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Abstract

We study validation set construction via data001
augmentation in true few-shot intent classifi-002
cation. Empirically, we demonstrate that with003
scarce data, model selection via a moderate004
number of generated examples consistently005
leads to higher test set accuracy than either006
model selection via a small number of held out007
training examples, or selection of the model008
with the lowest training loss. For each of009
these methods of model selection—including010
validation sets built from task-agnostic data011
augmentation—validation accuracy provides012
a significant overestimate of test set accuracy.013
To support better estimates and effective model014
selection, we propose PANGEA, a generative015
method for domain-specific augmentation that016
is trained once on out-of-domain data, and then017
employed for augmentation for any domain-018
specific dataset. In experiments with 6 datasets019
that have been subsampled to both 5 and 10020
examples per class, we show that PANGEA is021
better than or competitive with other methods in022
terms of model selection while also facilitating023
higher fidelity estimates of test set accuracy.024

1 Introduction025

Model selection is a key step in machine learning026

(ML) workflows. In typical model development,027

training is initiated with many hyperparameter con-028

figurations, which results in many distinct models.029

The performance of a model is highly sensitive to030

these hyperparameters (Dodge et al., 2020). For031

example, when prompting large language models,032

some orderings of a given set of samples leads to033

state-of-the-art results while other orderings of the034

same samples lead to results that resemble random035

guessing (Lu et al., 2022).036

In few-shot learning, i.e., learning with only a037

handful of training examples, effective model se-038

lection is more critical and challenging than in set-039

tings with larger data sets. In modern ML, model040

selection is typically performed by evaluating each041

model on a validation set and choosing the model 042

that performs best, according to some metric of 043

interest. Model selection in true few-shot settings 044

is challenging because in these settings there is 045

no validation set (Perez et al., 2021; Bragg et al., 046

2021). While it is possible to hold out a portion of 047

training data for use as a validation set, in few-shot 048

settings this is problematic for two reasons. First, 049

holding out data when examples are scarce can 050

dramatically worsen training. Second, since the 051

number of held out examples is necessarily small, 052

the examples chosen for validation constitute a high 053

variance estimator of model performance, and thus 054

can lead to poor model selection. While there are 055

methods of model selection that do not require val- 056

idation sets, such as cross-validation and minimum 057

description length (Rissanen, 1978), recent work 058

demonstrates that neither are dependable selectors 059

of high-performing deep models in few-shot set- 060

tings (Perez et al., 2021). Were a validation set 061

available, previous work shows that it can be used 062

to consistently select high-performing models. 063

Given the importance of model selection in few- 064

shot learning, and the benefit of having a moder- 065

ately sized validation set, we propose to construct 066

validation sets via data augmentation. We first 067

study Easy Data Augmentation (EDA), a simple 068

method of data augmentation that generates new 069

instances by perturbing existing examples (Wei 070

and Zou, 2019). Since examples generated by 071

EDA are similar to the training examples, they are 072

likely to provide good estimates of model perfor- 073

mance on in-distribution data. On the other hand, 074

they are likely to provide poor estimates on out- 075

of-distribution data. Moreover, by virtue of their 076

similarity to the training data, optimizing for exam- 077

ples generated by EDA could lead to overfitting. 078

To address these concerns, we design PANGEA, 079

the Prompt and Guide word Augmentation algo- 080

rithm for training generative models for true few- 081

shot classification settings. Critically, PANGEA 082
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trains a text generator with domain-agnostic, pub-083

