In Proceedings

Online Post-Processing in Rankings for Fair Utility Maximization
March 2021

We consider the problem of utility maximization in online ranking applications while also satisfying a pre-defined fairness constraint. We consider batches of items which arrive over time, already ranked using an existing ranking model. We propose online post-processing for re-ranking these batches to enforce adherence to the pre-defined fairness constraint, while maximizing a specific notion of utility.  To achieve this goal, we propose two deterministic re-ranking policies. In addition, we learn a re-ranking policy based on a novel variation of learning to search. Extensive experiments on real world and synthetic datasets demonstrate the effectiveness of our proposed policies both in terms of adherence to the fairness constraint and utility maximization. Furthermore, our analysis shows that the performance of the proposed policies depends on the original data distribution w.r.t the fairness constraint and the notion of utility.

Authors: Gupta, Ananya*, Johnson, Eric*, Payan, Justin, Roy, Aditya Kumar, Kobren, Ari, Panda, Swetasudha, Tristan, Jean-Baptiste, Michael Wick

Venue: WSDM 2021

External Link: https://dl.acm.org/doi/10.1145/3437963.3441724

Content:

Hardware and Software, Engineered to Work Together