


Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Using	LLVM	and	Sulong
for	Language	C	Extensions

Chris	Seaton
Research	Manager
VM	Research	Group
Oracle	Labs



Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Safe	Harbor	Statement
The	following	is	intended	to	provide	some	insight	into	a	line	of	research	in	Oracle	Labs.	It	
is	intended	for	information	purposes	only,	and	may	not	be	incorporated	into	any	
contract. It	is	not	a	commitment	to	deliver	any	material,	code,	or	functionality,	and	
should	not	be	relied	upon	in	making	purchasing	decisions.	Oracle	reserves	the	right	to	
alter	its	development	plans	and	practices	at	any	time,	and	the	development,	release,	and	
timing	of	any	features	or	functionality	described	in	connection	with	any	Oracle	product	or	
service	remains	at	the	sole	discretion	of	Oracle. Any	views	expressed	in	this	presentation	
are	my	own	and	do	not	necessarily	reflect	the	views	of	Oracle.

3



Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Who	we	are	and	what	we’re	doing

4



Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		| 5

Graal

Truffle

RRuby

Java Scala

JavaScript LLVM

The	Ruby	Logo	is	Copyright	(c)	2006,	Yukihiro	Matsumoto.	It	is	licensed	under	the	terms	of	the	Creative	Commons	Attribution-ShareAlike 2.5	agreement
JS	Logo	Copyright	(c)	2011	Christopher	Williams	<chris@iterativedesigns.com>,	MIT		licence

You	can	distribute	the	logo	under	the	terms	of	the	Creative	Commons	Attribution-ShareAlike 4.0	International	license	(CC-BY-SA	4.0)	or	(at	your	option)	the	GNU	General	Public	License	version	2	(GPL-2).

JVM



Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		| 6



Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Language	C	extensions

7



Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		| 8

The	Ruby	Logo	is	Copyright	(c)	2006,	Yukihiro	Matsumoto.	It	is	licensed	under	the	terms	of	the	Creative	Commons	Attribution-ShareAlike 2.5	agreement
JS	Logo	Copyright	(c)	2011	Christopher	Williams	<chris@iterativedesigns.com>,	MIT		licence

The	Python	logo	is	a	trademark	of	the	Python	Software	Foundation



Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		| 9



Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		| 10



Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		| 11



Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Performance	on	Ruby	C	Extensions	Oily	PNG	and	PSD	Native

12

M.	Grimmer,	C.	Seaton,	T.	Würthinger,	H.	Mössenböck.	Dynamically	Composing	Languages	in	a	Modular	Way:	Supporting	C	Extensions	for	Dynamic	Languages.	In	Proceedings	of	the	14th International	Conference	on	Modularity,	2015.

0

2

4

6

8

10

12

MRI		Pure	Ruby MRI	With	C	Extension



Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

The	C	extension	problem

13



Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		| 14

Structs declared	in	the	
public	API

Implementation	details	like	
embedded	strings	and	sharing	

exposed



Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		| 15

Ruby	String	object

Exposes	inner	char*

String	object	with	char*	
already	exposed	now	
returned	to	Ruby

Call	to	arbitrary	C	code

Managed	Ruby	value
on	the		C	stack



Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		| 16

Values	need	to	be	
converted	as	they	go	
from	Ruby	to	native

Call	from	Ruby	to	native	is	
extremely	hot



Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		| 17

Array	implementation	
pointer	taken	and	stored	

for	later

When	they’re	used	there’s	no	
indication	someone	else	is	

managing	them



Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Previous	solutions

18



Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		| 19

Copy Copy



Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Our	new	solution

20



Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

• Interpret	both	the	Ruby	and	the	C
• Actually,	interpret	the	LLVM	IR	of	the	C	to	simplify
• JIT	compile	the	Ruby	and	the	C
• Use	a	single	high	and	low	level	IR	for	both
• Forget	which	language	the	IR	came	from	and	optimise	them	together
• Give	fake	pointers	to	the	C	program

21



Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

How	Sulong and	JRuby+Truffle work

22



Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Hotspot



Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Hotspot



Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Hotspot

JIT



Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Hotspot

JIT



Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

U

U U

U

U I

I I

G

G I

I I

G

G

Node Rewriting 
for Profiling Feedback

AST Interpreter
Rewritten Nodes

AST Interpreter
Uninitialized Nodes

Compilation using
Partial Evaluation

Compiled Code

Node Transitions

S

U
I

D

G

Uninitialized Integer

Generic

DoubleString

T.	Würthinger,	C.	Wimmer,	A.	Wöß,	L.	Stadler,	G.	Duboscq,	C.	Humer,	G.	Richards,	D.	Simon,	
and	M.	Wolczko.	One	VM	to	rule	them	all.	In	Proceedings	of	Onward!,	2013.



Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

U

U U

U

U I

I I

G

G I

I I

G

G

Node Rewriting 
for Profiling Feedback

AST Interpreter
Rewritten Nodes

AST Interpreter
Uninitialized Nodes

Compilation using
Partial Evaluation

Compiled Code

Node Transitions

S

U
I

D

G

Uninitialized Integer

Generic

DoubleString

T.	Würthinger,	C.	Wimmer,	A.	Wöß,	L.	Stadler,	G.	Duboscq,	C.	Humer,	G.	Richards,	D.	Simon,	
and	M.	Wolczko.	One	VM	to	rule	them	all.	In	Proceedings	of	Onward!,	2013.



Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

U

U U

U

U I

I I

G

G I

I I

G

G

Node Rewriting 
for Profiling Feedback

AST Interpreter
Rewritten Nodes

AST Interpreter
Uninitialized Nodes

Compilation using
Partial Evaluation

Compiled Code

Node Transitions

S

U
I

D

G

Uninitialized Integer

Generic

DoubleString

T.	Würthinger,	C.	Wimmer,	A.	Wöß,	L.	Stadler,	G.	Duboscq,	C.	Humer,	G.	Richards,	D.	Simon,	
and	M.	Wolczko.	One	VM	to	rule	them	all.	In	Proceedings	of	Onward!,	2013.



Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		| 30

codon.com/compilers-for-free

Presentation,	by	Tom	Stuart,	licensed	under	a	Creative	Commons	Attribution	ShareAlike 3.0	



Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

U

U U

U

U I

I I

G

G I

I I

G

G

Node Rewriting 
for Profiling Feedback

AST Interpreter
Rewritten Nodes

AST Interpreter
Uninitialized Nodes

Compilation using
Partial Evaluation

Compiled Code

Node Transitions

S

U
I

D

G

Uninitialized Integer

Generic

DoubleString

T.	Würthinger,	C.	Wimmer,	A.	Wöß,	L.	Stadler,	G.	Duboscq,	C.	Humer,	G.	Richards,	D.	Simon,	
and	M.	Wolczko.	One	VM	to	rule	them	all.	In	Proceedings	of	Onward!,	2013.



Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|07/09/2016

T.	Würthinger,	C.	Wimmer,	A.	Wöß,	L.	Stadler,	G.	Duboscq,	C.	Humer,	G.	Richards,	D.	Simon,	
and	M.	Wolczko.	One	VM	to	rule	them	all.	In	Proceedings	of	Onward!,	2013.

I

I I

G

G I

I I

G

G

Deoptimization
to AST Interpreter

D

I D

G

G D

I D

G

G

Node Rewriting to Update 
Profiling Feedback

Recompilation using
Partial Evaluation



Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|07/09/2016 Oracle	Confidential	– Internal/Restricted/Highly	Restricted

T.	Würthinger,	C.	Wimmer,	A.	Wöß,	L.	Stadler,	G.	Duboscq,	C.	Humer,	G.	Richards,	D.	Simon,	
and	M.	Wolczko.	One	VM	to	rule	them	all.	In	Proceedings	of	Onward!,	2013.

I

I I

G

G I

I I

G

G

Deoptimization
to AST Interpreter

D

I D

G

G D

I D

G

G

Node Rewriting to Update 
Profiling Feedback

Recompilation using
Partial Evaluation



Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|07/09/2016 Oracle	Confidential	– Internal/Restricted/Highly	Restricted

T.	Würthinger,	C.	Wimmer,	A.	Wöß,	L.	Stadler,	G.	Duboscq,	C.	Humer,	G.	Richards,	D.	Simon,	
and	M.	Wolczko.	One	VM	to	rule	them	all.	In	Proceedings	of	Onward!,	2013.

I

I I

G

G I

I I

G

G

Deoptimization
to AST Interpreter

D

I D

G

G D

I D

G

G

Node Rewriting to Update 
Profiling Feedback

Recompilation using
Partial Evaluation



Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		| 35



Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		| 36

Frequently executed call



Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		| 37



Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		| 38

BigInteger

double

int



Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		| 39

BigInteger

double

int



Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		| 40

double

int

BigInteger



Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Hotspot

Graal

Truffle

JS RubyR

Java

C++
JVMCI

(JVM	Compiler	Interface)



Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Hotspot

Graal

Truffle

JS RubyR

via	Maven	etc

Java	9



Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		| 43



Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Completeness	– language	and	core	library

Oracle	Confidential	– Internal

Ruby	language
JRuby passes	94%

95% Ruby	core	library
JRuby passes	95%

99%



Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Completeness	– the	basic	Rails	stack

Oracle	Confidential	– Internal

Active	Model

Active	Support

Active	Record

Action	View

Action	Pack

Action	Mailer

Railties

Sprockets-Rails

Active	Job

Spring

100%

100%

98%Basic	functionality	works

37%



Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Classic	research	benchmarks	– 10-20x	faster

