
FAD.js: Fast JSON Data Access
Using JIT-based Speculative Optimizations

Authors removed for double-blind submission

ABSTRACT
JSON is one of the most popular data encoding formats,
with wide adoption in Databases and BigData frameworks,
and native support in popular programming languages such
as JavaScript/Node.js, Python, and R.

Nevertheless, JSON data manipulation can easily become
a performance bottleneck in modern language runtimes due
to parsing and object materialization overheads. In this pa-
per, we introduce Fad.js, a runtime system for fast ma-
nipulation of JSON objects in data-intensive applications.
Fad.js is based on speculative just-in-time compilation and
on direct access to raw data. Experiments show that ap-
plications using Fad.js can achieve speedups up to 2.7x for
encoding and 9.9x for decoding JSON data when compared
to state-of-the art JSON manipulation libraries.

1. INTRODUCTION
The JavaScript Object Notation (JSON [5]) format is ar-

guably one of the most popular data encoding formats, and
has become a de-facto standard in several domains. Data-
intensive systems and applications heavily rely on JSON.
Notable examples are key-value databases (e.g., [9]) and
BigData analytics frameworks (e.g., [25, 2]), where it is of-
ten used as the main encoding format to represent semi-
structured data. Other relevant examples can be found in
domains such as Cloud and Web technologies, where JSON
is used as the main encoding format in client/server com-
munications as well as in so-called microservices applica-
tions [18, 1].

In most of the scenarios where JSON data is employed,
it is used at the boundary between a data source (e.g., a
Database, a file system, or a memory-mapped TCP buffer)
and a language runtime (e.g., a JavaScript/Node.js virtual
machine). The interaction between the language runtime
and the external data source can easily become a perfor-
mance bottleneck for applications that need to produce or
consume significant amounts of JSON objects. Such per-
formance overhead is caused by two core characteristics of

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org.
Proceedings of the VLDB Endowment, Vol. 10, No. 7
Copyright 2017 VLDB Endowment 2150-8097/17/03.

existing JSON parsing runtimes. First, the JSON object re-
sides in a data source that is external to the memory space of
the language runtime. As a consequence, the language run-
time needs to materialize the data in its language-private
heap memory space (using a primitive data type, e.g., a
JavaScript string) before consuming it. Similarly but spec-
ularly, a language runtime producing a JSON-encoded string
needs to allocate the string in its private memory space be-
fore externalizing it. A second source of performance over-
head is that all the JSON encoding and decoding libraries
in modern language runtimes rely on general-purpose tech-
niques that do not take into account the structure of the data
that they are manipulating. Decoding is often based on a
LL parser [10], while encoding is implemented by perform-
ing a full walk of the object graph that is being converted
to JSON. The adoption of such general-purpose libraries is
mostly motivated by the fact that JSON is used in the con-
text of dynamic languages such as JavaScript or Python,
where it is not possible to know in advance (i.e., statically)
the characteristics of the JSON data that will be processed
by the application. In other words, such applications do not
use a pre-defined schema (e.g., based on JSON schema [20])
that could be used to speed up data access. Interestingly,
the lack of a pre-defined schema in many JSON-intensive
applications does not necessarily imply that some form of
structure could emerge in the way JSON data is created
or accessed at runtime. As an example, many interactions
with public Web APIs have some informally-defined struc-
ture. Similarly, when JSON data is produced after an inter-
action with a database, it often matches the structure of the
database tables where data is stored. We argue that very
often JSON-intensive applications present an hidden schema
that is known only at runtime, and we belive that all such
applications deserve specific optimizations.

In this paper, we introduce a new runtime system, called
Fad.js, that can significantly improve the performance of
JSON operations in data-intensive applications. Fad.js dif-
fers from existing encoding and decoding approaches for dy-
namically typed languages such as JavaScript in two runtime
design aspects: (1) it can perform encoding and decoding op-
erations on raw data, without materializing objects in the
language memory space until they are used, and (2) rather
than being based on general-purpose techniques, it is based
on the notion of specialization, and relies on just-in-time
compilation to optimize encoding and decoding operations
for the specific characteristics of the JSON data being pro-
cessed. Thanks to its design, Fad.js performs extremely
well in all cases where JSON operations have stable usage

patterns, outperforming general-purpose JSON libraries in
all the considered benchmarks. This paper makes the fol-
lowing contributions:

1) We describe the design and the implementation of Fad.js,
a runtime system for fast access to JSON data in dy-
namic languages. To the best of our knowledge, Fad.js
is the first example of JIT compilation applied to JSON
data access in a dynamic language runtime. We base
our implementation on Graal.js [7], a state-of-the-art
implementation of Node.js [6]. The Fad.js runtime
techniques can be considered language-independent,
and can be applied to other dynamic languages as well.

2) We describe a new JIT-based encoding technique, which
we call Constant structure encoding. The technique
can speed up the encoding of JSON data up to 2.7x
on the considered benchmarks.

3) We describe a new JIT-based decoding technique, which
we call Direct structure decoding. The technique can
speed up the decoding of JSON data up to 9.9x in the
considered benchmarks.

2. A MOTIVATING EXAMPLE
JSON is extensively used in data-intensive applications

in combination with dynamic languages. Most of the times,
the structure of the JSON objects being accessed by the lan-
guage runtime is unknown until execution time, and com-
mon JSON encoding libraries do not make any a priori as-
sumption on the structure of the data they access. Rather,
they rely on well-known parsing and encoding techniques
that are known to offer good performance for common us-
age patterns. Very often, however, JSON data manipula-
tion could benefit from some speculative runtime assump-
tions. For example, a JSON encoder could speculate on
some property names being constant: as long as the objects
have the same set of properties (with constant types), the
encoding of a JSON string could potentially be performed
more efficiently. Consider the following example:

1 exports.handler = function(event , callback) {
2 var result = {
3 key: event.key ,
4 data: someFunctionOf(event)
5 };
6 // encode and forward to a data storage

service
7 callback.success(JSON.stringify(result));
8 }

The code snippet corresponds to an AWS Lambda func-
tion [1] consuming data from an external Web source (e.g.,
an HTTP connection). The code in the example produces
a result object using the JSON stringify JavaScript built-
in function. This function generates a JSON-formatted string
by performing a full walk of the objects and values in the
result object graph, reading all the names of the properties
in the object, and traversing the graph (including the data

object) while encoding the new JSON-formatted string. In-
tuitively, most operations could be avoided for this specific
example: since the result object has a constant structure
(i.e., it always has two properties named key and data of
the same type), reading the names of its properties could
be avoided (they are constant); similarly, traversing the full
object graph could be avoided, too. The encoded JSON
string could be created starting from some constant tokens
(i.e., the pre-formatted property names), concatenated with

the values of the result properties. Moreover, since the
result object has a constant structure, reading the values
from its properties (i.e., key and data) could be optimized,
too. Rather than implementing the encoding operation us-
ing a general-purpose JSON encoder, this example suggests
that the language runtime could specialize on the data being
encoded, and benefit from some form of runtime knowledge.