licly available data; and none of the provided084

domain-specific data. This is important because085

it means that the generator is independent of the086

number of provided training examples–which we087

assume is small. After the generator is trained, it088

is prompted with available domain-specific data in089

order to generate in-domain examples. The genera-090

tor also takes a set of guide words as input, which091

provide further control over its generations. As a092

result, models trained by PANGEA can create a093

more diverse set of examples than methods based094

on perturbation like EDA, thus reducing the chance095

of overfitting. PANGEA does not rely on filtering096

or feature-space interpolation, which are critical097

components of previously proposed methods, but098

unrealistic in true few-shot learning because they099

require model training and selection before creat-100

ing new examples (Anaby-Tavor et al., 2020; Zhou101

et al., 2022; Kumar et al., 2019).102

We experiment with 4 styles of model selection103

and 6 intent classification data sets. We study in-104

tent classification because it is a prevalent problem105

that typically manifests in the true few-shot set-106

ting (Coucke et al., 2018; Kumar et al., 2019). Our107

experiments reveal that model selection with syn-108

thetic data (built by EDA or PANGEA) yield better109

models than selection with held out data or the110

training loss. Interestingly, while EDA was shown111

to provide negligible performance gains when used112

for training set augmentation (Longpre et al., 2020),113

our results show that it is effective when used to114

create validation sets for model selection. We also115

show that for validation sets built by PANGEA, val-116

idation accuracy of the selected model is the most117

reliable estimator of test set accuracy. For the other118

methods, the selected model’s validation accuracy119

overestimates test set accuracy because those val-120

idation examples resemble the training data too121

closely. Finally, our experiments reveal that for122

PANGEA, the reliability of validation set accuracy123

is preserved across all models (i.e., all hyperparam-124

eter configurations)—not only the selected model.125

2 PANGEA126

Training a state-of-the-art model typically requires127

a large amount of data. When data is scarce, one128

popular approach is to generate additional data via129

augmentation. Task-agnostic augmentation, like130

EDA (Wei and Zou, 2019), can be leveraged, but131

these methods tend to generate examples with lim-132

ited diversity. As such, these methods are inef- 133

fective when used for training set augmentation 134

for state-of-the-art transformer models (Longpre 135

et al., 2020). Task-specific techniques have also 136

been proposed, however the efficacy of these meth- 137

ods depends on the small amount of available data. 138

Moreover, proposed techniques rely on filtering 139

and/or feature-space interpolation, both of which 140

imply that training and model selection have al- 141

ready been performed (Anaby-Tavor et al., 2020; 142

Zhou et al., 2022; Kumar et al., 2019). Since we 143

are concerned with settings in which no validation 144

data is available, these methods are inappropriate. 145

In this section, we describe PANGEA, an algo- 146

rithm for training a generative model for text. Gen- 147

erators trained with PANGEA are intended for use 148

in few-shot, domain-specific settings. Since we as- 149

sume a very limited amount of domain-specific 150

data, PANGEA trains a text generator on unla- 151

beled, out-of-domain data. After training, any avail- 152

able domain-specific data is used to prompt the 153

model to generate in-domain examples. We be- 154

gin with an overview of the generator. Then we 155

discuss PANGEA training and finally, how to use 156

the trained generator for domain-specific example 157

creation. 158

2.1 PANGEA-trained Generators 159

At a high-level, a PANGEA-trained generator is a 160

model that takes two strings as input and generates 161

a string as output. The first input, p, which we call 162

the prompt, is a clause that embodies the style and 163

content that the model’s output should exhibit. The 164

second input is a variable length sequence of guide 165

words, w (Pascual et al., 2021). Guide words are 166

tokens that the model is trained to include in the 167

output, thus providing additional control over the 168

generation. While the guide words appear in the 169

input and output of all of the generator’s training 170

examples, the model is not forced to include all 171

guide words in its generations. 172

2.2 Training 173

Consider a few-shot, k-way, text classification data 174

set X = {(xi, yi)}Ni=0, where y ∈ {c0, c1, . . . , ck} 175

and let g be a PANGEA-trained generator, g : 176

p × w → z. In the PANGEA algorithm, the 177

generator, g, is trained from a set of triples Q = 178

{(pi,wi, zi)}Mi=1, where g must generate zi, called 179

the target, from inputs pi and wi. The genera- 180

tor’s training data, Q, does not include any ut- 181

terances from X . Instead, examples in Q are 182
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Figure 1: Training and Generation with PANGEA. Prompt and Target question pairs are extracted from Common
Crawl (T-a). For each pair, a set of guide words is sampled from the the target (T-b). Training examples are
constructed by concatenating the prompt and guide words and mapping them to the corresponding target (T-c).
To generate new data, first, per-class token distributions are constructed from the few-shot data (G-a). Then, an
utterance from class c is sampled uniformly (G-b). Finally, guide words are sampled from the token distribution for
class c. The sampled utterance and guide words are concatenated and input to the trained generator, which produces
a new training example (G-c).

constructed from a public data source, such as183

Wikipedia or Common Crawl. By virtue of its184

domain-agnostic training data, a PANGEA-trained185

generator is trained once and then employed for186

any number of tasks.187

For a training example, (p,w, z), the prompt, p,188

and target, z, should be stylistically and semanti-189

cally related. That way, when given a prompt in a190

specific domain, the generator learns to produce an191

output in the same domain. Moreover, the guide192

words, w, should appear in z.193

Formally, let J be a collection of utterances194

(e.g., sentences in Wikipedia) and let s : J ×195

J → {0, 1} be a binary function that returns 1 if196

its inputs are similar. An example of s is a function197

that returns 1 when two utterances appear on the198

same webpage. To construct an example (p,w, z),199

we select two similar utterances (with respect to s).200

The first we set to be p; the second, z. The guide201

words, w, are (a subset of) the non-stopwords in z.202

In our work, examples in Q are constructed from203

questions that appear in Common Crawl. We set s204

to be the function that returns 1 if two questions ap- 205

pear on the same web page (e.g., in the same FAQ). 206

To construct training examples, we randomly se- 207

lect two questions from the same webpage to serve 208

as the prompt, p, and target, z, respectively (Fig- 209

ure 1, T-a). We only utilize questions (and not 210

answers) because the questions share some stylis- 211

tic characteristics with typical utterances in intent 212

classification. The guide words, w, are a randomly 213

selected 95% of the non-stop word tokens in z1 214

(Figure 1, T-b). We use 95% of the non-stopwords 215

(instead of all non-stopwords) so that the model 216

does not learn that the guide words represent all 217

non-stopwords in the desired output. In our work, 218

g is parameterized by T5 (Raffel et al., 2020), a 219

large-scale, sequence to sequence model. As such, 220

the inputs pi and wi are concatenated, but delim- 221

ited by a pipe ("|") (Figure 1, T-c). We fine-tune 222

T5 on the constructed sequence-to-sequence exam- 223

ples for 20k steps with a batch size of 16. Details 224

on question extraction from Common Crawl are 225

1w is ordered arbitrarily.
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included in Appendix A.226

