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Abstract
Inspired by earlier work on Augur, Vate is a probabilistic
programming language for the construction of JVM based
probabilistic models with an Object-Oriented interface. As
a compiled language it is able to examine the dependency
graph of the model to produce optimised code that can be
dynamically targeted to different platforms. Using Gibbs
Sampling, Metropolis–Hastings and variable marginalisation
it can handle a range of model types and is able to efficiently
infer values, estimate probabilities, and execute models.
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1 Introduction
In this paper we introduce the design and implementation of
Vate, a probabilistic programming language [4] for creating
models for JVM-based applications. Inspired by earlier work
on Augur [18], models are constructed to allow dynamic
switching of execution environment. Currently this is re-
stricted to single threaded and Fork-Join [10] JVM execution
environments, but we plan to extend to GPUs, clusters, and
runtime environments such as Callisto [8].
While deep learning models have advanced many tasks,

they typically require large amounts of data, and it is hard to
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encode domain specific knowledge into them, or explain how
they reach their results. For these reasons, domain experts
may choose to construct explicit probabilistic models. Typi-
cally these models can be easily described, but implementing
them requires the user to construct custom inference code.
This is labour intensive and potentially error prone. The con-
siderable effort acts as a deterrent to modifying the models
for either general development or domain specific target-
ing. Probabilistic programming addresses this problem by
providing a high-level means of describing the model, typ-
ically through a language [2, 5, 11, 15, 18] or through an
API embedded in another language [1, 13, 17, 19]. Models
described in probabilistic programs have the operations by
which the values of the model are inferred provided by the
compiler or API, saving the user from this error prone work,
and reducing the burden of adapting models.

Vate compiles models to JVM classes that encapsulate the
complexity of the different model operations, providing the
user with a clean Object-Oriented interface. The language
is single assignment, but designed to be familiar to Java
programmers, making models more accessible to the devel-
oper community. Models constructed in Vate perform three
classes of operation: Value inference, where the value of any
variables that are not fixed can be inferred; Probability infer-
ence, where the probabilities of individual parameters and
the whole model can be estimated; Conventional execution,
which can be used to generate outputs from a trained model
in cases such as linear regression or to produce synthetic
data sets. The values of variables within the model can be
fixed at compile time or at run time.

Value inference is performed primarily through Gibbs sam-
pling [3] using conjugate priors when possible and reverting
to marginalising out sampled variables for finite discrete dis-
tributions, and localised Metropolis–Hastings [9] inference
for unbounded or continuous distributions. The results of
this inference can be: all the sampled values modulo any re-
quested burning in and thinning; the value when the model
was in its most probable state (Maximum a Posteriori, MAP);
or no values saved. These policies are set for the whole model
and can be modified on a per variable basis.
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1.1 Probabilistic Models
At a high level probabilistic models consist of parameterised
random variables, constant parameters supplied by the user,
and relationships between the variables, parameters and data.
Random variables encapsulate simpler probability distribu-
tions which can be easily sampled from producing values.
The values of the random variables and the values sampled
from them can be inferred in a variety of ways.
For example a random variable representing a Uniform

distribution parameterised with the values 0 and 1 will when
sampled provide values in the range [0 . . . 1] with uniform
probability, and will not provide any values outside of this
range. This sampled value can then be used as an input
to another random variable. If we use it to parameterise a
Bernoulli distribution, it could represent the bias of a coin.
Repeated sampling from the Bernoulli distribution provides
values that represent repeated flipping of the coin. If we then
provide a set of observed results of flipping a real coin we
can use value inference to determine the most like bias of the
coin and the variance of this value. For this simple model a
closed form solution exists rendering the probabilistic model
unnecessary, but for more complex models such as the one
used as an example in Section 2 this is not the case.

1.2 Contributions
The contributions of this paper are as follows:

• A language for writing probabilistic programming
models that is familiar to Java developers.

• A compiler and runtime system for compiling models
to Java class files, allowing more efficient execution
that models built out of runtime API calls.

• An Object-Oriented design for compiled models that
enforces the separation of the model implementation
and the system that uses the model.

• An Object-Oriented design allowing the execution en-
vironment to be dynamically changed so models writ-
ten once can take best advantage of the system they
are used on.

The rest of this paper first describes the language and
resulting models from a user’s perspective before examin-
ing some of the implementation details. It briefly looks at
performance before considering how Vate differs from other
probabilistic programming frameworks.