Even more effective optimizations could be performed in
the case of JSON data decoding. Consider the following ex-
ample of an Apache Storm [2] stream processing component
written in Node.js 1:

1 Bolt.process = function(tuple , done) {
2 var tweet = JSON.parse(tuple.value);
3 if (tweet.user === "@userfoo") {
4 // send to the next pipeline stage
5 this.emit({
6 value: tweet.body ,
7 anchorTupleId: tuple.id
8 });
9 }

10 done();
11 }

The Storm component in this example selects a sequence
of JSON-encoded tweets with a given username (@userfoo,
in the example). Using the default JSON decoder of Node.js
(i.e., JSON.parse), even the small code snippet in the ex-
ample could result in significant overhead. For each tweet,
the application allocates a UTF-8 JavaScript string in the
Node.js’ process heap space (from the raw binary data re-
ceived from the socket), parses it (into tuple.value), ma-
terializes an object graph (the tweet object) in the Node.js
heap space, accesses its user property, and – only if needed –
reads a second property (i.e., body, which is potentially big).
Intuitively, most of the operations could be avoided: each
tweet that is received has several properties, but only two
of them are actually accessed by the application. An ideal
solution would avoid allocating a JavaScript string and an
entire JavaScript object instance, and would rather read the
content of the value property directly from the raw input
data, materializing the body property only when (and if) it
is read by the application. By materializing only what is
really used, the performance of the application could be sig-
nificantly improved. Nevertheless, performing such partial
and selective materialization of the data into the Node.js’
process heap would require non-trivial runtime information
from the language execution runtime.

The Fad.js runtime is designed exactly for the encod-
ing and decoding scenarios that we have described, which
we informally call JSON access operations with an hidden
JSON schema. Such operations share properties that can be
commonly found in data-intensive scenarios where dynamic
languages such as Node.js/JavaScript are used:

1) Objects often have properties with constant name and
type (for example, objects have a property correspond-
ing to a unique identifier or key.)

2) The JSON (encoding or decoding) operations are per-
formed on more than a single JSON object or string.
This is often the case for message-based applications or
for data-intensive ones, where high volumes of JSON
data are created or consumed (e.g., a file with one ob-
ject per line).

1Example of a Bolt component extracted from the
Apache Storm multi-language bindings for Node.js:
http://storm.apache.org/

3) The JSON data are read only partially, and not all
of the values are used by the application logic. Nev-
ertheless, their usage presents a stable access pattern,
that is, the application is very often accessing a similar
subset of properties of the object graph.

4) The application manipulating JSON data always inter-
acts with an external I/O data source (e.g., a Database,
a TCP connection, or a file). The data are received in a
binary format, which the language runtime has to con-
vert to its native types (i.e., heap-allocated strings).

Typically, JSON data does not come with a schema. This
is particularly true in the context of dynamic languages.
Hence, it is not possible to make any static assumption on
the structure or types of such data. In principle, any object
graph could at runtime change all or a subset of its prop-
erties to have a different name or type (e.g., all JSON ob-
jects representing a tweet might have an author property,
but only those corresponding to tweets generated using a
mobile device might have a gps position property, which
could be accessed very rarely). As a consequence, the notion
of hidden schema is not to be considered strict, as it cannot
be formalized for the purposes of static or semi-static anal-
ysis. Conversely, we consider the hidden schema of a JSON-
intensive application a pure runtime-only information that
could emerge after observing JSON usage patterns. In other
words, we consider it a runtime speculative assumption.

3. FAD.JS
Fad.js is a JSON encoding and decoding runtime target-

ing the data-intensive workloads described in the previous
section. Informally, Fad.js attempts to identify a JSON
hidden schema at runtime, and relies on its properties to
access JSON data more efficiently. The Fad.js runtime
techniques are language-agnostic, and could potentially be
applied to any managed language. In this paper, we focus
on JavaScript and Node.js: in this context, Fad.js can be
considered a drop-in replacement for the built-in JSON li-
braries of JavaScript’s core standard library. In addition
to being fully compatible with the default Node.js’ JSON
library, Fad.js features an additional API (detailed in sec-
tion 3.3) that can be used to further improve the perfor-
mance of JSON parsing under certain circumstances.

Fad.js relies on runtime assumptions and the dynamic
generation of efficient machine code that leverages such as-
sumptions: as long as they hold, encoding and decoding op-
erations can be performed more efficiently. Fad.js is built
on top of Oracle’s Graal.js and Truffle technologies, which
we describe in the following section.

3.1 Background: Truffle and Graal.js
Truffle [24] is a framework for the development of runtime

systems that can be used to implement language execution
engines (e.g., a JavaScript virtual machine) as well as JIT-
enabled runtime libraries such as Fad.js. A Truffle-based
runtime is implemented in the form of a self-optimizing Ab-
stract Syntax Tree (AST) interpreter [10]: each node in the
AST corresponds to a single runtime operation (e.g., read-
ing some bytes, performing a function call, etc.) which can
be compiled to highly-optimized machine code by means of
partial evaluation [15] by the Graal [21] dynamic compiler.
At runtime, each AST node eagerly replaces itself with a

specialized version that relies on some (runtime-only) spec-
ulative assumptions, leading to better performance. For ex-
ample, node rewriting specializes the AST for the actual
types used by an operation (e.g., short integers rather than
double-prcecision numbers), and can result in the elision of
unnecessary generality, e.g., boxing and complex dynamic
dispatch mechanisms. As long as an assumption holds, the
compiled machine code will benefit from it (e.g., by treat-
ing some object properties as short integers). Conversely,
as soon as a runtime assumption is invalidated, the machine
code and the corresponding AST node are de-optimized and
replaced with new, more generic, versions that do not rely
on the assumption anymore. Node rewriting and JIT compi-
lation are handled automatically by the Graal [21] dynamic
compiler, which transparently compiles AST nodes to ma-
chine code when needed, and replaces invalidated machine
code with less-optimized one in case of speculation failures.

The Fad.js runtime described in this paper has been de-
signed to target the Oracle Graal.js JavaScript language run-
time [7]. Graal.js is a high-performance JavaScript runtime
running on the JVM; it is fully compatible with Node.js, and
is developed using Truffle. Graal.js is a highly compliant
implementation of JavaScript: as of today, it passes more
than 99% of the ECMA language compliance tests, and is
able to fully support Node.js workloads, with performance in
line with state-of-the-art JavaScript runtimes such as Google
V8 [6]. Since both Fad.js and Graal.js are based on Truffle,
their AST nodes are compatible, and can be freely combined.
For example, the node implementing a JavaScript property
lookup operation can be executed during a Fad.js encoding
operation. In this way, the machine code produced for the
Fad.js operation accessing JavaScript native objects (e.g.,
to read a property) will be compiled with the very same
machine code of the JavaScript operation. This effectively
means that core operations of the JavaScript runtime such
as reading or writing properties are directly inlined in the
Fad.js runtime without any additional overhead.

3.2 Runtime Speculation in FAD.js
Fad.js achieves high performance by means of two tech-

niques that are based on speculative assumptions, JIT com-
pilation, and direct access to raw data:

• Constant structure encoding: Fad.js attempts to iden-
tify an object graph (or a subset of it) with constant
structure, property names and types. When found,
Fad.js generates machine code that is specialized for
such graph structure, and that can encode objects with
higer efficiency.

• Direct structure decoding: Fad.js attempts to iden-
tify a subset of properties that are frequently accessed
of an object that has been generated from a JSON-
formatted string. When found, the Fad.js runtime
generates machine code that is optimized for pars-
ing only such properties and values. In this way, the
Fad.js runtime avoids materializing data in the JavaScript
memory space unless it is used by the application. De-
pending on the API being used, parsing is performed
eagerly or lazily.

Both techniques are implemented in Fad.js at the VM
level, meaning that they directly interact with the language
execution runtime, and they leverage VM-level and per-
object metadata.

Fad.js can be considered an Active library [12], that is,

a library with a given interface that can self-optimize and
adapt its runtime behavior depending on its usage. The
Fad.js runtime described in this paper targets the JavaScript
language, with a special focus on Node.js applications. Tar-
geting Node.js as the main scenario for Fad.js is motivated
by the popularity of JavaScript in many JSON-intensive do-
mains. Despite being Node.js the main target for the run-
time described in this paper, the techniques that we describe
are generic, and could easily be ported to other dynamic lan-
guages. In particular, porting Fad.js to other Truffle-based
languages (e.g., Ruby or R) would require minimal engineer-
ing efforts.