2.3 Generation227

To generate a new example of a class, c, we must228

choose a prompt, p, and guide words, w. Let229

X[c] = {xj : (xj , yj) ∈ X , yj = c} be the sub-230

set of utterances in X of class c. In practice, we231

choose a prompt uniformly at random among utter-232

ances of class c, i.e., p ∼ U(X[c]) (Figure 1 G-b).233

Next, we select guide words. To do so, we begin234

by building a per-class token distribution. That is,235

for each utterance in X[c], we filter all stop words236

with spaCy (Honnibal et al., 2020), and compute237

the empirical distribution of the remaining tokens238

(Figure 1 G-a). To sample guide words for a class239

c, we first sample a length L from the empirical dis-240

tribution of the lengths of utterances in X[c], and241

then sample L guide words independently from242

the per-class token distribution for c. The sampled243

prompt and guide words are concatenated (but de-244

limited by a pipe) to form an input to the generator245

(Figure 1 G-c).246

3 Experiments247

Recall that our goal is to devise an effective method248

of model selection for true few-shot intent classifi-249

cation. To this end, we study various approaches250

for constructing validation sets. In this section, we251

present an empirical study of model selection using252

the constructed validation sets. We report and ana-253

lyze test set accuracy achieved by selected models.254

We also measure the error incurred by employing255

validation accuracy as an estimate of test accuracy.256

3.1 Setup257

Datasets: Experiments are performed with the258

following datasets: clinc, bank, snips, curekart,259

powerplay, and mattress (Larson et al., 2019;260

Casanueva et al., 2020; Coucke et al., 2018; Arora261

et al., 2020). To mimic the few-shot setting, we fol-262

low previous work and subsample each dataset to a263

specific number of examples per class (Gao et al.,264

2021). When referring to a dataset, we use the suf-265

fix -k (e.g., clinc-k) to indicate that the dataset has266

been subsampled to k examples per class2. Follow-267

ing previous work, we omit out-of-scope utterances268

(included in clinc, curekart, powerplay, and mat-269

tress). Dataset statistics are reported in Table 1.270

2For any class that has fewer than k examples, we select
all examples of c.

Model Selection We study true few-shot text 271

classification, i.e., few-shot learning in which no 272

validation data is provided. Given the importance 273

of selecting suitable hyperparameters for state-of- 274

the-art models, we experiment with the following 275

approaches for constructing a validation set: 276

• HOLDOUT - 20% of the training data (per class) 277

is held out and used for validation. This resem- 278

bles a typical workflow for non-few-shot settings. 279

• TRAIN - use the training set as the validation set. 280

This effectively selects the model with the lowest 281

training loss; overfitting is expected. 282

• PANGEA - use a generator trained by PANGEA 283

to construct 20 validations examples per class3. 284

• EDA - similar to the previous approach but 285

use task-agnostic data augmentation for genera- 286

tion (Wei and Zou, 2019). 287

• TEST - use the test set as the validation set; a 288

competitive yet unrealistic baseline included for 289

completeness. 290

Procedure: We begin constructing 10 unique 291

variants of each dataset (e.g., {clinc-5(1), . . . , 292

clinc-5(10)}). We do this by sampling a unique 293

training set for each variant from the correspond- 294

ing full dataset. None of the variants have any 295

examples for validation; all variants use the same 296

(original) test set. For all variants, we use each of 297

the methods described above to construct a unique 298

validation set. For each variant and validation set 299

pair, we initiate 100 instances of training that vary 300

only by hyperparameter configuration. In a given 301

training episode (i.e., dataset variant, validation 302

set, and hyperparameter configuration), after each 303

epoch, we evaluate the model’s loss on the vali- 304

dation set. The model with the lowest validation 305

loss among all hyperparameter configurations is 306

selected4. We report mean and standard deviation 307

of test set accuracy for models selected via each 308

method (e.g., EDA) across all variants of the same 309

dataset. Since training sets differ per variant, we 310

expect standard deviations to be high (Dodge et al., 311

2020). Thus, we report whether each method is 312

significantly better than HOLDOUT using a one- 313

sided Wilcoxon signed-rank test with significance 314

level of p = 0.05 (Schuurmans, 2006; Wilcoxon, 315

1947). We perform the experiment with two train- 316

ing styles: FINETUNE, in which all model param- 317

3This value was chosen arbitrarily.
4For TEST, we experimented with selecting models using

validation accuracy, but found that it made hyperparameter
optimization more difficult in a handful of cases.
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bank clinc curekart powerplay snips mattress
classes 77 150 28 59 7 21
test examples 3080 4500 459 309 700 253

Table 1: Number of Classes and Test Examples Per Dataset.

k = 5 bank clinc curekart powerplay snips mattress
HOLDOUT 0.700.01 0.840.01 0.580.06 0.510.04 0.870.02 0.590.05
TRAIN 0.730.02∗ 0.860.01∗ 0.540.06 0.530.06 0.860.03 0.600.05
PANGEA 0.740.01∗ 0.870.02∗ 0.620.06 0.540.03∗ 0.890.01∗ 0.640.05∗
EDA 0.740.01∗ 0.870.01∗ 0.580.06 0.550.03∗ 0.880.03 0.650.06∗
TEST 0.760.01∗ 0.880.01 0.660.04∗ 0.570.03∗ 0.910.01∗ 0.690.03∗

k = 10

HOLDOUT 0.810.01 0.910.00 0.710.04 0.550.02 0.910.02 0.680.03
TRAIN 0.810.02 0.900.01 0.720.05 0.580.02∗ 0.910.02 0.670.04
PANGEA 0.830.01∗ 0.910.01∗ 0.730.03∗ 0.600.01∗ 0.920.01 0.700.02
EDA 0.840.01∗ 0.920.01∗ 0.720.04 0.600.02∗ 0.920.02∗ 0.730.02∗
TEST 0.840.01∗ 0.920.01∗ 0.770.03∗ 0.570.15∗ 0.930.01∗ 0.740.02∗

Table 2: Test Set Accuracy, FINETUNE, k = {5,10}. Mean and standard deviation test set accuracy of models
selected in the FINETUNE setting. Bolded text indicates the highest mean per dataset (other than TEST); asterisk (*)
indicates improvement over HOLDOUT is statistically significant (1-sided Wilcoxon signed rank test, p = 0.05).