2 Model Presentation
In this section we describe the construction and use of a
model. As an example we use a simple HiddenMarkovModel
(HMM). This models flipping a number of potentially biased
coins. After each flip, the next coin will be selected with
probabilities drawn from a Dirichlet distribution. The hidden
part of the model is which coin is being flipped. The code
for the model is in Figure 1, and when combined with the

code in Figure 3 takes a sequence of observed coin flips
and determine the most likely coin biases and transition
probabilities.

2.1 Model Code
Models are declared via the keyword model followed by the
model name, any arguments, and a block containing the
body. The arguments and the body are valid java syntax,
with the exception of the syntactic sugar for initialising ar-
rays of constants and setting loop bounds. In Java the body
describes a sequence of operations to perform, in a proba-
bilistic model it describes the relationship between variables
so the value on the left of an assignment can effect values on
the right. Variables named in the model will become fields
in the compiled model allowing properties of these variables
to be queried or set.
Variables within the model consist of base types such as

int and double, arrays, and random variables representing
instances of the distributions supported by Vate. Random
variables are constructed either via a call to a constructor, for
example new Beta(1.0, 1.0), or via statically imported
factory methods as in the example. The method observe
is used to tie the values generated by the model to data
provided by the user for inference. One or more values can
be drawn from a random variable by the sample method, if
sampled values are not observed, they can be changed during
the inference steps.

To simplify the compilation and understandability of the
model, all values are single assignment. This means that to
sum the values in an array some additional functionality
is required. To achieve this the method reduce is included.
This takes as its arguments an array of values of type X, a
unit value of type X, and an associative function taking two
values of type X and returning one value of type X. These
are used to build a binary tree with a lambda at each node
and either an array element or a unit value at each leaf. This
will be executed to provide the return value.

Models can be split into reusable methods, which are not
required to exist in the same files, but can be formed into
libraries, allowing families of models with a similar structure
to be created without having to recreate the entire model.
The syntax of methods is a subset of that used in Java. An
example can be seen in Figure 2. Because the model will
ultimately be represented by a Directed Acyclic Graph (DAG)
before the inference code is constructed, recursive models
are not currently supported.

2.2 Compiled Model
The compilation of themodel generates a collection of classes
in the specified package location, in this case examples.hmm,
either in a directory or a jar file. These work in conjunction
with the Vate runtime libraries. The runtime libraries are
used to separate out common code, preventing duplication
if multiple models are used, and improving maintainability
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package examples.hmm;

model HMM(boolean[] measured, int nCoins) {
//Construct a transition matrix m.
double[] v = new double[nCoins] <~ 0.1;
double[][] m = dirichlet(v).sample(nCoins);

//Construct a weighting for the first coin to flip.
double[] initialCoin = dirichlet(v).sample();

//Construct biases for each coin
double[] bias = beta(1.0, 1.0).sample(nCoins);

//Allocate space to record which coin is flipped
int nFlips = measured.length;
int[] st = new int[nFlips];

//Calculate the movements between coins
st[0] = categorical(initialCoin).sample();
for (int i: [1..nFlips) )
st[i] = categorical(m[st[i - 1]]).sample();

//Flip the coins
boolean[] flips = new int[nFlips];
for (int j: [0..nFlips) )
flips[j] = bernoulli(bias[st[j]]).sample();

//Assert that the flips match the measured data.
flips.observe(measured);

}

Figure 1. Code for simple HMMmodel flipping a number of
potentially biased coins. This uses the built in distributions
Bernoulli, Beta, Categorical, and Dirichlet.

private double sum(double[] a) {
return
reduce (a, 0, (i, j) -> { return i + j; });

}

Figure 2. An example of a method using a reduction to sum
the values of an array.

of the code because only the sections that are truly unique
to the model appear in the generated code.
The compiled class that the user will interact with has

the same name as the model, in this case HMM. Models have
3 constructors, an empty constructor allowing variables to
be set later, a full constructor taking the values specified in
the model signature, and a shape constructor with observed
parameters absence for scalar values, and either an integer,
or an 𝑛 − 1 dimensional integer array describing the shape
of input arrays. This constructor is used when conventional

//Construct the model
int nCoins = 3;
boolean[] flips = loadObservedFlips(....);
HMM model = new HMM(flips, nCoins);

//Set the retention policies
model.setDefaultRetentionPolicy(

RetentionPolicy.MAP);
model.st.setRetentionPolicy(

RetentionPolicy.NONE);

//Run 2000 inference steps to infer model values
model.inferValues(2000);

//Gather the results.
double[] bias = model.bias.getMAP();
double[][] transitions = model.m.getMAP();

Figure 3. An example of inferring the parameters of the
model in Figure 1 based on a series of coin flips.

execution of the model is required, because only the shape
of observed arrays is required.
Named parameters in the model each have a field of the

same name in the compiled model class. Each of these fields
references an object that can be used to assign values to and
query properties of the parameter.

