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Safe	Harbor	Statement
The	following	is	intended	to	provide	some	insight	into	a	line	of	research	in	Oracle	Labs.	It	
is	intended	for	information	purposes	only,	and	may	not	be	incorporated	into	any	
contract. It	is	not	a	commitment	to	deliver	any	material,	code,	or	functionality,	and	
should	not	be	relied	upon	in	making	purchasing	decisions.	Oracle	reserves	the	right	to	
alter	its	development	plans	and	practices	at	any	time,	and	the	development,	release,	and	
timing	of	any	features	or	functionality	described	in	connection	with	any	Oracle	product	or	
service	remains	at	the	sole	discretion	of	Oracle. Any	views	expressed	in	this	presentation	
are	my	own	and	do	not	necessarily	reflect	the	views	of	Oracle.
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Who	we	are	and	what	we’re	doing
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Graal

Truffle

RRuby

Java Scala

JavaScript LLVM

The	Ruby	Logo	is	Copyright	(c)	2006,	Yukihiro	Matsumoto.	It	is	licensed	under	the	terms	of	the	Creative	Commons	Attribution-ShareAlike 2.5	agreement
JS	Logo	Copyright	(c)	2011	Christopher	Williams	<chris@iterativedesigns.com>,	MIT		licence

You	can	distribute	the	logo	under	the	terms	of	the	Creative	Commons	Attribution-ShareAlike 4.0	International	license	(CC-BY-SA	4.0)	or	(at	your	option)	the	GNU	General	Public	License	version	2	(GPL-2).

JVM



Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		| 6



Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Language	C	extensions
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The	Ruby	Logo	is	Copyright	(c)	2006,	Yukihiro	Matsumoto.	It	is	licensed	under	the	terms	of	the	Creative	Commons	Attribution-ShareAlike 2.5	agreement
JS	Logo	Copyright	(c)	2011	Christopher	Williams	<chris@iterativedesigns.com>,	MIT		licence

The	Python	logo	is	a	trademark	of	the	Python	Software	Foundation
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Performance	on	Ruby	C	Extensions	Oily	PNG	and	PSD	Native
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M.	Grimmer,	C.	Seaton,	T.	Würthinger,	H.	Mössenböck.	Dynamically	Composing	Languages	in	a	Modular	Way:	Supporting	C	Extensions	for	Dynamic	Languages.	In	Proceedings	of	the	14th International	Conference	on	Modularity,	2015.
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The	C	extension	problem
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Structs declared	in	the	
public	API

Implementation	details	like	
embedded	strings	and	sharing	

exposed
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Ruby	String	object

Exposes	inner	char*

String	object	with	char*	
already	exposed	now	
returned	to	Ruby

Call	to	arbitrary	C	code

Managed	Ruby	value
on	the		C	stack
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Values	need	to	be	
converted	as	they	go	
from	Ruby	to	native

Call	from	Ruby	to	native	is	
extremely	hot
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Array	implementation	
pointer	taken	and	stored	

for	later

When	they’re	used	there’s	no	
indication	someone	else	is	

managing	them
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Previous	solutions
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Our	new	solution
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• Interpret	both	the	Ruby	and	the	C
• Actually,	interpret	the	LLVM	IR	of	the	C	to	simplify
• JIT	compile	the	Ruby	and	the	C
• Use	a	single	high	and	low	level	IR	for	both
• Forget	which	language	the	IR	came	from	and	optimise	them	together
• Give	fake	pointers	to	the	C	program
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How	Sulong and	JRuby+Truffle work
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Hotspot
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Hotspot

JIT
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codon.com/compilers-for-free

Presentation,	by	Tom	Stuart,	licensed	under	a	Creative	Commons	Attribution	ShareAlike 3.0	
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Frequently executed call
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BigInteger

double
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Completeness	– language	and	core	library

Oracle	Confidential	– Internal

Ruby	language
JRuby passes	94%

95% Ruby	core	library
JRuby passes	95%

99%
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Completeness	– the	basic	Rails	stack

Oracle	Confidential	– Internal

Active	Model

Active	Support

Active	Record

Action	View

Action	Pack

Action	Mailer

Railties

Sprockets-Rails

Active	Job

Spring

100%

100%

98%Basic	functionality	works

37%
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Classic	research	benchmarks	– 10-20x	faster

Confidential	– Oracle	Internal/Restricted/Highly	Restricted 46
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How	we	implement	C	extensions

50
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Instead	of	RARRAY_PTR	returning	
a	pointer	(a	number),	return	a	

proper	Java	object

Operations	like	getelementptr can	
return	a	new	Java	object	that	

remembers	the	original	object,	and	
what	offset	to	use

Let	SSA	names	store	Java	objects	
as	well	as	numbers

The	load	can	then	use	whatever	logic	we	
want	to	actually	read	a	value	from	the	
Java	object	– reuse	normal	Ruby	array	

logic



Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		| 55



Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Evaluation
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Evaluation	is	based	on	earlier	work
• We	used	to	have	a	C	interpreter	– TruffleC
• We’ve	moved	on	from	this,	because	we	want	to	support	more	languages
• But	we	aren’t	able	to	run	all	the	same	benchmarks	yet
• So	we’ve	showing	results	from	our	old	implementation	in	the	mean	time
• We’re	pretty	sure	results	will	be	similar,	as	the	compiled	code	is	similar
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Performance	on	Ruby	C	Extensions	Oily	PNG	and	PSD	Native
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Native	C	extensions	give	an	
order	of	magnitude	
performance	boost
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Existing	attempt	to	mix	
managed/native	are	very	

disappointing
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Our	solution	is	3x	faster	than	
native!
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It’s	clear	that	cross-language	
inlining is	a	key	part	of	the	

performance
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Conclusions
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Open	Source
• https://github.com/graalvm/graal-core

– Graal compiler
• https://github.com/graalvm/truffle

– Truffle	language	implementation	framework
• https://github.com/graalvm/fastr

– Fast	R	runtime
• https://github.com/graalvm/sulong

– Dynamic	runtime	for	LLVM	bitcode
• https://github.com/jruby/jruby/wiki/Truffle

– Fast	Ruby	runtime
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