eters are trained, and FROZEN, in which only the318

last layer parameters are trained. Results for the319

FROZEN setting are reported in the Appendix (Sec-320

tion B.3). In all experiments, we use the Hugging-321

Face roberta-base model optimized with the322

AdamW optimizer (Wolf et al., 2019; Loshchilov323

and Hutter, 2018).324

Hyperparameters: We tune 4 hyperparameters:325

learning rate, weight decay, dropout among hid-326

den units, and dropout among classifier units. We327

employ Optuna—a hyperparameter optimization li-328

brary (Akiba et al., 2019). For each dataset variant329

and validations set, we allot Optuna a budget of 100330

trials (i.e., unique hyperparameter configurations)331

with trial pruning turned on. All models are trained332

for up to 30 epochs. Hyperparameter ranges used333

during optimization are included in Appendix B.1.334

3.2 Accuracy of Selected Model335

Table 2 contains the mean and standard deviation336

for each model selection method on all 6 datasets337

for both k = 5 and k = 10 (i.e., 5 or 10 examples338

per class), when training in the FINETUNE setting.339

The results show that the generative methods (i.e.,340

either PANGEA or EDA) achieve the highest mean341

accuracy on all datasets for both k = 5 and k = 10.342

While some error bars overlap, high standard de-343

viations are anticipated since every dataset variant 344

has a unique training set. Despite this variation, 345

improvements of PANGEA and EDA over HOLD- 346

OUT are statistically significant in 4 or 5 datasets 347

out of 6 for k = 5 and k = 10. Moreover, for 348

PANGEA on curekart-5, our statistical test yields 349

a value of p = 0.0654, only narrowly missing the 350

p = 0.05 threshold. TRAIN only achieves 1 or 2 351

such improvements. For EDA and PANGEA in 352

the k = 5 setting, improvements in mean accuracy 353

over HOLDOUT range from 2% to 6% and as much 354

as 8% over TRAIN. For k = 10, increases are more 355

modest, but are as large as 5% over HOLDOUT and 356

6% over TRAIN. Note that in all FINETUNE exper- 357

iments, mean accuracy of PANGEA and EDA are 358

always greater than or equal to that of HOLDOUT. 359

These results support the notion that validations 360

sets constructed via PANGEA or EDA are con- 361

sistent, high-performing tools for model selection 362

in few-shot intent classification. Presentation and 363

discussion of results for the FROZEN setting are 364

included in Appendix B.3. 365

3.3 Estimating Test Set Accuracy 366

While selecting the best performing model among 367

a set is a crucial step of machine learning work- 368

flows, an accurate estimate of the selected model’s 369

performance on test data is a significant factor in 370
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k = 5 bank clinc curekart powerplay snips mattress
HOLDOUT 0.030.02 0.040.02 0.180.07 0.360.04 0.120.04 0.250.09
TRAIN 0.270.02 0.140.01 0.460.06 0.470.06 0.140.03 0.400.05
PANGEA 0.180.02 0.200.02 0.140.07 0.190.03 0.030.02 0.070.05
EDA 0.240.01 0.090.01 0.390.06 0.400.03 0.120.03 0.300.06

k = 10

HOLDOUT 0.030.01 0.030.01 0.160.06 0.340.02 0.090.02 0.230.05
TRAIN 0.190.02 0.100.01 0.280.05 0.420.02 0.090.02 0.330.04
PANGEA 0.340.01 0.280.01 0.050.04 0.110.02 0.090.04 0.040.03
EDA 0.140.01 0.030.01 0.250.04 0.360.02 0.080.02 0.210.02

Table 3: Model Fidelity, FINETUNE, k = {5,10}. The mean and standard deviation of the absolute difference
between validation and test set accuracy of the selected model. Bolded text indicates the lowest mean per dataset.

determining whether the model is eligible for de-371

ployment. That is, if the best performing model372

in a set performs poorly, that model is unfit for de-373

ployment. We underscore that test accuracy is not374

necessarily indicative of a model’s ability to gener-375

alize, and that other evaluations, e.g., of the model’s376

likelihood to cause harm, must also be carried out377

before determining if that model is appropriate for378

use (Ribeiro et al., 2020).379

3.3.1 Validation Accuracy of Selected Models380

To this end, we measure the extent to which val-381

idation accuracy is a faithful estimator of test set382

accuracy for the methods discussed above. In Ta-383

ble 3 we report the mean and standard deviation of384

the absolute difference between validation and test385

set accuracy for models selected via each method386

in the FINETUNE setting for k = 5 and k = 10. If387

the magnitude of the difference of a model’s vali-388

dation and test set accuracy is small, we say that389

the model provides a high fidelity estimate of test390

accuracy. The Table shows that PANGEA leads to391

the highest fidelity estimates for 4 of 6 data sets392

with k = 5 and 3 out of 6 data sets for k = 10. In393

many of these cases, PANGEA improves over the394

next best approach by more than 3x.395

While the other methods yield higher fidelity396

estimates of test accuracy for clinc and bank-10,397

we note that the fidelity of these methods is highly398

correlated with test set accuracy. Figure 2 plots test399

accuracy vs. the mean absolute difference between400

validation and test accuracy for all methods and401

datasets, for the k = 5 variants and FINETUNE402

setting. Unsurprisingly, for TRAIN, the difference403

between validation and test accuracy is perfectly404

anti-correlated with test accuracy, i.e., when test ac-405

curacy is high so is validation accuracy, but valida-406
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Figure 2: Test Accuracy vs. Test Accuracy Estimation
Error, FINETUNE, k = 5. Test set accuracy vs. the
mean absolute difference of validation and test accuracy
(i.e., error).