An example of user interaction with the compiled example
model is given in Figure 3.

2.2.1 Fixing and saving values. Once the value of pa-
rameters in the model have been set by a user or inferred
from training data, it is possible to fix them on a per value
basis. Use cases for this include: Fitting a topic model, then
fixing the topics and running inference against new docu-
ments to determine their topic; And running conventional
execution on a trained model to generate a synthetic dataset.
Inferred data can be saved to and reloaded later, allowing
trained models to be easily distributed.

2.2.2 Documentation. To make models easier to share
JavaDoc comments can be attached to the whole model, indi-
vidual variables, and methods. These are then propagated to
the compiled model, providing JavaDoc that can be browsed,
or used by IDEs. To allow model identification all compiled
model classes have a method to return the original models
source code.

3 Compilation
Having illustrated how models are written and used, this sec-
tion provides an overview of how the models are constructed
internally, the compilation process, and how we overcame
some issues.
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3.1 Model Structure
Compiling Vate models produces a number of classes that
extend elements of the Vate runtime system. These classes
are split into two categories: The classes that provide the
object-oriented aspects of the model; And core classes imple-
menting a common interface, providing the current state of
the model, and the numeric methods to manipulate this state.
Only one of these core classes is instantiated at any given
time, with each targeting a different hardware/software back-
end. This separation of concerns allows the user interface
and the numeric calculations to be developed separately. This
is particularly important in allowing models to target differ-
ent hardware or runtime systems by constructing a different
core class while maintaining the stability of the user code.

3.2 Compilation Process
The compilation of a model takes the following steps:

1. Translate the model to Java API calls which are then
compiled to intermediate Java class files.

2. Execute the intermediate code to construct a DAG
representing the model code. This is a direct represen-
tation of the code, not a Bayesian Network.

3. Explore the DAG to determine relationships between
variables.

4. Construct methods for inferring new values and cal-
culating probabilities for each random variable.

5. Construct methods for combining these operations.
6. Apply optimisations.
7. Output constructed methods to target languages.
8. Compile this code to the final model implementation.
The first step of compiling a model is source-to-source

translation to generate Java code for classes which contains
static methods constructed from API calls. These methods
are a root method representing the model, and a method
representing each method defined in the model. The Java
code is then compiled producing classes to be executed in the
next step. If methods are included in the model the compiler
will output the translated and compiled intermediate classes
so they can be included in the compilation of later models
by adding them to the class path for step 2.
This first step allows Java to type check the model, any

type errors returned are mapped back to the locations where
they occur in the model. There is also the potential to con-
struct translators for other languages. The use of class files to
store the models in their partially compiled state allows the
Java package system, jar files, etc. to be used when handling
the compiled methods.

When the root method is executed, the API calls construct
a DAG consisting of task nodes and variable nodes represent-
ing the model. Task nodes represent operations within the
model such as arithmetic, sampling, constructing random
variables, array operations, and control constructs such as
for loops. Variable nodes represent the data generated by

int (1) int (nFlips)

int (i)

get get

int[][] (m)int[] (st)

put

sample Construct Categorical

minus

int (1) Const 1

intint int[]

categoricalint

int[] (st)

for loop

Figure 4. A representation of the DAG for the part of the
model from Figure 1 that sets the values of st from 1 to
nFlips. Tasks are white, and variables are black with their
name or value if known in brackets. The tasks and variables
in the grey area are in the scope of the for loop. The remain-
ing tasks and variables are in the Global scope.

each task, with each task producing a single variable. An ex-
ample can be seen in Figure 4. This DAG is then traversed to
identify producer-consumer relationships between random
variables, input values, observed values, and internal values.
To construct the complete DAG for a given model would
require runtime information describing how many iterations
of each for loop are performed, this could also make the DAG
prohibitively large. To overcome this, "for loop" nodes in the
DAG represent iterations, with each iteration outputting a
different index value. In conjunction with the granularity
of arrays it is possible for dependencies to exist between
loops iterations. For example, in the HMM code, the value
of st depends on earlier values of st. How this is handled
is described in Section 3.5.