3.3 FAD.js API

The Fad.js runtime is exposed to Node.js applications via
a compact API designed to be very familiar to JavaScript de-
velopers, as it resembles the default general-purpose JSON
API that is part of the JavaScript language specification [4].
Like with the built-in JSON runtime of Node.js, a JavaScript
object graph can be converted to a JSON-formatted string
using the stringify function:

1 var data = {an:{ object:"graph"}};
2 // Encoding using the default Node.js API
3 var default = JSON.stringify(data);
4 // Encoding using FAD.js
5 var optimized = FADjs.stringify(data);
6 assert.equal(optimized , default); // true

The encoding operation has the same semantics of Node.js’
default one, and the encoded string produced by Fad.js is
identical to the one produced by the default JavaScript en-
coder.

A JSON-formatted string can be converted to a JavaScript
object graph using two distinct APIs, namely, parse and
seek:

1 var string = '{an:{ object :"graph "}}';
2 // Decoding using the default Node.js API
3 var default = JSON.parse(string);
4 // Decoding using the two FAD.js APIs
5 var fullParsed = FADjs.parse(string);
6 assert.equal(fullParsed , default); // true
7 var fastParsed = FADjs.seek(string);
8 assert.equal(fastParsed , default); // false

The first function, parse, has the same semantics of the
corresponding JavaScript built-in function, and can be used
as a drop-in replacement for it: it produces an acyclic object
graph corresponding to the input JSON data, and throws an
exception in case of a malformed input string. At runtime,
however, the parse function behaves differently, as it does
not allocate any string nor any object graph in the heap
space of the JavaScript application. Rather, it only ensures
that the string is valid (and throws an exception in case of
a validation failure), returning to the application a proxy
object that corresponds to the actual object graph of the
input data. In this way, no real allocation is performed on
the JavaScript heap space. After the initial validation per-
formed in situ, the actual object graph is populated lazily
and selectively, that is, only for the values that the applica-
tion will actually read.

The second Fad.js function, seek, is similar to the parse

function, but does not perform full input data validation,
and is designed to be used in all the contexts where the input
data is expected to be already valid, for example because it

is stored in a file managed by external data sources (e.g.,
a logging file produced by a trusted source) or it belongs
to some memory-mapped files (for example to implement
data exchanges between processes). Apart from the lack
of the initial input correctness validation, parse and seek

behave in the same way, and share all the runtime Fad.js
optimizations.

Unlike built-in libraries in Node.js, the Fad.js parsing
primitives can operate on raw data. This is described in
the following code snippet:

1 fs.createStream('/path/to/some/file.json');
2 fs.on('data', function(chunk) {
3 // chunk is a raw binary buffer with utf8

encoding
4 Buffer.isBuffer(chunk , 'utf8'); // true
5 // Node.js must allocate a JS string:
6 var p = JSON.parse(chunk.toString('utf8'));
7 // FAD.js can operate on the data , directly
8 var p = FADjs.parse(chunk);
9 });

The code in the example corresponds to a small Node.js
application reading a JSON file (e.g., a log file): while the
default JavaScript JSON parser in Node.js always needs to
convert raw binary data to a (heap-allocated) JavaScript
string, the Fad.js runtime can operate on the raw data,
directly, thus avoiding the materialization of the string in
the Node.js heap space.

4. CONSTANT STRUCTURE ENCODING
In Fad.js, an object graph is encoded to a JSON-formatted

string by speculating on the constant nature of the hidden
schema of the input objects. As long as such assumption
holds, the Fad.js runtime can avoid or optimize most of the
expensive operations that are usually involved in the gener-
ation of the JSON string. Consider the following example
Node.js application:

1 connection.on('data', function(data) {
2 var entry = JSON.stringify(data) + '\n';
3 fs.appendFileSync('/some/file', entry);
4 });

where the entry object corresponds to some data with the
following informal (hidden) schema:

1 var entry = {
2 id: /* any number , always present */,
3 name: /* any string , always present */,
4 value: { /* any object value , or empty */ }
5 }

The example corresponds to a logging application in which
some user data is fetched from an external source (e.g., a
database connection), and stored line-by-line in a file. The
JSON encoding operation is performed on multiple object
instances with a similar object graph: most of the struc-
ture of the JSON data is constant, with exceptions being
the value field, which could be empty or have any other
structure. As discussed earlier, a generic JSON encoding li-
brary would recursively walk the object graph of the entry

object, initially reading each property name (i.e., id, name,
and value), successively retrieving for each property name
the value associated with it. In doing so, it would append
property names and their values to the final JSON string,
performing the necessary formatting associated with each
value type (e.g., converting escape characters in strings).

EncodingNode
 {name,id,value}

ReadNode
"id" ReadNode

"name"

ReadNode
"value"

EncodingNode
 {...}

deopt &
re-specialize

Graal.js AST

Graal.js AST node

FAD AST node

Figure 1: Fad.js encoding AST specialized for a
given object shape. The Fad.js nodes perform the
speculative encoding of the input object by lever-
aging Graal.js nodes for constant-lookup property
reads. The Fad.js AST is itself inlined in the Graal.js
AST calling the Fad.js encoder.

The Fad.js runtime implements the stringify operation
in a different way, which does not require a full scan of the
object properties and values for each new object instance
with the same structure. Specifically, the Fad.js runtime
generates a Truffle AST that resembles the structure of the
object graph being encoded, and uses it to perform the en-
coding operation. The Fad.js runtime caches in the AST
nodes all the values that are assumed compilation constant
(e.g., property names and their type-related information):
as long as the input objects have the schema that Fad.js ex-
pects (i.e., they have properties with the expected name and
type), the Fad.js runtime avoids reading the property names
of each object as well as their type, and performs the encod-
ing operations by combining constant strings (the property
names) with the runtime value of each property. The Truf-
fle AST is built on-the-fly by Fad.js, and is specialized for
the hidden JSON schema of the input object graph of the
application. The generated machine code performing the en-
coding operation takes into account the dynamic nature of
the object graph, that is, it can produce different strings de-
pending on the presence of certain properties that are known
to be potentially absent (e.g., value in the example), or that
have a nature that is too heterogeneous for generating a con-
stant compilation unit. For highly-polymorphic scenarios,
i.e., when too many properties are absent or have a very
heterogeneous data type, the Fad.js runtime rewrites its
AST nodes and de-optimizes the compiled code to a generic
version that does not rely on runtime speculation. Fad.js
code generation operates as follows:

• A Truffle AST is built as a direct acyclic graph that
matches the structure of the input object is created at
runtime; the graph has a node for each of the object
instances in the input graph (i.e., for the object value
in the example) and edges correspond to object refer-
ences. Since JSON does not allow cycles [4], Fad.js
ensures that the graph is a tree.

• Each of the nodes of the AST stores a constant list of
strings, which corresponds to the finite list of property
names of each object instance.

• Each of the nodes also stores a constant list of pre-
formatted strings that correspond to the formatted prop-
erty names that will be used to generate the final JSON
string. Such pre-formatted strings include the charac-
ters that have to be appended to generate the final
encoding (e.g., the ":" symbol, the proper string quo-
tation characters, etc.)

The Truffle AST generated by Fad.js is effectively an exe-
cutable representation of a JSON encoder that is tailored for
the hidden JSON schema used by the application. It is spe-
cialized for objects with the given properties and types: as
long as the input object graphs have the expected structure,
executing the Truffle AST produces a valid JSON-formatted
string. A Truffle AST specialized for the hidden graph of the
example in the previous section is depicted in Figure 1, while
Figure 2 presents the internal implementation of a special-
ized AST node for the same example hidden JSON schema.
Encoding ASTs in Fad.js rely on runtime information pro-
vided by the Graal.js JavaScript engine, which we describe
in the following section.