tion accuracy remains high even when test accuracy 407

is low. This is unsurprising since the trained models 408

consistently fit the training data, and thus valida- 409

tion accuracy on TRAIN is always near 100%. This 410

makes TRAIN unreliable with respect to fidelity— 411

since fidelity is entirely dependent on test set accu- 412

racy, which is unknown. 413

Both EDA and HOLDOUT exhibit similar trends. 414

For EDA, generations closely resemble the train- 415

ing data since the generations are constructed via 416

simple perturbations. Thus, a model that perfectly 417

fits the training data is likely to fit the EDA ex- 418

amples. For HOLDOUT, the difference between 419

validation and test accuracy is also somewhat anti- 420

correlated with test accuracy. Again, this is be- 421

cause the validation data is sampled directly from 422

the training data. For k = 5, Because the valida- 423

tion set is small, fidelity has higher variance, which 424
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FINETUNE-5 FINETUNE-10
HOLDOUT 0.13324 0.11809
TRAIN 0.30141 0.23781
PANGEA 0.00367 0.08993
EDA 0.24572 0.18091

Table 4: RMSE of Validation Accuracy, FINETUNE.
The root mean square error with respect to validation ac-
curacy and test set accuracy for all methods and training
regimes. RMSE is computed from all hyperparameter
configurations, all epochs, and all datasets. Bolded text
indicates the lowest RMSE per condition. Note that
RMSE for TEST is 0.

leads to the dampened anti-correlation. We note425

that the anti-correlation is more pronounced for426

k = 10 because the corresponding validation sets427

are twice as large and thus yield fidelity with lower428

variance (the corresponding visualization appears429

in Figure 5, located in Appendix B.3). We con-430

clude that accuracy on validation sets constructed431

by PANGEA are the most reliable approximations432

of test set accuracy among all methods tested. How-433

ever, even for PANGEA, the difference between434

validation and test accuracy is often too high (in435

many cases greater than 10%) to make for a use-436

ful estimate that can be leveraged in deployment437

decisions.438

3.3.2 All Hyperparameter Configurations439

We examine the difference between validation and440

test accuracy for all hyperparameter configurations,441

all datasets, and all epochs—rather than just for the442

selected models. This gives a sense of how accu-443

rate test set accuracy can be predicted by validation444

accuracy, regardless of how hyperparameters are445

chosen and how a model is selected. We report the446

root mean square error (RMSE) between validation447

accuracy and test set accuracy in Table 4. The Ta-448

ble shows that PANGEA yields the highest fidelity449

estimates of test set accuracy (i.e., lowest RMSE)450

for both k = 5 and k = 10.451

For a more detailed view, we visualize the cor-452

relation between validation accuracy and test set453

accuracy in Figure 3. Note that, while Figure 2 vi-454

sualizes performance of selected models only, Fig-455

ure 3 visualizes performance for all models (i.e., all456

hyperparamter configurations and training epochs).457

The Figure shows that for all hyperparameter con-458

figurations and training epochs, accuracy on valida-459

tion sets constructed by PANGEA roughly matches460

test set accuracy. On the other hand, the other meth-461
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Figure 3: Fidelity of Validation Accuracy, FINETUNE,
k = 5. Validation set accuracy versus test set accuracy
for all hyperparamter configurations, all epochs, and for
all datasets.