Once the DAG and the traces are constructed, trees repre-
senting code for conventional execution of parts of the model
are generated from the DAG. For example, the construction
of the input v. This is done via calls to the nodes in the
DAG that will then recursively construct the required trees.
Code for value inference via Gibbs Sampling and probability
calculations requires the ability to invert the relationships
between consuming and producing tasks. This is done via
a combination of traces recording sequences of tasks, and
inverse functions included in each task.

The data structures representing all the constructed meth-
ods and fields are collected in a single data structure, and
an aggressive set of optimisations is applied to them. This
allows the earlier steps to produce simple code that is easier
to check for correctness. Many of the optimisations cannot
be applied later by the target language compiler because
domain specific information is lost.

3.2.1 Scopes. Each task and variable in the DAG has an
associated scope describing which construct of the model,
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(for loop, reduction, etc.) encompasses it. With the exception
of the outermost scope (Global), each scope has a parent
scope creating a tree structure of all the scopes in the model.
This provides an easy way of determining the relationship
between elements of the DAG, as demonstrated in Section 3.4.
It also provides a framework into which fragments of gen-
erated code can be embedded, greatly simplifying the code
generation methods within the DAG nodes.

3.3 Value inference techniques
As described in the introduction the primary inference tech-
nique is Gibbs Sampling using conjugate priors to calculate
values generated by a source random variable and consumed
by other random variables. To do this the values sampled
from the consuming random variables are calculated by back
tracking through the DAG, and the inputs to the supplied to
the source random variable are calculated by conventional
execution. We use heuristics to mark points in the DAG
where results will be stored, in all other locations the values
are recomputed on demand. Using these values, for each
conjugate pair there is a formula which allows the sampling
of a new value.

When it is not possible to use conjugate priors Vate reverts
to marginalising out sampled variables for finite discrete dis-
tributions, and localised Metropolis–Hastings inference for
unbounded or continuous distributions. The implementation
of these two techniques has a similar structure. For marginal-
isation each possible value of the sampled value is set in
turn, the state of the model is updated, and the probability
of the model is calculated. This probability calculation is
constrained to the source and consuming random variables.
These probabilities are then used to parameterize a categori-
cal random variable from which the new value is drawn. For
Metropilis-Hastings the probability of the current value is
calculated, a difference is drawn from a normal distribution,
this is added to the current value, and the model is updated.
The new probability is calculated. The ratio of the two proba-
bilities is then compared with a value drawn from a random
variable in the range [0 . . . 1] to determine if the new value
should be kept, or the model should be reverted.

3.4 Working with Arrays
We now consider some of the issues related to arrays.

3.4.1 Assignment. While all variables are single assign-
ment, in the case of arrays, assignment is at the granularity
of individual elements within the array, not the whole array.
This means that the value of an array can change. To encode
these changes into the DAG, a put task takes as inputs the
array, the index, and the value to assign, and outputs a new
variable representing the new value of the array. Because
iterations are included into the DAG but not executed, the
number of put tasks, and therein variable nodes representing

new values of the array is equal to the number of put oper-
ations in the model, not the number of put operations that
would occur if the model was executed on a given data set.
For example, in the code in Figure 1, there would be 2 put
tasks in the DAG for the array st: One to assign the value of
element 0; And one for all the assignments that appear in the
for loop. In the case of multi-dimensional arrays, a put to an
inner array will trigger an implicit put to the outer arrays to
ensure that operations on the array are a total order. Because
each variable stores the task that constructed it, this creates a
linked list of array values which can be explored to generate
a set of possible other traces that could exist beyond the ones
that can be read from the DAG. This is used primarily in the
detection of dependencies between iterations; For example,
the construction of values of st that depend on earlier values
of st. These dependencies are considered in Section 3.5.

3.4.2 Multiple Traces. Values can be placed into arrays,
read back out of the arrays, transformed, placed into differ-
ent arrays, etc. Because these reading and writing operations
apply to individual elements it is possible to create a number
of different paths between producers and consumers. All
paths must be considered when constructing code that re-
verses a function to ensure that the correct transformations
are applied to the correct values. An example can be seen in
Figure 5, where two possible paths exist between the variable
a, and the variable c.