4.1 Object shapes in FAD.js
The Fad.js runtime operates on the JavaScript data types

of Graal.js. One of the reasons behind Graal.js’ performance
is its dynamic object storage model [23], that is, a very ef-
ficient representation of objects in the language heap space
with specialized AST nodes for fast read and write access
to properties. Because JavaScript is a dynamic language,
any object can have an arbitrary number of properties with
arbitrary types, with any object being conceptually equiv-
alent to a map. Property lookup operations on such dy-
namic objects can have a very high runtime overhead, as
they might require to compute the hash of the property to
be accessed for each operation. In order to reduce any hash-
based lookup cost, modern dynamic languages (including
Graal.js) rely on the notion of object shape [13, 16] (also
called Hidden classes). An object shape is a runtime repre-
sentation that encodes certain metadata regarding a specific
object instance such as the number and the type of its prop-
erties. Shapes are used to perform constant-offset property
lookups (rather than hash-based ones) where possible. Con-
sider the following example:

1 // new object: empty shape
2 var obj = {};
3 // shape now contains [id:num]
4 obj.id = 3;
5 // shape now contains [id:num ,name:str]
6 obj.name = "foo";
7 // shape now is [id:num ,name:str ,value:ref]
8 obj.value = {};
9 // both lookups can be performed with

constant offset using the shape
10 var combined = obj.id + ":" + obj.name;

Shapes evolve at runtime, and encapsulate information
about the internal structure of an object instance, that can
be used later on by the language runtime to produce efficient
machine code. For example, by knowing that id is the first
property with a numeric type, the JIT compiler can gener-
ate machine code that performs the lookup operation in an
efficient way (i.e., one memory load at constant offset from
the base address of the object), rather than using expensive
hash-based lookups (to compute the location of the selected
property in the object memory layout).

1 public class EncodingNode extends ASTNode {
2 // pre - formatted values for this AST node
3 private final String encA = "{\'id\':";
4 private final String encB = ",\'name\':\'";
5 private final String encC = ",\'value\':";
6 // expected shape of the input object
7 private final Shape expectedShape;
8

9 /* Graal.js AST nodes used for fast
constant -offset property lookups */

10 @Child private final ReadNode [] prop;
11 // Next encoding node in the AST
12 @Child private final EncodingNode next;
13

14 public void executeNode(JSObject input ,
StringBuilder result) {

15 // constant shape check
16 if (input.getShape () == expectedShape) {
17 /* the property name is a compilation

constant , and the property reads
will run a constant -offset lookup */

18 String valueA = prop[0].read("id");
19 String valueB = prop[1].read("name");
20 result.append(encA + valueA);
21 result.append(encB + valueB);
22 /* call the next AST node , potentially

specialized for another object
shape */

23 String valueC = next.executeNode(
24 prop[2].read("value"));
25 result.append(encC + valueC + "}");
26 } else {
27 /* unexpected shape: rewrite */
28 throw new RewriteASTException ();
29 }
30 }
31 }

Figure 2: A Fad.js Truffle AST node specialized to
perform the encoding of an input object based on its
shape. After a successful shape check, the node exe-
cutes the encoding operation based on compilation-
constant assumptions.

Object shapes are exploited in a similar way by the Fad.js
runtime, as depicted in Figure 2. The figure describes the
informal source code of a Truffle AST node generated by the
Fad.js runtime to perform the encoding of an object with
the same structure of the one in the example. The code
in the figure corresponds to the Java code of a more com-
plex AST node that Fad.js generates at runtime to encode
the full object graph (corresponding to the AST depicted
in Figure 1.) The node in the figure is specialized for the
given object shape, and assumes that it will always have to
encode objects with such shape. By exploiting this informa-
tion, the Fad.js node can treat as compilation constants the
names of the properties to be read. In this way, it can per-
form constant-time read of their values (whereas a general-
purpose encoding library would have to list all the properties
for each invocation of the parser). In addition to fast lookup
of property values, the node can already make one more as-
sumptions on the structure of the string that it will have
to generate. In particular, it can treat as compilation con-
stants some pre-initialized string tokens with pre-formatted
JSON structure. When the type of an object to be parsed
is not encoded in the AST node because it is a reference
to another object, the AST node simply performs a call to

another AST node which will specialize on the shape of the
next object in the object graph (line 28 in the figure). Since
all AST nodes are Truffle nodes, they are all inlined in a
single compilation uint by the Graal compiler, and therefore
they will execute without any dynamic dispatch overhead.

4.2 Impact on JSON encoding
Three key aspects make the Fad.js encoding approach

faster than general-purpose approaches:
1) By assuming that property names are constant, the en-

coding step does not need to retrieve the list of prop-
erties from each object. Since an object instance in
languages such as JavaScript can have any arbitrary
number of property names, such operation can take a
time proportional to the size of the object. In Fad.js
this operation is constant.

2) After reading all the property names, a general-purpose
encoder needs to retrieve the value of each property.
Since objects in JavaScript can have any arbitrary
number of properties of any arbitrary type, objects
are usually implemented with a hash-based data struc-
ture (e.g., an hash map). As a consequence, reading
each property value from an object corresponds to an
hash-based lookup for each property name. In Fad.js
such expensive hash-based lookup of property values is
avoided: since property names are assumed constant,
each value is resolved in the compiled code with a sin-
gle constant-time memory load operation at a fixed
offset in the JavaScript heap.

3) By assuming that the structure of the JSON object
is a compilation constant, Fad.js does not perform a
full recursive walk of the input object graph. Rather,
it simply ensures that the input object has the same
structure that the compiled code expects. This check
can be performed very efficiently using object shapes.

5. DIRECT STRUCTURE DECODING
JSON parsing in Fad.js is implemented using a technique

called direct structure decoding. The main peculiarity of
this technique is that it enables the generation of efficient
machine code specialized for accessing only the subset of
the input JSON data that is used by the application, avoid-
ing unnecessary parsing operations. Moreover, all accesses
to data are performed in situ, without materializing in the
JavaScript memory space values that are not explicitly used.

Unlike general-purpose JSON parsers, parsing in Fad.js
is not performed at a single location in the code (that is,
when parse or seek are called.) Rather, parsing is split into
two separate operations, input data validation and selective
parsing. The first operation is performed eagerly, while the
latter is executed incrementally and lazily, and happens at
property access time. Consider the following example:

1 // an array to store final result
2 var total = new Array ();
3 // callback executed for each line
4 readFile.on('line', function(data) {
5 var entry = FADjs.parse(data);
6 if (matchCondition(entry.a)) {
7 var x = entry.c;
8 var y = entry.d[1];
9 total.push([x,y]);

10 }
11 });

...

entry

a b c d

11 N

entry

a

 if (entry.a <= k) {
 ...

 if (entry.a <= k) {
 var x = entry.c;
 ...

a b c

 if (entry.a <= k) {
 var x = entry.c;
 var y = entry.d[1];

a b c

0

d

1?? ?

entry entry

(a)
Initial (full) object graph

(b)
Runtime virtualized object graph after FAD parsing

var	entry	=	{
				a	:	3,
				b	:	[many	elements	...],
				c	:	2,
				d	:	[1,	2]			
}

Figure 3: String decoding (parsing) in Fad.js. The
full object graph (a) of a JSON string is not entirely
materialized in the JavaScript memory by Fad.js,
and only the required subset is materialized after
partial parsing (b).