ods only match test set accuracy when validation 462

accuracy is low, but consistently overestimate test 463

set accuracy as validation accuracy increases. We 464

include a similar figure for k = 10 in Figure 4, 465

located in Appendix B.2. 466

4 Related Work 467

Our work is a first systematic study of validation set 468

construction to support model selection in true few- 469

shot intent classification. Prior to our work, two 470

other pieces have leveraged generative models to 471

construct validation data. In Datasets from Instruc- 472

tions (DINO), a pre-trained GPT2-XL is prompted 473

to generate labeled sentence pairs to support learn- 474

ing improved sentence embeddings (Schick and 475

Schütze, 2021). The set of generated pairs is split 476

into training and validation sets. In this work, the 477

validation set is used to determine when to (early) 478

stop training, but it is unclear whether it is also used 479

to select among a range of hyperparameter configu- 480

rations. In our study, we use constructed validation 481

sets to select 4 important hyperparameters, in addi- 482

tion to early stopping. The tasks we focus on are 483

domain-specific, whereas DINO is aimed and learn- 484

ing better general-purpose sentence embeddings– 485

where it may be easier to generate relevant data for 486

validation. 487

The second piece studies prompt order for "in- 488

context learning" (Brown et al., 2020), i.e., when 489

the model is given a handful of examples of a task 490

at inference time but no weights are updated. The 491

authors find that the order of the examples in the 492

prompt used for in-context learning can signifi- 493

7



cantly affect results (fluctuations between state-of-494

the-art and random chance performance were ob-495

served) (Lu et al., 2022). To alleviate this high496

sensitivity in true few-shot settings, the authors497

generate an unlabeled validation set with a large498

pre-trained language model and use the set to se-499

lect prompt orders via a proposed entropy-based500

method. Unlike their study, we focus on the FINE-501

TUNE and FROZEN cases rather than in-context502

learning, because they are more practical in terms503

of hardware costs and thus more prevalent (Gao504

et al., 2021). Moreover, we select specific values505

of continuous hyperparamters rather than the best506

among small set of prompt-permutations. Finally,507

we point out that the proposed approach for prompt-508

order selection cannot be directly used to estimate509

test set accuracy (as we study in Section 3.3).510

A central component of our work is our pro-511

posed PANGEA algorithm. Like our approach, pre-512

vious work makes use of a sequence-to-sequence513

model for generation, but unlike ours, that work514

focuses on filling in delexicalized utterances (Hou515

et al., 2018). Our use of an utterance to prompt the516

generator is similar in spirit to work on Example517

Extrapolation (EX2) (Lee et al., 2021). Whereas518

their work focuses on uneven amounts of data per519

class, we focus on true few-shot learning. Unlike520

EX2, we only provide the generator with a single521

utterance, rather than many. Using a single utter-522

ance to prompt the generator is also similar to work523

on using demonstrations (Gao et al., 2021), but in524

that work, training examples are concatenated to525

the input during training and inference. We also526

provide the PANGEA-trained generator with guide527

words, which is inspired by previous work on de-528

coding (Pascual et al., 2021).529

While we experiment with a handful of ap-530

proaches, there is a large and growing literature531

on data augmentation for NLP. We briefly touch532

on some recently proposed methods, but refer in-533

terested readers to a survey on the subject (Feng534

et al., 2021). Most data augmentation algorithms535

can be roughly categorized as either retrieval (Du536

et al., 2021), perturbation (Wei and Zou, 2019),537

feature (Kumar et al., 2019; Sun et al., 2020; Wei,538

2021), or generation-based (Wang et al., 2021; Ku-539

mar et al., 2020; He et al., 2021; Yang et al., 2020).540

Some work focuses on counterfactual augmenta-541

tion (Kaushik et al., 2020; Joshi and He, 2022); like-542

wise, generating minimally perturbed training ex-543

amples with different labels (Zhou et al., 2022). In544

the literature, augmentation is generally employed 545

as a tool for improving test set accuracy. But a 546

recent studies explore augmentation for mitigat- 547

ing gender stereotypes (Zhao et al., 2018; Zmigrod 548

et al., 2019; Maudslay et al., 2019; Webster et al., 549

2020). Unlike our work, virtually all previous stud- 550

ies focused on training set augmentation rather than 551

validation set construction. 552

5 Conclusion 553

In this work we study true-few shot classification, 554

i.e., few-shot classification where no validation set 555

is provided for model selection. We experiment 556

with constructing validation sets via data augmen- 557

tation, and by leveraging the provided few-shot 558

data. Our results reveal that the synthetic validation 559

sets—constructed by EDA or our proposed method, 560

PANGEA—consistently yield selected models with 561

the higher test accuracy than validation sets com- 562

prised of the few-shot data. Moreover, PANGEA 563

is the only method for which validation accuracy 564

provides a reliable, high fidelity estimate of test set 565

accuracy. 566

6 Limitations 567

In this work, we study various methods of valida- 568

tion set construction for the true few-shot setting. 569

While we show that methods of data augmentation 570

can be successfully utilized, our experiments only 571

deal with few-shot intent classification. All of our 572

experiments are conducted on English language 573

data sets. Additionally, our experiments include 574

subsampled data sets with either 5 or 10 examples 575

per class (when enough examples per class exists), 576

but we do not experiment with (intentionally) un- 577

balanced data sets. Moreover, we only experiment 578

with the RoBERTa model. We choose RoBERTa 579

because it is high-performing and ubiquitous (and 580

therefore admits comparison to other work), but we 581

acknowledge that better models exist and may pro- 582

vide different results. Despite these limitations, we 583

believe that our results are sound and likely to gen- 584

eralize to models aside from RoBERTa. Finally, we 585

do not experiment with in-context learning meth- 586

ods (i.e., prompting with GPT-3); but we argue that 587

the FROZEN and FINETUNE settings are prominent 588

training paradigms that are currently accessible to 589

many more people. 590
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Appendix788

A Question Extraction789

We extract question from Common Crawl—a large-790

scale archive of crawled webpages. We use a com-791

bination of 10 Common Crawl dumps from 2020792

and 2021, which includes 33 billion webpages. To793

detect question and answer (QA) content nested in794

raw webpages, we leverage structured markup for795

QA5 and FAQ6 pages. This markup is widely used,796

and facilitates the display of QA result previews797

along with search results (e.g., google search).798

Naive search in billions of webpages in costly.799

Therefore, we first perform a fast regex-based800

search that yields approximately 26 million match-801

ing HTML pages. After parsing the resulting pages,802

we are able to extract approximately 71 million803

QA and FAQ data snippets. We then post-process804

the results by removing badly formatted snippets805

where questions or answers cannot be automati-806

cally recovered, pruning empty question or answer807

bodies, and performing language detection to iden-808

tify English QA pairs. The result is 27.7 million809

English pairs. We group the English questions by810

page and randomly select 200k question pairs for811

training such that both questions appeared on the812

same page.813

B Experiments814

All experiments on run on 2 NVIDIA Ampere815

(A100) GPUs.816

B.1 Hyperparameter Ranges817

For hyperparameter optimization, we use Op-818

tuna (Akiba et al., 2019). Optuna allows a practi-819

tioner to identify the hyperparameters over which820

to conduct the search, as well as the allowable821

ranges. In our experiments, Optuna tunes the fol-822

lowing 4 parameters with the following ranges:823

1. learning rate, [0.00001, 0.1];824

2. weight decay, [0.0, 0.1];825

3. dropout among hidden units, i.e.,826

hidden_dropout_prob, [0.0, 0.5];827

and828

4. dropout among classification head units, i.e.,829

classifier_dropout, [0.0, 1.0].830

5https://developers.google.com/search/
docs/advanced/structured-data/qapage

6https://developers.google.com/search/
docs/advanced/structured-data/faqpage
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Figure 4: Fidelity of Validation Accuracy, FINETUNE,
k = 10. Validation set accuracy versus test set accuracy
for all hyperparameter configurations, all epochs, and
for all datasets.