To achieve this, the code for performing the inverse func-
tion for the tasks in each trace is placed inside a set of for
loops that represent all the for loops that each trace has
been through. Within all these loops guards are placed to
ensure that the code is executed only if all the indexes for
puts and gets to the array match. An example of this can be
seen in Figure 6. This is clearly not very efficient with large
numbers of loop iterations being executed without the inner
loop body being executed. To address this, an aggressive
set of optimisations are applied. These take advantage of
knowledge of the bounds and step size of loops to: Move
guard conditions to the earliest point they can be applied to
allow early pruning; Rearrange the conditions to allow the
loop indexes to be replaced with functions based on other
variables thereby removing the loop. The effect of this can
also be seen in Figure 6. In this example we have left out
conditions to prevent double counting for brevity.

3.5 Iterations
The presence of arrays and loops can lead to dependencies
between iterations. For example the Categorical random vari-
able that generates the later values of st is also a consumer
of the output from earlier iterations. This creates two issues.

First, random variables that consume the output of a given
random variable can be missed because exploring the DAG
may not identify all potential traces. In the example, this
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double[] a = new double[nSamples];
for (int i: [0..nSamples) )

a[i] = beta(1,1).sample();

double[] b = new double[nSamples];
for (int j: [0..nSamples/2) )

b[j] = 1 - a[j];
for (int k: [noSample/2..nSamples) )

b[k] = a[k];

double[] c = new double[nSamples];
for (int m: [0..nSamples) )

c[m] = b[nSamples - m];

Figure 5. Code with two paths between arrays a and c.

for (int i = 0; i < nSamples; i++) {
for (int j = 0; j < nSamples/2; j++)
for (int m = 0; m < nSamples; m++)
if (i == j && j == nSamples - m)
f(1 - c[m], i);

for (int k = nSamples/2; k < nSamples; k++)
for (int m = 0; m < nSamples; m++)
if (i == k && k == nSamples - m)
f(c[m], i);

}

a) Unoptimised code.

for (int i = 0; i < nSamples; i++) {
if (i < nSamples/2)
f(1 - c[nSamples - i], i);

if (i >= nSamples/2)
f(c[nSamples - i], i);

}

b) Code after optimisation.

Figure 6.Unoptimized and optimised code to use themethod
f to consume transformed values associated with each sam-
ple variable i. Further optimisation is possible and is in-
tended future work.

happens between the Categorical and itself. Traces are con-
structed by recursively exploring backwards through the
DAG starting at observed values and random variables. If a
point of interest such as another random variable is reached,
the trace between these two points is saved. To overcome
the issue of missing traces via arrays, when a get task is en-
countered during the exploration, in addition to the put task
that constructed that array being explored, any subsequent
put tasks on this array are also considered to determine if
the value assigned by any of them could be output by the get

task. If it could be, these tasks are included in the exploration.
This takes advantage of the ordered list of put tasks for each
array described in Section 3.4.1 and the scopes described in
Section 3.2.1. A later put task can be part of a trace if it is
inside the same iteration as the get task. This can be tested
for by simply taking the outer most iterative scope of the
get task and the put task. If the scopes are the same then it
is possible that there is a dependency, so the trace should
explore from this point too. The put in Figure 4 would be
added to traces from the categorical by this technique. As
it is not possible to leave and re-enter a scope, if a put task
fails this test, all later put tasks will also fail the test, so no
further put tasks need to be considered.

Second, when there are no dependencies for loops can be
calculated in parallel, but with dependencies the execution
of the iterations must be restricted. Detecting these depen-
dencies takes two steps. First, the constructed traces are
explored to determine if there are any cycles. This is quick
because cycles can be constructed only by traces that appear
in the same outermost iterating scope, and only the start
and end points of each trace need to be considered when
using them to construct a cycle. By construction cycles have
only a single task that links to a task appearing later in the
graph. While more complex cycles can exist, they are all
constructed by concatenating these simpler cycles.
Having determined there is a cycle, the next step is to

determine where the dependency that creates the cycle oc-
curs. This is achieved by sorting the non-implicit put tasks
and the get tasks in the cycle into the order they appear
in the DAG. Because the cycle contains only a single task
linking to a later task there is a total ordering of these tasks.
The list is then traversed. For each get encountered, the ar-
ray, the dimension being indexed, and the index value are
stored. If a put task on the same array and array dimension
is subsequently encountered then this is assumed to be a
dependency, and the loops are examined to determine which
loop the index depends on. These loops are then marked to
be executed serially and the unmarked loops can be safely
executed in parallel. This mechanism can be overzealous,
and further examination of the dependency may allow for
some additional parallel execution.

4 Performance
A full performance analysis is beyond the scope of this paper,
but as a point of comparison we compare inference of the
example HMM model with a PyMC3 [13] version.