The example corresponds to a data scraping application
that scans a JSON file line-by-line, selecting the entries
matching a specific condition (e.g., to retrieve all the log
entries for a specific day). As the example suggests, the
application does not need to parse the entire JSON data.
A general purpose JSON parsing library, however, would
always consume heap-allocated objects for each line of the
file. The materialized full object graph for the JSON object
in the example is depicted in Figure 3 (a). As the picture
shows, the object includes two arrays of variable length (b
and c) among other properties; parsing and materializing in
the JavaScript heap such arrays would correspond to a con-
siderable waste of resources. The JSON data in the example
is parsed by Fad.js using the following approach, which is
also summarized in Figure 3 (b):

1) When parse is called (at line 5), no JSON object ma-
terialization is performed. Rather, an empty proxy ob-
ject is created that holds a reference to the input data.
We call this object the virtualized object graph of the
JSON data. At this stage, no parsing operations have
been performed yet.

2) After an (empty) virtual object is created, the input
data is validated. This happens eagerly and in situ,
i.e., without materializing its content in the Node.js
heap space. In situ validation requires a full scan of the
input JSON data, but does not require the allocation
of the validated data in the JavaScript heap. During
validation, the virtualized object graph corresponding
to the data is populated with some minimal metadata
that will be used to speed up the materialization of
selected values at runtime. The metadata is called

the JSON parsing index. Once the object has been
validated, and no JSON syntax errors have been found,
the virtual object is returned.

3) When a property of the virtualized object is read (i.e.,
the entry.a property in the example at line 6) the vir-
tualized object materializes its value in the JavaScript
memory space. To this end, the Fad.js runtime parses
only the subset of the input JSON data required to
materialize the value of the property. Parsing is per-
formed on the raw data, and the Fad.js parser might
start the parsing operation at any arbitrary position.

4) The virtualized object graph now stores the value that
has been parsed. The next time the same property will
be read by the application, its value will be read from
the in-memory (materialized) representation, and no
parsing operations will be performed anymore for that
property on the raw data.

5) If the value of the property that has been parsed is
of object reference type (e.g., entry.d at line 8) its
value is not materialized, and another virtual object
is created instead. When one of the values of the
new virtualized object graph will be accessed (e.g.,
the entry.d[1] element), the Fad.js parser will re-
solve the value by performing the correct incremental
parsing operations.

In traditional parsers, any parsing operation starts from
the beginning of the input data. The Fad.js runtime can
parse subsets of data beginning from any position. In order
to speed up parsing operations, the Fad.js runtime stores in
its virtualized objects an auxiliary data index, called pars-
ing index. Such index is used to keep track of the position
of property values in the the input JSON data, and is used
by Fad.js to keep track of potential parsing positions. With
the goal of saving memory space, the index does not con-
tain the name of the properties: storing each property name
would correspond to unnecessary string materializations in
the JavaScript heap space, that the Fad.js runtime would
potentially not use. Rather, the index only contains an ar-
ray of initial parsing positions (in the order they appear in
the input data). When a property is accessed, it is respon-
sibility of the Fad.js runtime to chose from which index to
start the parsing step. Therefore, a parsing operation may
start from the first index in the parsing index, and then try
all the successive ones until the required property (e.g., the
d property in the example) is found. As a consequence of
this approach, parsing indexes are not strictly required by
the Fad.js parser runtime: if no index is found, the parser
would simply continue its parsing operations from the begin-
ning of the string, or from a recent parsing position (if any).
The parsing index is built while (eager) validating the input
data (i.e., when the parse function is called), and is imple-
mented using an array that occupies only a int Java value
for each property in the input data. Moreover, its allocation
is independent of the actual parsing operations in Fad.js:
for large JSON inputs the Fad.js runtime can arbitrarily
avoid the creation of indexes that are too big, and postpone
the creation of fine-grained indexes at property access time.
An exemplification of how indexes are used by the Fad.js
parser is depicted in Figure 5.

An important consideration about the Fad.js parsing ap-
proach is that all parsing steps are performed lazily, when
properties are read by the application. Beyond the obvi-
ous benefit of parsing only what is needed, the lazy nature

 if (entry.a <= k) {
 var x = entry.c;
 var y = entry.d[1];
 ...

if (...)

var y = ...var x = ..

entry.c entry.d[1]

seek('a')

entry.a < ..

skip(array)

seek('c')

seek('d')

scan(1)

Graal.js AST node

FAD AST node

Uninitialized
(depot) node

Figure 4: Lazy parsing of a JSON string in Fad.js.
The Fad.js runtime is inlined in the JavaScript AST
with nodes that drive the partial incremental pars-
ing of the input string.

of the Fad.js parsing approach has another notable advan-
tage: the parsing operations can be effectively inlined into
the executable code, and can be specialized for every sin-
gle access location. This has the advantage that the Fad.js
parser can avoid unnecessary operations on the subset of
the object graphs that it needs to materialize. For example,
it can parse only the entry.a property when the thresh-
old is not interesting for the application, avoiding parsing
entry.c and other properties when they are not needed.
The JavaScript source code with a Fad.js parsing opera-
tions embedded in its property access operations is depicted
in Figure 4. Another important consideration about lazy
parsing in the parse function is that the runtime seman-
tics of the function is equivalent to the one of the default
JavaScript JSON parser. In other words, lazy parsing hap-
pens transparently to the user, and the function can be used
as a drop-in replacement for the JSON parsing runtime in
existing applications.

5.1 Parsing using the Seek API
The example application in the previous section could

also be implemented using the seek API introduced in Sec-
tion 3.3. Using seek rather than parse would make the
Fad.js runtime behave in the same way as described in the
previous section, with the following notable differences:

1) The Fad.js runtime will not perform the initial eager
validation of the input data. In case of a malformed
input, calling seek will not throw an immediate excep-
tion.

2) Since validation is not performed eagerly, the Fad.js
runtime will not populate the JSON parsing index
when seek is called.

3) Validation and any updates to the parsing index are
performed incrementally, when properties are accessed.
In the example, this means that Fad.js validates the
JSON data in three different moments, that is, each
time one of the three properties is accessed by the
application. This has the relevant consequence that
Fad.js validates only the subset of the input JSON
data that is required to ensure that the value can be
materialized. In case of parsing errors an exception is
thrown at property-access time.

The seek function can be considered an unsafe version of
parse that can be used only when the input data is known
to be valid, or when the application can tolerate a JSON

[]{ }a : [...]3 , b : , c : 2 , d : 1 , 2

seek ('a')
range:[0,+3] skip (array)

range:[3,+99]

0 2 100

seek ('c')
range:[100,+3]

102

seek('d') & scan (array, 1)
range:[104,109,+2]

109

a c d

1

parsing index

from
'a'
'b'

prop.

'c'
'd'

6
102
106

2

0
1 111

prop.
108
from

6 106

parsing index

virtual object
"d"

virtual object
"entry"

Figure 5: Parsing indexes. The Fad.js runtime
builds an auxiliary index to be used to perform in-
cremental parsing. Depending on the API used, the
parsing indexes are populated eagerly during vali-
dation, or lazily while parsing a subset of the input
data.

parsing error by handling potential exceptions when prop-
erties are read (rather than when parse is invoked). Exam-
ple scenarios where seek could be preferred over parse are
all cases where the correctness of the data is guaranteed by
the data source, for example if the data was produced by
the same application in a previous step during some data
conversion operation, or when it is received from a trusted
network connection with consistency guarantees.

Thanks to its design, the seek function can effectively ac-
cess only the very minimal subset of the data that is needed
by the application, avoiding a full scan of the input JSON
data at all when the application does not need to access the
full JSON object. Using seek can lead to very significant
speedups for applications that need to access a minimal part
of large JSON objects with a complex graph structure.

5.2 Parser Specialization
Parsing operations in Fad.js are performed lazily, at prop-

erty access time. For each property value to be accessed,
parsing is done using a specialized JSON parser capable
of retrieving the value of a single property using a special-
purpose parser that can access only a subset of the entire
JSON syntax.