Optuna performs 100 trials (each trial may be 831

pruned if the corresponding hyperparameters are 832

deemed unlikely to yield a high performing 833

model. New configurations are sampled using 834

the TPESampler (the random seed is set to 37). 835

Training in a full trial lasts for 30 epochs. 836

B.2 Model Fidelity in the FINETUNE Setting 837

Figure 4 visualizes validation accuracy vs. test ac- 838

curacy for all methods in the FINETUNE setting 839

with k = 10. Like in the case of k = 5, accuracy 840

on validation sets constructed by PANGEA appear 841

to be better correlated with test accuracy than either 842

TRAIN or EDA, which both consistently overes- 843

timate test set accuracy. In the k = 10 case, it 844

appears that PANGEA tends to more strongly un- 845

derestimate test set accuracy. 846

Figure 5 plots test accuracy vs. the mean abso- 847

lute difference between validation and test accu- 848

racy for all methods and datasets, for the k = 10 849

variants and FINETUNE setting. As in the case of 850

k = 5, for TRAIN, the difference between valida- 851

tion and test accuracy is perfectly anti-correlated 852

with test accuracy. EDA and HOLDOUT are also 853

strongly anti-correlated with test set accuracy. This 854

makes these three methods unreliable with respect 855

to fidelity—since fidelity is entirely dependent on 856

test set accuracy, which is unknown. On the other 857

hand, PANGEA is not anti-correlated with test ac- 858

curacy, but exhibits some low fidelity estimates. 859
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k = 5 bank clinc curekart powerplay snips mattress
HOLDOUT 0.340.01 0.520.01 0.280.05 0.300.03 0.790.07 0.320.03
TRAIN 0.390.01∗ 0.600.01∗ 0.370.04∗ 0.330.03∗ 0.820.06 0.380.03∗
PANGEA 0.390.01∗ 0.600.01∗ 0.340.04∗ 0.320.02∗ 0.840.02∗ 0.380.03∗
EDA 0.390.01∗ 0.600.01∗ 0.350.04∗ 0.320.02 0.800.09 0.380.03∗
TEST 0.390.01∗ 0.600.01∗ 0.320.04∗ 0.320.02 0.840.02∗ 0.380.03∗

k = 10

HOLDOUT 0.540.01 0.750.01 0.480.04 0.330.02 0.840.04 0.380.02
TRAIN 0.680.01∗ 0.820.01∗ 0.540.04∗ 0.360.02∗ 0.880.01∗ 0.440.02∗
PANGEA 0.590.02∗ 0.770.01∗ 0.530.05∗ 0.360.02∗ 0.880.01∗ 0.440.02∗
EDA 0.610.03∗ 0.810.01∗ 0.550.03∗ 0.360.02∗ 0.880.01∗ 0.460.02∗
TEST 0.630.03∗ 0.790.02∗ 0.560.04∗ 0.380.03∗ 0.890.01∗ 0.470.02∗

Table 5: Test Set Accuracy, FROZEN, k = {5, 10}. Mean and standard deviation test set accuracy of models
selected in the FROZEN setting. Bolded text indicates the highest mean per dataset (other than TEST); asterisk (*)
indicates improvement over HOLDOUT is statistically significant (1-sided Wilcoxon signed rank test, p = 0.05).

0.4 0.5 0.6 0.7 0.8 0.9 1.0
Test Acc.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

|V
al

. A
cc

 - 
Te

st
 A

cc
.|

Test Accuracy Estimation Error (all datasets)
f(x) = 1 - x
EDA
Test
Train
HoldOut
PanGeA

Figure 5: Test Accuracy vs. Test Accuracy Estimation
Error, FINETUNE, k = 10. Test set accuracy vs. the
mean absolute difference of validation and test accuracy
(i.e., error).

B.3 Model Selection in the FROZEN Setting860

In this section we present the results of model se-861

lection when training is carried out in the FROZEN862

setting. The FROZEN case (also known as the863

"linear probing" setting) is common when latency864

and/or computing cost are constrained. More-865

over, FROZEN training has been shown to gener-866

alize better to out-of-distribution data than FINE-867

TUNE training when pre-trained representations are868

"good" (Kumar et al., 2021). This is relevant to the869

few-shot domain where most data may be consid-870

ered out-of-distribution because of the scarcity of871

training data.872

The results in the FROZEN setting are somewhat873

different than the FINETUNE setting. We begin874

with Table 5, which contains the test set accuracy 875

of selected models. First, we note that accuracy 876

is universally lower than in the FINETUNE setting. 877

This is because many fewer parameters are being 878

trained. Additionally, there are many more statis- 879

tically significant improvements over HOLDOUT. 880

This indicates that holding out training data for val- 881

idation is particularly costly in the FROZEN setting. 882

Among the methods, we point out that PANGEA is 883

the only method to exhibit statistically significant 884

improvements for every dataset for both k = 5 and 885

k = 10. 886

The Table 5 reveals two surprising phenomena. 887

First, TRAIN is very competitive; with many sta- 888

tistically significant improvements over HOLD- 889

OUT and often achieving the highest mean ac- 890

curacy among all methods. Second, TEST does 891

not achieve the highest accuracy for a handful of 892

datasets. Upon inspection, we find that hyperpa- 893

rameter optimization is the cause of both phenom- 894

ena. Specifically, some validation sets lead to more 895

effective hyperparameter optimization. As an ex- 896

ample, consider Figure 9a. Each circle in the Figure 897

corresponds to the test set accuracy of a selected 898

model for a specific dataset variant. Recall that 899

a selected model is defined by a set of hyperpa- 900

rameters and an epoch (identified by hyperparam- 901

eter optimization to achieve the lowest validation 902

loss). Each star (*) in the Figure is the maximum 903

achievable test set accuracy for a model trained 904

with the same hyperparameters. Therefore, for a 905

given set of hyperparameters, if the epoch in which 906

the smallest validation loss is achieved is the same 907
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FROZEN-5 FROZEN-10
HOLDOUT 0.05476 0.04637
TRAIN 0.34020 0.26431
PANGEA 0.00273 0.09728
EDA 0.23756 0.16804

