batch sampling fractions qi. As noted earlier, these privacy
losses compose horizontally (sequentially) via Fg over s users, leading to privacy loss amplification
by a factor of

√
s as per the moments accountant method. To compensate for this privacy loss

amplification, F can be executed for R√
s

training rounds.

13

	Introduction
	Subject Level Differential Privacy
	Enforcing Subject Level Differential Privacy
	User Level Local Differential Privacy
	Locally Enforced Group Level Differential Privacy
	Hierarchical Gradient Averaging
	Composition Over Multiple Training Rounds
	Composing Subject Level DP Across Federation Users

	Empirical Evaluation
	FEMNIST and Shakespeare Performance
	Effect of Subject Data Distribution
	Small-FEMNIST Performance

	Conclusion
	Proofs