Specialized parsers are implemented using Truffle ASTs,
and are compiled to machine code via partial evaluation.
Each specialized parser step in Fad.js corresponds to the
combination of different, lightweight, JSON parsers that can
recognize valid subset of the complete JSON syntax. For ex-
ample, depending on the position of a property to be parsed,
Fad.js may chose to parse only the N -th element of an ar-
ray: in doing so, a specialized parser is used that can rec-
ognize only the subset of the JSON grammar for parsing
array elements, and can safely skip the body of all the el-
ements of the array (delimited by the comma ”,” symbol)
that are not accessed by the application. Such specialized
parser would potentially ignore the content of other array

Schema Objects/Values Width/Length Size

m books 1 / 5 5 / 50.5 482 B

m catalog 2 / 4 2.5 / 8 98 B

m google 17 / 54 4.12 / 32.46 3.5 kB

m menu 9 / 12 2.22 / 5.18 310 B

m react 8 / 30 4.63 / 10 656 B

m sgml 7 / 11 2.43 / 43.1 1.09 kB

m small 1 / 2 2 / 12 30 B

m thumbnail 4 / 20 5.75 / 67.25 2.1 kB

p avro 68 / 90 2.31 / 21.86 5.32 kB

p fstab 3 / 5 2.33 / 993.2 10 kB

p github 5 / 4 1.6 / 7.8 124 B

p rpc-req 13 / 16 2.15 / 23.41 1.03 kB

p rpc-res 30 / 28 1.9 / 22.76 1.84 kB

p stat 7 / 11 2.43 / 14.33 436 B

p twitter 15 / 51 4.33 / 39.29 3.4 kB

p youtube 9 / 19 3 / 14.11 1.09 kB

Figure 6: Summary of the JSON schemas used by
JSONBench. Schemas marked with p have a poly-
morphic nature, while schemas starting with m are
monomorphic. All values are average values.

elements and simply look for the comma separation symbol
(still ensuring that strings and other values are escaped cor-
rectly); in this way, the parser can be considerably faster
than a general-purpose JSON one, as it does not need to
match all the possible symbols that a normal JSON parser
would match. Moreover, such parser does not need to allo-
cate and populate new objects in the JavaScript heap. Other
specialized parsers that are used by Fad.js cover all the pos-
sible parsing operations that a general-purpose JSON parse
may perform, with an equivalent skip version that does not
fully parse an object string but only validates it. Exam-
ples of such parsers are skipObject and skipArray, which
skip (i.e., do not materialize) an entire JSON object (resp.
array). Skipping is usually implemented with a fast linear
scan of the substring corresponding to the object (resp. ar-
ray). As discussed, each specialized parser is directly inlined
in the Truffle AST node performing the property read op-
eration. In this way, the Fad.js parser is effectively able to
generate highly-specialized machine code that can combine
the property access operation with the other optimizations
that the language runtime would already perform. In other
words, the parsing step can also benefit from all the other
optimizations that the language runtime is performing on
the rest of the executed code. As an example, the language
runtime can perform optimizations such as escape analysis,
loop unrolling, or constant fold elimination on each of the
values being parsed.

5.3 Impact on JSON decoding
The Fad.js parser takes advantage of the following as-

pects that makes it more efficient than a general-purpose
one:

1) By parsing only the properties that are actually used
by the application, it can avoid traversing or materi-
alizing subtrees of the JSON graph that are not used.

2) By parsing only the properties that are accessed, Fad.js
performs fewer allocations of objects in the language
runtime heap. Fewer allocations correspond to a lower
memory footprint that can have an impact on the over-

1
.4

2
.1

1
.7

2
.7

2
.2

1
.5

2
.3

1
.1

0
.5

1

2
.2 2
.2

0
.8

1
.5

1
.1

1
.6

0

1

2

3

m
b
o
ok

s
m

ca
ta

lo
g

m
go

og
le

m
m

en
u

m
re

ac
t

m
sg

m
l

m
sm

al
l

m
th

u
m

b
n
ai

l

p
av

ro

p
fs

ta
b

p
gi

th
u
b

p
rp

c-
re

q
p

rp
c-

re
s

p
st

at
p

tw
it

te
r

p
yo

u
tu

b
e

S
p
ee
d
u
p
v
s.

G
ra
a
l.
js

FAD.js Graal.js Node.js

Figure 7: Performance of Fad.jsstringify. The
Fad.js JSON encoding runtime is consistently faster
than the baseline for the monomorphic and poly-
morphic JSON schemas used by the benchmark.

all application performance (e.g., by reducing the over-
all pressure on garbage collection).

3) By performing the parsing operation together with
property access, the specialized JSON parser can be
inlined directly in the property lookup operation.

4) Since it can operate on off-heap raw data, the Fad.js
parser can be applied to any data-intensive application
before any data is actually materialized in the Node.js
heap space. Checking for the existence of a property
(e.g., to perform filter operations) without reading its
value can therefore happen in without any memory
allocation in the language heap memory space.

6. EVALUATION
We have evaluated the performance of Fad.js against state-

of-the-art solutions such as the Node.js JSON parsing library
(v6.7) and the default JSON parser in Graal.js. We consider
Graal.js (v0.18) as the performance baseline for Fad.js, as
it shares with Fad.js the JavaScript runtime environment.
All the experiments were performed on a server-class ma-
chine (Intel Xeon 513 with 16 cores and 256GB RAM), with
hyper-threading and turbo-mode disabled to ensure repro-
ducibility. The standard deviation for each benchmark run
is below 6%.

6.1 JSONBench
To assess the performance of Fad.js on JSON-intensive

workloads, we have designed a new benchmark, called JSON-
bench. The benchmark is aimed at measuring the perfor-
mance of JSON operations in Node.js applications that make
extensive usage of JSON, operating on raw data, and for
which JSON encoding or decoding is the main performance
bottleneck. The JSONBench benchmark consists of two
JSON-intensive applications, namely, parsing and stringify.
For each application, the benchmark evaluates the perfor-
mance of a JSON runtime over a selection of a total of
16 different JSON object schemas that have been extracted
from existing public data sources or Web services (such as
a Google search result or a Twitter API response message).
Each JSON object has different characteristics in terms of

7
.2 7

.7

6

6
.6 6
.8

6
.4

9
.9

6
.5

6
.4

5
.1

7
.2

6
.2 6

.7 6
.9

6
.1

6

0

4

8

12
m

b
o
ok

s
m

ca
ta

lo
g

m
go

og
le

m
m

en
u

m
re

ac
t

m
sg

m
l

m
sm

al
l

m
th

u
m

b
n
ai

l

p
av

ro

p
fs

ta
b

p
gi

th
u
b

p
rp

c-
re

q
p

rp
c-

re
s

p
st

at
p

tw
it

te
r

p
yo

u
tu

b
e

S
p
ee
d
u
p
v
s.

G
ra
a
l.
js

FAD.js Graal.js Node.js

Figure 8: Performance of Fad.jsparse with appli-
cations accessing the first leaf property of the in-
put object graph. The Fad.js runtime has semantics
equivalent to the default JavaScript library, and of-
fers consistent significant speedups.

structure, number of elements, size, etc. An overview of
the JSON objects used in the benchmark is depicted in Ta-
ble 6. Each object is based on a JSON schema [20] ob-
ject that is used by the benchmarking harness to generate
pseudo-randomized data. After an initial data generation
step which is common for both benchmarks, the two appli-
cations perform the following operations:

• The stringify benchmark simulates a Node.js microser-
vice application (e.g., an Amazon Lambda function)
that generates a stream of JSON objects. To this end,
the application has to encode an high amount of JSON
objects with a similar structure. The JSON schemas
correspond to different types of messages produced by
the benchmark (randomization ensures that each ob-
ject is unique, and a fixed seed ensures reproducibility.)
The benchmark measures the maximum throughput
for the JSON encoding runtime to write the data to
an in-memory data buffer.