Table 6: RMSE of Validation Accuracy, FROZEN.
The root mean square error with respect to validation ac-
curacy and test set accuracy for all methods and training
regimes. RMSE is computed from all hyperparameter
configurations, all epochs, and all datasets. Bolded text
indicates the lowest RMSE per condition. Note that
RMSE for TEST is 0.

as the epoch where the highest test set accuracy908

is achieved, then the circle and star corresponding909

to that dataset variant will have the same y-value.910

Mean test set accuracy for the selected model and911

mean of the maximum possible test set accuracy912

are also visualized. The Figure reveals that, for913

bank-10 in the FROZEN setting, the best hyper-914

parameters are found when minimizing training915

loss. We provide similar plots for all experimental916

settings and datasets for completeness.917

B.4 Fidelity in the FROZEN Setting918

In Table 7 we report the mean and standard de-919

viation of the absolute difference between valida-920

tion and test set accuracy for models selected via921

each method in the FROZEN setting for k = 5 and922

k = 10. The Table shows that PANGEA leads to923

the highest fidelity estimates for 4 of 6 data sets924

with k = 5; for the remaining two datasets, it925

achieves the second highest fidelity. When k = 10,926

PANGEA is best in 2 out of 6 data sets. Unlike the927

FINETUNE case, HOLDOUT is more competitive928

when training in the FROZEN setting. Both TRAIN929

and EDA provide unreliable (and low fidelity) esti-930

mates since their fidelity is highly correlated with931

test set accuracy (as in the FINETUNE case). The932

correlation is visualized in Figure 6.933

As in the FINETUNE case, we examine the dif-934

ference between validation and test accuracy for935

all hyperparameter configurations, all datasets, and936

all epochs. We report the root mean square er-937

ror (RMSE) between validation accuracy and test938

set accuracy in Table 6. The Table shows that939

PANGEA yields the highest fidelity estimates of940

test set accuracy (i.e., lowest RMSE) for k = 5 and941

second highest when k = 10. Conversely, HOLD-942

OUT yields the second highest fidelity estimates943

for k = 5 and the highest fidelity estimates when944
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Figure 6: Test Accuracy vs. Absolute Difference of
Validation and Test Accuracy, FROZEN, k = {5, 10}.

k = 10. 945

Finally, in Figure 7 we visualize validation ac- 946

curacy vs. test accuracy for selected models in the 947

FROZEN setting for all hyperparameter configura- 948

tions and training epochs. As in the FINETUNE 949

setting, we find that accuracy on validation sets 950

constructed by PANGEA and HOLDOUT are most 951

highly correlated with test set accuracy. For k = 5, 952

HOLDOUT exhibits high variance. Again, both 953

EDA and TRAIN overestimate test accuracy. 954
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k = 5 bank clinc curekart powerplay snips mattress
HOLDOUT 0.050.02 0.050.04 0.180.06 0.150.07 0.140.07 0.130.08
TRAIN 0.440.03 0.370.01 0.600.04 0.540.04 0.180.05 0.570.04
PANGEA 0.070.02 0.150.01 0.090.05 0.070.02 0.040.03 0.110.04
EDA 0.210.03 0.260.01 0.470.05 0.400.02 0.160.07 0.410.02

k = 10

HOLDOUT 0.020.01 0.050.02 0.070.04 0.100.06 0.090.04 0.210.08
TRAIN 0.320.01 0.180.01 0.370.03 0.450.02 0.120.01 0.480.03
PANGEA 0.250.01 0.280.02 0.110.05 0.020.02 0.110.02 0.050.02
EDA 0.100.02 0.100.01 0.260.03 0.380.02 0.090.02 0.350.02

Table 7: Model Fidelity, FROZEN, k = {5, 10}. The mean and standard deviation of the absolute difference
between validation accuracy and test set accuracy of the selected model. Bolded text indicates the lowest mean per
dataset.
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Figure 7: Fidelity of Validation Accuracy, FROZEN, k = {5,10}. Validation set accuracy versus test set accuracy
for all hyperparameter configurations, all epochs, and for all datasets.
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Figure 8: Maximum and Selected Accuracy, FROZEN, k = 5. Each circle represents the test set accuracy of a
selected model for a single dataset variant. Stars (*) indicate the maximum accuracy achievable using the same
hyperparameters. Solid lines indicate mean test accuracy of selected models; dotted lines, mean maximum accuracy.
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Figure 9: Maximum and Selected Accuracy, FROZEN, k = 10. Each circle represents the test set accuracy of a
selected model for a single dataset variant. Stars (*) indicate the maximum accuracy achievable using the same
hyperparameters. Solid lines indicate mean test accuracy of selected models; dotted lines, mean maximum accuracy.
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Figure 10: Maximum and Selected Accuracy, FINETUNE, k = 5. Each circle represents the test set accuracy of a
selected model for a single dataset variant. Stars (*) indicate the maximum accuracy achievable using the same
hyperparameters. Solid lines indicate mean test accuracy of selected models; dotted lines, mean maximum accuracy.
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Figure 11: Maximum and Selected Accuracy, FINETUNE, k = 10. Each circle represents the test set accuracy of
a selected model for a single dataset variant. Stars (*) indicate the maximum accuracy achievable using the same
hyperparameters. Solid lines indicate mean test accuracy of selected models; dotted lines, mean maximum accuracy.
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