Model & Iterations
input length 1000 2000 4000 8000 16000
PyMC3, 1k 201.8s 388.4s 769.4s 1523s 3021s
Vate, 1k 0.174s 0.367s 0.760s 1.450s 2.809s
Vate, 10k 1.764s 3.499s 7.500s 14.34s 25.77s

All models are single threaded. In addition to being in ex-
cess of 1000x faster, the Vate results were also more probable.
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While not suitable formodels with local optima such asHMM
we also ran the PyMC3 gradient based findMAP method on
the two datasets. This took 13.3s and 13.9s to execute and
returned values that were significantly less probable than
those reached by Vate in 1000 iterations, and Vate was 76x
and 7.8x times faster respectively. The difference in speed of
convergence is due to different sampling techniques, with
the Vate techniques converging in fewer iterations, and each
iteration being quicker to execute. We attribute the differ-
ence in execution speed to a combination of interpreted vs
compiled code, more targeted code, and the optimisations to
Vate which can produce 40x speedups vs the unoptimized
code. It terms of code complexity while this is hard to quan-
tify, the PyMC3 model required 49 lines of code including
the extending of two classes describing random variables,
and implementing a filter to find the most probable result.
The Vate implementation consisted of the 16 lines of code in
this paper. A fuller evaluation is future work.
To examine parallel performance a more complex HMM

model drawn from a production system is used. Here states
are web pages, and events (Flips) are actions performed on
those pages. When training the model will observe a large
number of these traces to infer the models parameters. Fig-
ure 7 shows the speedup on a 6 core Intel i7-9750H, Coffee
Lake, system is 4.5x with 6 threads rising to 5.5x with hyper-
threading. We did not compare this model to an implemen-
tation in PyMC3 as the streams of events can be different
lengths, requiring different numbers of random variables
for each stream. As PyMC3 names each random variable
implementing this would require code to generate and track
a unique name for each random variable.

5 Related Work
Started in 1989 the BUGS [15] project is one of the first proba-
bilistic programming languages. BUGS interprets declarative
models written in a language that is syntactically similar to
imperative languages but requires the user to separate out
values sampled from distributions, and deterministic rela-
tionships between values. JAGS [12] was developed to make
BUGS platform independent, and Multi-BUGS [7] is a Win-
dows based implementation that performs parallel execution
using techniques similar to those in Vate.
Later probabilistic programming systems can be roughly

split into two forms: Languages that move away from im-
perative coding styles towards the statistical underpinnings
of the models; And APIs that are called to construct models
within an existing programming language such as Python
or C#. Vate, like Augur [18], picks an alternative position
where the language is familiar to developers, but the model is
compiled providing separation of concerns, and performance
benefits.

Augur uses Scala macros to compile models in Scala code
to the JVM and to GPUs. The use of Scala macros ties Augur
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Figure 7. Speedup with increasing thread count for a more
complex HMM model.

to specific versions of the Scala compiler, Vate’s clean sepa-
ration works with any Java 8+ compiler. In addition to the
macros Augur also required further compilation of the byte
code. These two steps with the Scala compiler in between
made Augur very opaque and hard to debug, modify, and
maintain. Unlike Vate’s trace based approach Augur gener-
ates inference techniques via equation rewriting. Relative to
Vate this restricts the complexity of the variable relationships
and therein models that Augur is able to handle.

Examples of statistically inspired languages are the family
of languages based on Lisp including Church [5] and An-
glican [16], and languages such as Birch [11] and Stan [2].
Unlike the interpreted code of BUGS, Stan generates com-
piled C++, and uses gradient methods for value inference.
This improves performance at the cost of excluding models
with discrete distributions. Stan models are split into a large
number of separate blocks based on their function. Some
improvement of this has been made with SlicStan [6].
Examples of API based modelling include: PyMC3 [13],

Infer.net [19], Edward [17], Pyro [1], and Bean Machine [14].
The use of APIs allows models to be constructed in languages
that are familiar to developers, but at the cost of encapsula-
tion. Models are no longer separated from the code that calls
them making them more complex to read and modify, and
removing guarantees that the model is not manipulated by
control flow it is unaware of.

6 Conclusions
We introduced Vate, a probabilistic programming language
for describing and compiling JVM based models that can
be dynamically targeted to different runtime environments.
These models are object-oriented, and perform a wide range
of operations. Vate differs from existing work in the field by
using a language familiar to developers to construct encap-
sulated models, separating the concerns of model use from
model description.
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