• The parsing benchmark simulates a data scraping ap-
plication processing JSON data in-memory. The bench-
mark first loads into a raw memory buffer a 1GB random-
generated set of JSON objects (generated using the
JSON schemas), and performs random accesses to the
values of each object. The benchmark can be config-
ured to change the number of properties that are read.

The JSON schemas used by the benchmark are divided
in two main categories, namely, monomorphic and polymor-
phic schemas. The first category corresponds to JSON ob-
jects that always have all the property names and struc-
ture that the JSON schema prescribes. In other words, the
benchmark random generator only ensures that each object
has different values, but all objects always have the same
fixed number of properties. The latter category corresponds
to JSON objects that might also change some of their tree
structure. For example, JSON objects with a same JSON
schema may or may not have certain properties. The dis-
tinction between the two classes of randomized JSON data
is aimed at simulating two different types of workloads, that
is, workloads where JSON data is very homogeneous (e.g.,
when JSON is fetched from a database), and workloads

2
1
.8

1
7
.8

8
3
.3

2
5
.8 3

4
.9 4

6
.9

1
8
.1

4
9
.2

1
8
0
.6

4
2
.7

2
1
.5

3
6
.8

4
9
.8

1
6
.5

6
5
.3

3
0
.2

0

50

100

150

200

m
b
o
ok

s
m

ca
ta

lo
g

m
go

og
le

m
m

en
u

m
re

ac
t

m
sg

m
l

m
sm

al
l

m
th

u
m

b
n
ai

l

p
av

ro

p
fs

ta
b

p
gi

th
u
b

p
rp

c-
re

q
p

rp
c-

re
s

p
st

at
p

tw
it

te
r

p
yo

u
tu

b
e

S
p
ee
d
u
p
v
s.

G
ra
a
l.
js

FAD.js Graal.js Node.js

Figure 9: Performance of Fad.jsseek with applica-
tions accessing the first leaf property of the input
object graph. The Fad.js runtime can access only
the minimal subset of the input data, with very high
performance.

where data is more dynamic, and its hidden JSON schema
has only a subset of properties that are always constant (e.g.,
a Web service that can add or remove properties depending
on invocation parameters).

The performance of the Fad.js encoding runtime com-
pared against Graal.js and Node.js are depicted in Figure 7.
For all the considered JSON schemas, the Fad.js runtime
can effectively generate the JSON-encoded string in a time
that is up to 2.7x faster than the state-of-the-art JSON run-
time used by Graal.js. In general, Fad.js performs better
when the data to be encoded is monomorphic. This is ex-
pected, as the compiled code does not need to account for
special cases and properties that might not exist. Still, also
on polymorphic JSON schemas Fad.js can achieve signifi-
cant speedups for certain objects.

The performance of the Fad.js decoding runtimes are de-
picted in Figure 8 and Figure 9. The Fad.js parse and seek

APIs offer different semantics and performance guarantees
depending on the amount of properties that are accessed
by the application and the type of input data validation
that the application requires. In Figure 8 a first comparison
of the Fad.jsparse runtime versus Node.js and Graal.js is
depicted for accessing only the first property of the object
graph. This benchmark is the ideal case for Fad.js, as it re-
quires the materialization in the JavaScript heap of one value
only. The Fad.js runtime can achieve average speedups up
to 9.9x compared to the default Graal.js runtime. This is
expected, and shows that performing validation of the input
data on the raw memory can result in significant speedups
without affecting the overall performance. The performance
of the seek API for the same amount of property reads are
depicted in Figure 9. Without validation (i.e., using seek),
the Fad.js runtime can access the JSON data with the best
possible performance, and the decoding speedup does not
depend on the size of the input JSON object, nor on its
monomorphic or polymorphic nature. As a consequence,
accessing complex JSON objects (e.g., Avro) can result in
speedups up to 180x. This is expected, and shows that
Fad.js allows data-intensive applications to trade perfor-
mance for correctness. Depending on the number of prop-

0e+00

2e+08

4e+08

6e+08

8e+08

0 25 50 75 100

Percentage of JSON values read (%)

P
a
rs
in
g
T
h
ro
u
g
h
p
u
t
(b
y
te
s/
s)

FAD.js

Graal.js

Node.js

Figure 10: Performance of Fad.jsparse for an in-
creasing number of property reads (for all the con-
sidered JSON schemas). Depending on the number
of properties accessed by the application, the per-
formance of Fad.js tend to degrade. Still, even when
the entire object graph is read, Fad.js is faster than
its Graal.js baseline.

erties that are being read, the Fad.js performance are ex-
pected to degrade. This is depicted in Figure 10, where the
benchmark is executed for an increasing number of prop-
erty reads. As the picture shows, the Fad.js runtime can
effectively be faster than its state-of-the-art Graal.js base-
line even when all the properties of the JSON object graph
are read. This is because Fad.js can operate on raw data,
without an intermediate materialization. Nevertheless, the
Fad.js runtime is clearly preferable over the default JSON
runtime when the number of properties read is small. Fig-
ure 12 describes the same scenario for seek. As expected,
the performance of seek are considerably better when only
a few properties are read, and degrade more quickly when
the entire JSON object is accessed. Nevertheless, Fad.js
can be preferred over general-purpose parsers for JSON ob-
jects that have a simple structure (e.g., books) since the
Fad.js runtime can access raw data and can be inlined in
the property-access operations.

6.2 Data-intensive applications
The JSONBench benchmark is designed to measure the

performance of Fad.js in applications where JSON opera-

1
.9

2
.4

1
.2

1
.1

2
.7

0

1

2

3

laureates grep

reddit wordcount

reverse index
twitter grep

twitter wordcount

S
p
ee
d
u
p
v
s.

G
ra
a
l.
js

FAD.js Graal.js

Figure 11: Performance of selected Apache Hadoop
MapReduce jobs that use Fad.js for encoding and
decoding data.

0e+00

5e+09

1e+10

0 25 50 75 100

Percentage of JSON values read (%)

P
a
rs
in
g
T
h
ro
u
g
h
p
u
t
(b
y
te
s/
s)

FAD.js

Graal.js

Node.js

Figure 12: Performance of Fad.jsseek for an increas-
ing number of property reads (for all the considered
JSON schemas). Like with parse, Fad.js is orders of
magnitude faster than its baseline when a subset of
the input data is accessed.

tions are the main bottleneck. With the goal of highlighting
the potential benefits of using Fad.js in the context of more
complex data processing applications, we have also mea-
sured the performance of Fad.js when employed in com-
bination with a popular data processing runtime. To this
end, we have selected five existing benchmarks that rely on
Node.js and on Apache Hadoop. All benchmarks perform
some JSON operations to encode and decode data, but they
also perform other operations that are not affected by JSON
(for example, other performance bottlenecks could exist at
the HDFS level, at the data distribution level, etc.) The
goal of this benchmark is not to present an exhaustive selec-
tion of Hadoop benchmarks dominated by JSON, as writing
a new benchmarking harness for Node.js and Hadoop is out
of the scope of this paper. Rather, the goal is to highlight
the potential benefit of Fad.js when used in existing sys-
tems. For each of the benchmarks, we have replaced the
default encoding operations with Fad.js’s stringify and
parse and (or skip, if appropriate). The performance re-
sults are depicted in Figure 11. As the picture shows, all
the applications benefit from the Fad.js runtime, which can
significantly increase the throughput of each data process-
ing application up to 2.7x. This is expected, as JSON op-
erations contribute significantly to the overhead of existing
data-intensive applications.