Confidential	– Oracle	Internal/Restricted/Highly	Restricted 46

0
5

10
15
20
25
30
35
40
45

Sp
ee
du

p	
Co

m
pa
re
d	
to
	R
ub

y

GraalVM JRuby+invokedynamic Ruby

Benchmarks	bound	by	
allocation	or	BigInteger

performance



Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		| 47



Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		| 48



Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		| 49



Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

How	we	implement	C	extensions

50



Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		| 51

cmyk_to_rgb

psd_native_util_clamp

FIX2INT



Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		| 52

cmyk_to_rgb

psd_native_util_clamp

FIX2INT



Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		| 53



Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		| 54

Instead	of	RARRAY_PTR	returning	
a	pointer	(a	number),	return	a	

proper	Java	object

Operations	like	getelementptr can	
return	a	new	Java	object	that	

remembers	the	original	object,	and	
what	offset	to	use

Let	SSA	names	store	Java	objects	
as	well	as	numbers

The	load	can	then	use	whatever	logic	we	
want	to	actually	read	a	value	from	the	
Java	object	– reuse	normal	Ruby	array	

logic



Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		| 55



Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Evaluation

56



Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Evaluation	is	based	on	earlier	work
• We	used	to	have	a	C	interpreter	– TruffleC
• We’ve	moved	on	from	this,	because	we	want	to	support	more	languages
• But	we	aren’t	able	to	run	all	the	same	benchmarks	yet
• So	we’ve	showing	results	from	our	old	implementation	in	the	mean	time
• We’re	pretty	sure	results	will	be	similar,	as	the	compiled	code	is	similar

57



Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Performance	on	Ruby	C	Extensions	Oily	PNG	and	PSD	Native

58

0

5

10

15

20

25

30

35

MRI		Pure	Ruby MRI	With	C	
Extension

Rubinius	With	C	
Extension

JRuby	With	C	
Extension

JRuby+Truffle	
With	C	Extension

JRuby+Truffle	
With	C	Extension	

(No	Inline)

M.	Grimmer,	C.	Seaton,	T.	Würthinger,	H.	Mössenböck.	Dynamically	Composing	Languages	in	a	Modular	Way:	Supporting	C	Extensions	for	Dynamic	Languages.	In	Proceedings	of	the	14th International	Conference	on	Modularity,	2015.



Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Performance	on	Ruby	C	Extensions	Oily	PNG	and	PSD	Native

59

0

5

10

15

20

25

30

35

MRI		Pure	Ruby MRI	With	C	
Extension

Rubinius	With	C	
Extension

JRuby	With	C	
Extension

JRuby+Truffle	
With	C	Extension

JRuby+Truffle	
With	C	Extension	

(No	Inline)

M.	Grimmer,	C.	Seaton,	T.	Würthinger,	H.	Mössenböck.	Dynamically	Composing	Languages	in	a	Modular	Way:	Supporting	C	Extensions	for	Dynamic	Languages.	In	Proceedings	of	the	14th International	Conference	on	Modularity,	2015.

Native	C	extensions	give	an	
order	of	magnitude	
performance	boost



Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Performance	on	Ruby	C	Extensions	Oily	PNG	and	PSD	Native

60

0

5

10

15

20

25

30

35

MRI		Pure	Ruby MRI	With	C	
Extension

Rubinius	With	C	
Extension

JRuby	With	C	
Extension

JRuby+Truffle	
With	C	Extension

JRuby+Truffle	
With	C	Extension	

(No	Inline)

M.	Grimmer,	C.	Seaton,	T.	Würthinger,	H.	Mössenböck.	Dynamically	Composing	Languages	in	a	Modular	Way:	Supporting	C	Extensions	for	Dynamic	Languages.	In	Proceedings	of	the	14th International	Conference	on	Modularity,	2015.

Existing	attempt	to	mix	
managed/native	are	very	

disappointing



Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Performance	on	Ruby	C	Extensions	Oily	PNG	and	PSD	Native

61

0

5

10

15

20

25

30

35

MRI		Pure	Ruby MRI	With	C	
Extension

Rubinius	With	C	
Extension

JRuby	With	C	
Extension

JRuby+Truffle	
With	C	Extension

JRuby+Truffle	
With	C	Extension	

(No	Inline)

M.	Grimmer,	C.	Seaton,	T.	Würthinger,	H.	Mössenböck.	Dynamically	Composing	Languages	in	a	Modular	Way:	Supporting	C	Extensions	for	Dynamic	Languages.	In	Proceedings	of	the	14th International	Conference	on	Modularity,	2015.

Our	solution	is	3x	faster	than	
native!



Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Performance	on	Ruby	C	Extensions	Oily	PNG	and	PSD	Native

62

0

5

10

15

20

25

30

35

MRI		Pure	Ruby MRI	With	C	
Extension

Rubinius	With	C	
Extension

JRuby	With	C	
Extension

JRuby+Truffle	
With	C	Extension

JRuby+Truffle	
With	C	Extension	

(No	Inline)

M.	Grimmer,	C.	Seaton,	T.	Würthinger,	H.	Mössenböck.	Dynamically	Composing	Languages	in	a	Modular	Way:	Supporting	C	Extensions	for	Dynamic	Languages.	In	Proceedings	of	the	14th International	Conference	on	Modularity,	2015.

It’s	clear	that	cross-language	
inlining is	a	key	part	of	the	

performance



Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Conclusions

63



Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		| 64



Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Open	Source
• https://github.com/graalvm/graal-core

– Graal compiler
• https://github.com/graalvm/truffle

– Truffle	language	implementation	framework
• https://github.com/graalvm/fastr

– Fast	R	runtime
• https://github.com/graalvm/sulong

– Dynamic	runtime	for	LLVM	bitcode
• https://github.com/jruby/jruby/wiki/Truffle

– Fast	Ruby	runtime

65



Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Acknowledgements

66

Oracle
Danilo	Ansaloni
Stefan	Anzinger
Cosmin	Basca
Daniele	Bonetta
Matthias	Brantner
Petr	Chalupa
Jürgen	Christ
Laurent	Daynès
Gilles	Duboscq
Martin	Entlicher
Brandon	Fish
Bastian	Hossbach
Christian	Humer
Mick	Jordan
Vojin	Jovanovic
Peter	Kessler
David	Leopoldseder
Kevin	Menard
Jakub	Podlešák
Aleksandar	Prokopec
Tom	Rodriguez

Oracle	(continued)
Roland	Schatz
Chris	Seaton
Doug	Simon
Štěpán	Šindelář
Zbyněk	Šlajchrt
Lukas	Stadler
Codrut	Stancu
Jan	Štola
Jaroslav	Tulach
Michael	Van	De	Vanter
Adam	Welc
Christian	Wimmer
Christian	Wirth
Paul	Wögerer
Mario	Wolczko
Andreas	Wöß
Thomas	Würthinger

JKU	Linz
Prof.	Hanspeter	Mössenböck
Benoit	Daloze
Josef	Eisl
Thomas	Feichtinger
Matthias	Grimmer
Christian	Häubl
Josef	Haider
Christian	Huber
Stefan	Marr
Manuel	Rigger
Stefan	Rumzucker
Bernhard	Urban

University	of Edinburgh
Christophe	Dubach
Juan	José	Fumero Alfonso
Ranjeet Singh
Toomas Remmelg

LaBRI
Floréal Morandat

University	of California,	Irvine
Prof.	Michael	Franz
Gulfem	Savrun	Yeniceri
Wei	Zhang

Purdue University
Prof.	Jan	Vitek
Tomas	Kalibera
Petr	Maj
Lei	Zhao

T.	U.	Dortmund
Prof.	Peter	Marwedel
Helena	Kotthaus
Ingo	Korb

University	of California,	Davis
Prof.	Duncan	Temple	Lang
Nicholas	Ulle

University	of Lugano,	Switzerland
Prof.	Walter	Binder
Sun	Haiyang
Yudi	Zheng

Oracle	Interns
Brian	Belleville	
Miguel	Garcia
Shams	Imam
Alexey	Karyakin
Stephen	Kell
Andreas	Kunft
Volker	Lanting
Gero	Leinemann
Julian	Lettner
Joe	Nash
David	Piorkowski
Gregor	Richards
Robert	Seilbeck
Rifat	Shariyar

Alumni
Erik	Eckstein
Michael	Haupt
Christos	Kotselidis
Hyunjin	Lee
David	Leibs
Chris	Thalinger
Till	Westmann



Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		|

Safe	Harbor	Statement
The	preceding	is	intended	to	provide	some	insight	into	a	line	of	research	in	Oracle	Labs.	It	
is	intended	for	information	purposes	only,	and	may	not	be	incorporated	into	any	
contract. It	is	not	a	commitment	to	deliver	any	material,	code,	or	functionality,	and	
should	not	be	relied	upon	in	making	purchasing	decisions.	Oracle	reserves	the	right	to	
alter	its	development	plans	and	practices	at	any	time,	and	the	development,	release,	and	
timing	of	any	features	or	functionality	described	in	connection	with	any	Oracle	product	or	
service	remains	at	the	sole	discretion	of	Oracle. Any	views	expressed	in	this	presentation	
are	my	own	and	do	not	necessarily	reflect	the	views	of	Oracle.

67



Copyright	©	2016, Oracle	and/or	its	affiliates.	All	rights	reserved.		| 68