7. RELATED WORK
Lazy and incremental techniques have been used in several

parsing runtimes and data formats (e.g., for XML data [19,
14]). We do not claim novelty for the incremental JSON
parsing in Fad.js, but we consider a novel contribution the
integration of the parsing runtime with the language vir-
tual machine, its just-in-time compiler, and the related tech-
niques based on specialization, speculation, and direct ac-
cess to raw data. Other relevant examples of lazy parsing
approaches can be found in the domain of stream parsers
(e.g., for JSON streams [3]). Such parsers usually oper-
ate on unbounded data sources, accessing only the subset
of the data that the application needs. Unlike Fad.js, all
such parsers do not rely on VM-level support, and therefore
cannot benefit from runtime-level optimizations. Moreover,

they often require the user to program against a foreign API
requiring to manually initialize and advance the parser.

The Fad.js encoding and decoding runtimes generate ma-
chine code based on runtime knowledge of the hidden schema
of the JSON data they access. To the best of our knowl-
edge, Fad.js is the first runtime that can optimize access
to data without any static knowledge. Several examples of
techniques that rely on static, a priory, knowledge exist. For
instance, XML document projection [17], is a technique that
is used to optimize XQuery operations on XML documents
via static analysis. Another relevant example is the static
generation of ad hoc parsing runtimes (e.g., for XML or Pro-
tocol Buffers [8]). When the schema of some data type is
known at compilation time, a specialized parser can be cre-
ated that can outperform a general-purpose one. All such
approaches require some a priory knowledge (i.e., a schema)
and cannot operate on data that is highly polymorphic. On
the contrary, Fad.js does not rely on any static knowledge.

Out of the realm of JSON and data encoding, other data-
intensive systems leverage dynamic code generation and di-
rect access to raw data. A relevant recent example of JIT-
based optimizations can be found in Apache Spark [25],
which relies on dynamic bytecode generation. The Spark ap-
proach shares with Fad.js the intuition that data-intensive
applications should be able to optimize certain operations
to exploit the structure of the runtime data that they pro-
cess. Differently from Spark, Fad.js does not rely on byte-
code generation, but rather uses runtime speculation and
specialization. A relevant example of raw access to data is
NoDB [11]. NoDB is a design paradigm (and a database
system) designed to reduce the overhead of data accesses by
exploiting in-memory indexes and direct access to raw data
stored in plain text files. The NoDB approach shares with
Fad.js the vision that data-intensive applications should
avoid materializing data as much as possible, and should
instead rely on runtime knowledge. Fad.js operates at a
different level of abstraction than NoDB, but could poten-
tially be adopted to speed up the access to raw data in any
application that relies on JSON, including databases.

8. CONCLUSION
In this paper, we have presented Fad.js, a runtime sys-

tem for accessing JSON data using JIT compilation and
direct off-heap data access. Fad.js is based on Truffle ASTs
and can offer speedups up to 2.7x for encoding and 9.9x
for decoding JSON data. The Fad.js runtime can effec-
tively speed up existing data-intensive Node.js application,
and can be used as a drop-in replacement of the default
JavaScript JSON library. In the near future, we are adapt-
ing the Fad.js runtime to operate on other Truffle-based
languages (e.g., the R language [22]) and we plan to expand
the techniques described in this paper to other data formats
such as BSON.

Acknowledgment
We thank the VM Research Group at Oracle for their sup-
port. Oracle, Java, and HotSpot are trademarks of Oracle
and/or its affiliates. Other names may be trademarks of
their respective owners.

9. REFERENCES
[1] Amazon Lambda. https://aws.amazon.com/lambda/.

[2] Apache Storm. https://storm.apache.org/.

[3] Clarinet: SAX-based Event Streaming JSON Parser.
https://github.com/dscape/clarinet.

[4] ECMA Language Specification.
https://tc39.github.io/ecma262/.

[5] JSON Object Notation Specification.
http://www.rfc-editor.org/info/rfc7159.

[6] Node.js JavaScript Runtime. https://nodejs.org/.

[7] Oracle Graal.js. http://labs.oracle.com.

[8] Protocol Buffers. https:
//developers.google.com/protocol-buffers/.

[9] The Mongodb Database. http://www.mongodb.org.

[10] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers:
Principles, Techniques, and Tools. Addison-Wesley,
1986.

[11] I. Alagiannis, R. Borovica, M. Branco, S. Idreos, and
A. Ailamaki. NoDB in Action: Adaptive Query
Processing on Raw Data. Proc. VLDB Endow.,
5(12):1942–1945, Aug. 2012.

[12] K. Czarnecki, U. W. Eisenecker, R. Glück,
D. Vandevoorde, and T. L. Veldhuizen. Generative
programming and active libraries. In ISGP, pages
25–39. Springer, 2000.

[13] L. P. Deutsch and A. M. Schiffman. Efficient
Implementation of the Smalltalk-80 System. In Proc.
of POPL, pages 297–302, 1984.

[14] F. Farfán, V. Hristidis, and R. Rangaswami. Beyond
lazy xml parsing. In Proc. of DEXA, pages 75–86,
2007.

[15] Y. Futamura. Partial evaluation of computation
process—anapproach to a compiler-compiler.
Higher Order Symbol. Comput., 12(4):381–391, Dec.
1999.

[16] U. Hölzle, C. Chambers, and D. Ungar. Optimizing
dynamically-typed object-oriented languages with
polymorphic inline caches. In Proc. of ECOOP, pages
21–38, 1991.

[17] A. Marian and J. Siméon. Projecting XML
Documents. In Proc. of VLDB, pages 213–224, 2003.

[18] S. Newman. Building Microservices. O’Reilly Media,
Inc., 1st edition, 2015.

[19] M. L. Noga, S. Schott, and W. Löwe. Lazy xml
processing. In Proc. of DocEng, pages 88–94, 2002.

[20] F. Pezoa, J. L. Reutter, F. Suarez, M. Ugarte, and
D. Vrgoč. Foundations of JSON Schema. In Proc. of
WWW, pages 263–273, 2016.

[21] D. Simon, C. Wimmer, B. Urban, G. Duboscq,
L. Stadler, and T. Würthinger. Snippets: Taking the
high road to a low level. ACM TECO,
12(2):20:20:1–20:20:25, June 2015.

[22] L. Stadler, A. Welc, C. Humer, and M. Jordan.
Optimizing R language execution via aggressive
speculation. In Proc. of DLS, pages 84–95, 2016.

[23] A. Wöß, C. Wirth, D. Bonetta, C. Seaton, C. Humer,
and H. Mössenböck. An object storage model for the
truffle language implementation framework. In Proc.
of PPPJ, pages 133–144. ACM, 2014.

[24] T. Würthinger, C. Wimmer, A. Wöß, L. Stadler,
G. Duboscq, C. Humer, G. Richards, D. Simon, and
M. Wolczko. One vm to rule them all. In Proc. of
ONWARD, pages 187–204, 2013.

https://aws.amazon.com/lambda/
https://storm.apache.org/
https://github.com/dscape/clarinet
https://tc39.github.io/ecma262/
http://www.rfc-editor.org/info/rfc7159
https://nodejs.org/
http://labs.oracle.com
https://developers.google.com/protocol-buffers/
https://developers.google.com/protocol-buffers/
http://www.mongodb.org

[25] M. Zaharia. An Architecture for Fast and General
Data Processing on Large Clusters. ACM, 2016.

	Introduction
	A Motivating example
	FAD.js
	Background: Truffle and Graal.js
	Runtime Speculation in FAD.js
	FAD.js API

	Constant Structure Encoding
	Object shapes in FAD.js
	Impact on JSON encoding

	Direct Structure Decoding
	Parsing using the Seek API
	Parser Specialization
	Impact on JSON decoding

	Evaluation
	JSONBench
	Data-intensive applications

	Related Work
	Conclusion
	References

